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SUMMARY This paper addresses the problem of view invariant action
recognition using 2D trajectories of landmark points on human body. It is a
challenging task since for a specific action category, the 2D observations of
different instances might be extremely different due to varying viewpoint
and changes in speed. By assuming that the execution of an action can be
approximated by dynamic linear combination of a set of basis shapes, a
novel view invariant human action recognition method is proposed based
on non-rigid matrix factorization and Hidden Markov Models (HMMs).
We show that the low dimensional weight coefficients of basis shapes by
measurement matrix non-rigid factorization contain the key information for
action recognition regardless of the viewpoint changing. Based on the ex-
tracted discriminative features, the HMMs is used for temporal dynamic
modeling and robust action classification. The proposed method is tested
using real life sequences and promising performance is achieved.
key words: action recognition, view invariant, matrix factorization, Hid-
den Markov Models

1. Introduction

Recently, human action recognition has become an active
research area due to its many potential applications such
as video surveillance, human-computer interface, robot ma-
neuvering, content based video retrieval and sports video
analysis.

Many approaches for human action recognition have
been proposed previously. The most common one taken by
the researchers is to perform action recognition using 2D
observation, such as silhouettes of the target subject or land-
mark points trajectories. For example, temporal template
was used for human movement representation and recogni-
tion [1], where the temporal template was a static vector-
image and the vector value at each point was a function
of the motion properties at the corresponding spatial loca-
tion in an image sequence. This method can perform tem-
poral segmentation automatically and is invariant to linear
changes in speed. The motion descriptor based on optical
flow measurements in a spatial-temporal volume for each
stabilized human figure was later introduced and an associ-
ated similarity measurement was used in a nearest-neighbor
framework [2]. Cubic higher order local auto-correlation
(CHLAC), the extension of the traditional higher order lo-
cal auto-correlation (HLAC) to the three-way data analysis
case, was exploited for action and simultaneous multiple-
person identification [3]. A sparse representation of image
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sequences as a collection of spatiotemporal events that are
localized at detected spatiotemporal salient points was pro-
posed later in [4], [5]. Based on novelly defined distance
metric and relevance vector machines, promising classifica-
tion result was achieved on a 19 aerobic exercises database.
A real time system for recognition of 15 different contin-
uous human activities was presented in [6], where the ac-
tions were represented as a continuous sequence of discrete
postures which were derived from affine invariant descrip-
tor. Both of the above methods are viewpoint dependent.
That is to say, the training sequences and testing sequences
are captured under the same viewing direction by station-
ary cameras. But in real life applications, the training se-
quences and testing sequences are not necessarily captured
from the same viewpoint. The 2D observations of different
action instances might be extremely different even if cor-
respond to the same action category. The situation is even
worse if the sequences are captured by a moving camera and
the viewpoints are varying on-the-fly. Furthermore, usually
the actions are executed at different rates, which renders the
problem much harder.

Several view invariant human action recognition meth-
ods have been proposed. For example, a computational rep-
resentation of human action using spatial-temporal curva-
ture of 2D trajectory was presented in [7]. [8] proposed a
3D model based view invariant human action recognition
method. The epipolar geometric constraints computed from
the correspondences of human body landmarks were used
to match actions performed from different viewpoints and
in different environments [9]. In [10], the human action was
represented by a set of descriptor computed from a spatial-
temporal action volume created from a set of object silhou-
ette. Again, the epipolar geometry between the views of
two stationary cameras was exploited to achieve view in-
variant recognition. The above view invariant action recog-
nition methods have the limitation that action sequences are
captured using stationary cameras. The traditional epipolar
geometry was further extended to the geometry of dynamic
scenes where the projection camera was no longer station-
ary [11].

In this paper, using the trajectories of landmark points
on the human body as inputs, a simple yet effective view
invariant human action recognition method is proposed
based on non-rigid factorization and Hidden Markov Mod-
els (HMMs). By assuming that the execution of a specific
action can be approximated by dynamic linear combina-
tion of a set of basis shapes, we show that the low dimen-
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sional weight coefficients of basis shapes by measurement
matrix non-rigid factorization contain the key information
for action recognition regardless of the viewpoint changing.
Based on the extracted discriminative features, the HMMs,
which allows for the inclusion of temporal dynamics, is
used for action modeling and classification. The proposed
method is tested using real life sequences and promising per-
formance is achieved.

The rest of this paper is organized as follows: Section 2
describes the discriminative feature extraction based on non-
rigid factorization. Section 3 presents the method of apply-
ing HMMs to human action modeling and recognition after
a brief review of HMMs. Experimental results using real life
database are presented in Sect. 4, followed by conclusions in
Sect. 5.

2. Feature Extraction Based on Non-rigid Factoriza-
tion

As in [8]–[11], this work does not address the lower-level
processing tasks such as body-joint detection and tracking.
We concentrate on how to construct discriminative features
for action recognition under varying viewpoint directions
and different execution speed, given the 2D trajectories of
anatomical landmarks on human body. There are many pos-
sible sets of features that could be used for action recogni-
tion, but the optimal choice for view invariant recognition
is not obvious. It is difficult to recognize actions, either
captured by stationary cameras with different viewpoint or
by moving on-the-fly cameras, because the 2D observations
might look quite different even the same person perform-
ing action of the same category. This is true both for con-
tour based representations and landmark trajectories based
representations. It is demonstrated in Fig. 1 using sample
sequences for walking, running and jumping. Taking the
walking sequences for example, Figs. 1 (a) and (d) are two
walking sequences performed by different persons. Fig-
ures 1 (b) and (e) are the 2D trajectories observations for
the two walking sequences under same viewing directions
by stationary camera, respectively. Even the two sequences
are performed by different persons, the 2D observations still
look similar since they belong to the same action category
and the body joints move in a similar way. Figures 1 (c) and
(f) are the 2D trajectories observations for the two walking
sequences projected using moving cameras, with the trajec-
tories superimposed. It can be clearly seen that, due to the
motion of the camera, not only the trajectories in Figs. 1 (c)
and (f) do not appear similar, but also the trajectories pairs
in Figs. 1 (b) (c) and (e) (f) look quite different even these
sequences, which belong to the same action category, are
performed by the same person. Figures 1 (g)–(l) and (m)–(r)
show the examples for running and jumping case respec-
tively and the same conclusion can be drawn.

Our view invariant approach for human action recogni-
tion in videos acquired by non-stationary cameras is based
on the observation that a deformable shape, e.g. human
body, can be approximately represented by a linear com-

bination of basis shapes, where the weight coefficients as-
signed to each basis shape change with time. We show that
the low dimensional deformation coefficients of basis shapes
contain the key information for action recognition regardless
of the viewpoint changing. It is well known that both shape
and motion can be factorized directly from the measurement
matrix constructed from feature point trajectories under or-
thographic camera model and rigidity assumption [12]. The
problem in the action recognition scenario is more complex
because the freedom of moving human body is extremely
high due to the non-rigidity. The traditional rigid factoriza-
tion algorithm was further extended to the non-rigid case
in [13], [14]. Suppose that P feature landmark points are
tracked across F frames, the deforming shape can be de-
scribed as a key frame basis set S 1, S 2, . . . , S K , where each
key frame S i is a 3 × P matrix. The shape of a specific con-
figuration is a linear combination of the basis set as follows:

S =
K∑

l=1

liS i, S , S i ∈ R3×P, li ∈ R (1)

When the size of the target subject is relatively small
enough compared with the distance between target subject
and viewing camera, the projection procedure can be ap-
proximated using orthographic model:

[
u1 u2 . . . uP

v1 v2 . . . vP

]
= R

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

liS i

⎞⎟⎟⎟⎟⎟⎠ + T (2)

(ui, vi) represents the 2D projection observations of the
feature point i. R contains the first two rows of the full 3D
camera rotation matrix and T contains the first two compo-
nents of the camera translation vector. Equation (2) can be
rewritten as follows after eliminating T by subtracting the
mean of feature points as in [12]:

[
u1 u2 . . . uP

v1 v2 . . . vP

]

=
[

l1R l2R . . . lKR
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1

S 2
...

S K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

If we write all the feature points along the temporal axis
into a 2F × P measurement matrix W as follows:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
1 u1

2 . . . u1
P

v1
1 v1

2 . . . v1
P

u2
1 u2

2 . . . u2
P

v2
1 v2

2 . . . v2
P

...
...

...
...

uF
1 uF

2 . . . uF
P

vF
1 vF

2 . . . vF
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

then W can be further decomposed into the following form:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 1 Example sequences. (a) (d): 3D walking sequences; (b) (e): 2D landmark points trajectory
superimposition for walking sequences (a) (d) projected using stationary cameras; (c) (f): 2D landmark
points trajectory superimposition for walking sequences (a) (d) projected using non-stationary cameras;
for two different performers respectively. (g)–(l) are example sequences for running action and (m)–(r)
are example sequences for jumping action. See the main text for detail.

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l11R1 l12R1 . . . l1KR1

l21R2 l22R2 . . . l2KR2

...
...

...
...

lF
1 RF lF

2 RF . . . lF
KRF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1

S 2
...

S K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

An effective way for factorization of the measurement
matrix W as Eq. (5) was proposed in [13], [14]. Firstly, the
weighting coefficients ltk, k = 1, . . . ,K, t = 1, . . . , F are ran-

domly initialized, and then the shape bases S i, i = 1, . . . ,K
are computed in the least-square-fit sense. Given an initial
guess of the rotation matrix R and the shape basis, the coef-
ficients l can also be solved using linear least squares. Next,
given the shape basis and the weight coefficients, the rota-
tion matrix R can be recovered by parameterized with expo-
nential coordinates. The above procedures are iterated until
convergence. More details can be found in literature [13],
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[14].
Denote the weight coefficient vector corresponding to

frame i as L(i) = (li1, l
i
2, . . . , l

i
K), then the vector sequence

φ = (L(1), L(2), . . . , L(F)) describes the changing mode for the
body-parts and contains the necessary information for action
recognition regardless of viewpoint changing. The reason is
that each instance of a specific action class is composed of a
sequence of deforming body. The body shape deforms along
the time axis while each shape at a specific time stamp is a
combination of different basis shapes with different weights
on the basis of average shape. The 2D observations of those
body shape are view variant. They are quite dependent on
the viewpoint and the chosen coordinate system. But the
weight coefficient vector is invariant to these conditions.
The inherent weight coefficient vector describes the style of
the whole body deforming by depicting the changing mode
of each relative displacement of the body, which are charac-
terized by the basis shapes. The φs for different action cate-
gories should exhibit different patterns while the φs for same
action should have similar patterns, regardless of different
subject performers, changing viewpoints or moving on-the-
fly capturing cameras. It should be noted that the vector
sequence φ can not be used directly for action recognition,
because in the iteration procedure of the non-rigid factor-
ization, no constraints has been imposed on the shape basis.
For action sequences of different instances, the shape basis
yield by non-rigid factorization of the measurement matrix
might also be different. In order to make the comparison
reasonable, we should put the weight coefficients sequences
under the same conditions, i.e., they should correspond to
the same shape basis set.

Suppose there are C action classes to be recognized.
The number of training sequences for the i-th action class is
Ni. Denote the measurement matrix for the j-th sequence of
the i-th action class as W j

i , we stack all training sequences
vertically as follows:

w =
[
W1T

1 , . . . ,W
NT

1
1 , . . . ,W

1T

C , . . . ,W
NT

C

C

]T
(6)

Here, we make use of the fact that all human figures
share the same skeleton structure. The procedure of stack-
ing measurement matrix can be imagined that the subject
undergoes a virtual movement from the position in the last
frame of i-th sequences to the position of the first frame in
the (i+1)-th sequence. After non-rigid factorization, we can
get the weight coefficient vector sequences along the tempo-
ral axis as φ j

i , i = 1, . . . ,C, j = 1, . . . ,Ni. If the length of the

j-th sequence of the i-th action class is F j
i , φ j

i can be written
in the following form,

φ
j
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l j(1)
i(1) l j(1)

i(2) . . . l j(1)
i(K)

l j(2)
i(1) l j(2)

i(2) . . . l j(2)
i(K)

...
...

...
...

l
j(F j

i )
i(1) l

j(F j
i )

i(2) . . . l
j(F j

i )
i(K)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Since the different actions share the same shape basis,

the discriminative information for action recognition are en-
coded in the φ j

i s. Figures 2 (a)–(c), (d)–(f) and (g)–(i) show
the examples of the recovered weight coefficients for action
categories of walking, running and jumping. For each ac-
tion category, the left sub-figure and middle sub-figure are
recovered weight coefficients for sequences of two different
performers with stationary cameras under the same view-
point while the right sub-figure is the recovered weight co-
efficients for sequences from a moving on-the-fly camera.
It can be seen that the varying patterns of the weight coef-
ficients look similar for the same action classes, even with
different performers or captured with a moving camera. On
the other hand, the patterns look quite different for different
action classes. Thus the weight coefficients are appropriate
for view invariant action recognition of human body under
the condition of variability such as captured by moving pro-
jection cameras.

3. HMMs Based Action Modeling and Recognition

Hidden Markov Models (HMMs) [15] have been success-
fully used for speech recognition and computer vision. We
employ the HMMs for action modeling and recognition
since it can be applied to model the time series data well,
such as the weight coefficients with temporal variations. It
allows for the inclusion of temporal dynamics to model the
action sequences. The HMM model for the c-th action class
is given by λc = (Ac, Bc, πc) with N number of states. Here
Ac is the transition matrix and πc is the initial distribution.
The Bc parameter represents the probability distributions for
the observed feature vector conditional on the hidden states.
In this work the HMMs with mixture of Gaussians is used
for action modeling. Suppose each state has a bank of M
Gaussian components, then the parameter Bc consists of the
following items: the mean vector μim, the mixture coefficient
cim and the full covariance matrix Σim for Gaussian compo-
nent m in hidden state i, where m = 1, . . . ,M, i = 1, . . . ,N.

The model parameters are adjusted in such a way that
the likelihood P(Oc|λc) is maximized given training data set
Oc, which denotes the weight coefficient vector sequences
along the temporal axis for action class c. The Baum-Welch
algorithm [15] is used for iteratively re-estimate model pa-
rameters to achieve the local maximum. Given a test se-
quence for an unknown action with the corresponding land-
mark points trajectories, we first apply the non-rigid factor-
ization to compute the deformation coefficients O. It should
be noted that the basis shapes should keep same as obtained
during training procedure. That is to say, we only need to
iteratively estimate the rotation matrix and the weigh coef-
ficients. Then we use maximum likelihood approach for the
classification:

argmaxc∈{1,...,C}P(O|λc) (8)

4. Experiments

As in [8]–[11], this work does not address the lower-level
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Fig. 2 The examples of the recovered weight coefficients. (a)–(c), (d)–(f) and (g)–(i) are for walking,
running and jumping sequences respectively. For each action category, the left figure and middle figure
are recovered weight coefficients for sequences of two different performers with stationary cameras
under the same viewpoint while the right figure is the recovered weight coefficients for sequences from
a moving on-the-fly camera. The horizontal axis represents the frame index. The vertical axis represents
the value of the weights. Red, Green and Blue color represent l1, l2 and l3 respectively. See the main
text for detail discussion.

processing tasks such as robust body-joint detection and
tracking. We concentrate on showing the discriminative
power of the weights coefficient vectors feature for action
recognition under varying viewpoint directions and differ-
ent execution speed, given the 2D trajectories of anatomical
landmarks on human body. Experiments were performed
on CMU Mocap motion capture data of real human action
sequences. The motion capture data is obtained by placing
several sensories on the body-joints of the performer and the
3D trajectory positions of those marks are recorded. Dur-
ing the experimental procedure, only the 2D projected ob-
servations were used and the Z information was discarded.
The dataset used in our experiment consists of eight rep-
resentative real life action categories with each category
has 10 sequences performed by different persons, which in-

cludes walking, running, dribbling, kicking, boxing, jump-
ing, wheeling and dancing. The sample example views seen
by the cameras are depicted in Fig. 3. In order to verify
the proposed claim that the low dimensional weight coeffi-
cients vector sequence is discriminative for recognizing ac-
tions with changing viewpoint, for those sequences that the
movement of the capturing camera are not large enough, for
example in Fig. 4 (a), the 2D feature point trajectories were
re-generated from 3D positions with projections using vary-
ing rotation and translation matrices. The variation limita-
tion range of the rotation parameters is between [0◦ − 45◦]
for αx, αy and [0◦ − 90◦] for αz, which is large enough to
make the 2D trajectory observations appear quite different
for each action instances, for example in Fig. 4 (b). Again,
the Z information is discarded and only the 2D trajectory
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Table 1 The confusion matrix table and recognition rate. A1–A8 represent walking, running, drib-
bling, kicking, boxing, jumping, wheeling and dancing, respectively.

A1 A2 A3 A4 A5 A6 A7 A8
A1 17 1 1 1 0 1 0 1
A2 2 17 1 0 0 0 0 0
A3 1 2 18 0 0 1 0 0
A4 0 0 0 19 0 0 0 0
A5 0 0 0 0 19 0 0 0
A6 0 0 0 0 0 18 0 0
A7 0 0 0 0 0 0 20 0
A8 0 0 0 0 1 0 0 19

Rate 85% 85% 90% 95% 95% 90% 100% 95%

Fig. 3 The sample example views of walking, running, dribbling, kick-
ing, boxing, jumping, wheeling and dancing.

(a)

(b)

Fig. 4 Comparison of 2D landmark points trajectories captured using
static camera (a) and moving camera (b).

observations are used as inputs of the experiment. We used
the HMMs with the topology of 6 hidden states and each
observation was modeled by mixtures of 3 Gaussian den-
sities. K, which denotes the number of basis shapes, was
empirically set to 3. The experiments are repeated for 10
times while in each time the sequences for each action cate-
gory was randomly 80/20 partitioned into training and test-
ing sets. Table 1 shows the results of action recognition us-
ing the proposed view invariant recognition framework. It

Fig. 5 Recognition rate versus coordinate noise.

can be clearly seen from the confusion matrix that the pro-
posed view invariant human action recognition framework
achieves promising performance and the overall recognition
rate is 91.88%.

Since usually the trajectories produced by feature
points tracker are not so accurate, we also tested the per-
formance of the proposed method against coordinate noise
of different levels. Specifically, we disturbed the coordinates
of the feature points trajectories using uniform noises of 0–
5 pixels levels with 0.5 pixel interval. Figure 5 shows the
curve of recognition rate versus noise level. It can be seen
that the proposed method is robust to the coordinates noise
to some extent. This is expected since the extracted weight
coefficients depict the motion style from a global point of
view and HMMs represent the temporal changing mode in a
probabilistic way.

5. Conclusion and Future Works

This paper introduces a new framework for view invariant
human action recognition using 2D observations of trajec-
tories of body landmarks, based on nonrigid matrix factor-
ization and Hidden Markov Models. The feature vectors
are extracted via non-rigid factorization by treating all of
the training sequences under the same conditions. The ex-
tracted low dimensional weigh coefficients encode the dis-
criminative information for action recognition. Based on
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those features, a set of HMMs are built for each action cate-
gory. Promising recognition results show that the proposed
algorithm is robust to noises, and more importantly, to the
variations in viewing direction and execution rate.

The camera projection procedure in this paper is de-
scribed using the simple orthographical model. In real life
applications, the projective model is more faithful. Also, the
feature point tracker often produces trajectories with miss-
ing data due to occlusion or ambiguity. How to extend the
proposed method to the projective case and missing data
case is worthy of further research.
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