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Abstract—A method for sensing human visual attention is
proposed. The method is based on the analysis of sequential image
patterns of faces and irises observed at regular time intervals.
The basic concept is to represent the set of image patterns
produced by the action of gazing at a certain area as a nonlinear
subspace in a high-dimensional pattern vector space. Such a
space is called an attention subspace. In this framework, an input
subspace from an unknown action is classified into an attention
subspace of gazing at a certain area or into attention subspaces
of gazing at other areas (named non-attention subspaces) by
measuring the canonical angles between the input subspace and
pre-computed dictionary subspaces. To maintain performance
even in the presence of head movement, two mechanisms are
introduced: 1) the kernel orthogonal mutual subspace method,
which is suitable for classifying sets of multiple images; and 2)
a kernel function for considering the head position in addition
to a kernel function for pixel values. The stable performance of
the proposed method including situations with head movements
is demonstrated through experiments.

I. INTRODUCTION

Recognizing visual attention is useful in various situa-
tions in human-computer interfaces [1]–[3] because atten-
tion is directly related to the intention of the person. By
visual attention , we mean fixation of gaze on a certain pre-
defined area. Visual attention typically entails the following
actions: looking toward a direction of interest first by the
movement of the eyeballs, and then gradually rotating the
whole face (head) toward the direction [4]. Our ultimate goal is
to sense visual attention as a signal for triggering operations in
user interface systems [5]. Specifically, our aim is to construct
a “vision switch” that operates under the following conditions.

(i) No special equipment is needed, and no constraints
exist on head movement.

(ii) No special lighting such as infrared radiation is
needed.

Although there are no existing techniques capable of sensing
human visual attention under the above two conditions (to
the best of the authors’ knowledge), there have been some
studies into gaze detection that are related to our work. For
example, in view-based methods [6]–[8], gaze is estimated
from the patterns of the eyes or face by using a neural network,
morphable models, or other techniques, and the focus of
attention is determined from temporal changes in the obtained
direction of gaze [9]. The advantage of view-based methods is
that they can be realized by simple algorithms that do not
necessarily have a 3D model of the eyeball or head. The
proposed method is also view-based in terms of images, which
consist of patterns of the iris and of the whole face to take the
directions of both the gaze and the face into consideration.

Fig. 1. Conceptual diagram of the process of comparing an input subspace
to an attention subspace and non-attention subspaces. The input subspace ζIt

gradually changes as new input images arrive. The angle θ indicates the set
of canonical angles θ = (θ1, . . . , θN ).

We consider the problem of sensing visual attention as a
classification of an input sequence of patterns into different
classes (attention and non-attention). The attention class is
represented by the sequences of patterns that occur due to
the action of gazing at a certain target area. Non-attention
classes are represented by the sequences of patterns that occur
due to the actions of gazing at other areas around the target
area. We represent the sequences of image patterns of each
action in visual attention by nonlinear subspaces (we call them
attention subspace and non-attention subspace) in a feature
space.

A conceptual diagram of the proposed framework is shown
in Fig. 1. The attention subspace ζT0 for a target area
T0 can be obtained by applying kernel principal component
analysis (KPCA) [10] to the learning patterns collected from
the actions of visual attention. The subspace-based represen-
tation [11]–[14] enables us to handle the problem of sensing
visual attention efficiently by the following simple algorithm.
We recognize an unknown action observed in a time interval as
attention to a certain area when the subspace constructed by the
input pattern is closer to a certain attention subspace ζT0 than
to any of the other non-attention subspaces ζT1, . . . , ζTm for
areas T1, . . . , Tm. We define the distance between subspaces
by the canonical angles [15] between them, which are obtained
by simple linear algebra.

Although subspace methods are capable of recognizing
an object without using complex 3D models, they tend to
be sensitive to head movement when applied to recognizing
attention. This sensitivity is partly because of variations in the
view of the irises and whole face. Suppose a person gazes



(a) (b)
Fig. 2. (a) Example configuration for three areas. The action of gazing at T2
is regarded as visual attention. (b) Iris/face appearance patterns corresponding
to attention to each area.

alternately at two different objects. The difference between
the iris/face patterns obtained when gazing at one object and
when gazing at the other object will be very small. However,
these patterns can vary significantly depending on the head
position of the person. This suggests that these patterns are
dominated by head movement. Consequently, the performance
of attention sensing is greatly reduced by even slight changes
in head position. To mitigate this problem, we introduce the
kernel orthogonal mutual subspace method (KOMSM) [14] to
improve the separability of the subspaces and a kernel function
for head location to improve the robustness against differences
in head position. By introducing these mechanisms, we are able
to produce stable and accurate classification between gazing
and not gazing, which paves the way toward the realization of
a “vision switch”.

The remainder of this paper is organized as follows. In
Section II, we outline the basic notions of the proposed
method. Section III describes the theoretical framework of the
proposed method. An experimental evaluation of the method
is presented in Section IV. The last section is devoted to
concluding remarks.

II. BASIC IDEA FOR BUILDING THE VISION SWITCH

In this section, we briefly introduce the basic notions and
approaches for realizing the vision switch.

A. Introduction of Attention Degree

In the formulation of the problem of sensing visual atten-
tion to a certain area, we assume a simple situation in which
three areas are arranged on a display as shown in Fig. 2 (a) as
a running example. In this example, we assume gazing at T0
to be attention, and gazing at T1 or T2 to be non-attention. We
note that the number and arrangement of the areas is arbitrary.

We represent the set of input sequential image patterns in
the time period from t to t+ δ by an input subspace, ζIt , and
the sequential patterns due to the action of gazing at objects
T0, T1, and T2 by an attention subspace ζT0 and non-attention
subspaces ζT1 and ζT2, respectively. Although the attention
and non-attention subspaces ζT0, ζT1, and ζT2 are static, the
input subspace ζIt is updated whenever a new pattern is input.

The relationship between two subspaces is completely
described by the set of canonical angles between the subspaces.
If the two subspaces coincide completely, all canonical angles
are zero, whereas the canonical angles become larger as
the two subspaces drift apart. Therefore, by averaging the
canonical angles, we can obtain a value that indicates the

distance between two subspaces. We then define the attention
degree by

AD =
1

L

L∑
i=1

cos2 θT0i (1)

where θT0i is the ith canonical angle between the subspaces
ζIt and ζT0. Similarly, the non-attention degrees are defined
by

NADTn =
1

L

L∑
i=1

cos2 θTni (2)

for object Tn (n = 1, . . . ,m), where θTni is the ith canonical
angle between the subspaces ζIt and ζTn and we define L =
min{dim(ζIt),dim(ζTn̂)} (n̂ = 0, . . . ,m). AD is regarded
as the reliability of whether a person is gazing at an object
T0. We recognize an input action as attention when AD has
a significantly high value compared to NADT1 and NADT2.
The validity of this definition of attention degree is discussed
in Section IV-B.

B. Problems to Be Solved

To implement our vision switch based on the subspace-
based method using sets of sequential iris/face patterns, we
have to simultaneously tackle the following problems.

(i) How to emphasize the difference between an at-
tention subspace and other attention (non-attention)
subspaces.

(ii) How to reduce the influence of changes in head
position on classification performance.

To deal with these problems, we introduce the following two
mechanisms.

For problem (i), we adopt KOMSM ( [14]) as the classifier.
In KOMSM, we represent a set of sequential iris/face pattern
images from a gazing action as a nonlinear subspace, which
is generated from the set of images by using KPCA [10]. In
KOMSM, attention and non-attention subspaces are orthogo-
nalized to each other in advance to increase the classification
ability. Orthogonal subspaces have increased inter-class varia-
tions; namely, differences between the two subspaces become
larger and within-class variation is limited. By doing this, we
expect that the similarity between two orthogonal subspaces
will not be greatly influenced by head movement. This implies
that our method can detect visual attention stably. However,
adopting only KOMSM cannot solve the second problem (ii).

Figure 3 shows an example of problem (ii) in which the
head position of the user is shifted laterally. In this example,
note that although the iris/face patterns are almost the same,
the points at which the user is gazing are completely different.
This kind of situation causes an overlap between the attention
subspace and non-attention subspaces, making classification
of both difficult. This observation suggests that we have to
consider information about the position of the head in both the
learning and test phases. To this end, we introduce a kernel
function for considering the position of the head in addition
to the kernel function used for representing the nonlinear
subspace in KOMSM.



Fig. 3. Ambiguity of the appearance of a face. The two images are almost
the same, in spite of gazing at different areas.

III. THEORETICAL FRAMEWORK

This section describes a concrete algorithm for calculating
the similarity between an input subspace and attention/non-
attention subspaces under the framework of KOMSM [14].

A. Canonical Angles between Two Subspaces

We first describe how the distance between two given linear
subspaces is calculated, and then explain how this is extended
to nonlinear subspaces.

Suppose we already have a pre-computed mD-dimensional
dictionary subspace ζD. Given the sets of sequential iris/face
patterns, we first represent the sets by an mI -dimensional
linear subspace ζI in a d-dimensional space and this subspace
is generated from the image sets by using PCA. That is, the
subspace ζI is the span of the eigenvectors of the empirical
covariance matrix of the input samples. In this paper, for the
sake of notational simplicity, we identify the subspace ζ by the
matrix of eigenvectors that span the subspace. In the following
discussion, for convenience, we assume mI ≤ mD, and that
the mI canonical angles {0 ≤ θ1 ≤ · · · ≤ θmI

≤ π
2 } between

ζI and ζD are uniquely defined.

A practical method for finding the canonical angles is
by computing the matrix U⊤V , where U = [u1, . . . ,umI

]
and V = [v1, . . . ,vmD

]. Vectors vi and ui denote the ith
d-dimensional orthonormal basis vectors of the linear sub-
spaces ζI and ζD, respectively. Here, ⊤ means the matrix
transpose. Let {λ1, . . . , λmI} be the singular values of the
matrix U⊤V . The canonical angles can be obtained as
θ = {cos−1(λ1), . . . , cos

−1(λmI
)}, and these angles are used

to calculate the attention degree. The classification method
based on the canonical angles (or attention degrees of in-
put) and dictionary subspaces is called the mutual subspace
method (MSM).

B. Orthogonalization of Subspaces

To boost the performance of the MSM, class subspaces are
orthogonalized by using the framework from Fukunaga and
Koontz’s method [16] before measuring the canonical angles
between them. Suppose there are m different classes. In the
framework, the orthogonalization is performed by applying the
orthogonalization matrix O to the reference subspaces. If we
define the matrix G =

∑m
i=0 Pi as the sum of the projection

matrices Pi, i = 0, . . . ,m corresponding to the projection onto
the class i subspace, then O is calculated as

O = Λ− 1
2B⊤, (3)

where Λ is a diagonal matrix with the ith largest eigenvalue of
G as the ith diagonal component, and B is the matrix in which
the ith column vector is the eigenvector of G corresponding
to the ith largest eigenvalue. Subspaces ζTi, i = 0, . . . ,m and
the input subspace ζIt are then transformed by the action
of the orthogonalization matrix O. That is, we obtain the
orthogonalized subspace ζ ′ from a subspace ζ as

O : ζ 7→ Oζ = ζ ′. (4)

By this orthogonalization, we can expect better separability
between the different subspaces corresponding to different
classes. The method of classification according to orthogo-
nalized subspaces is called the orthogonal mutual subspace
method (OMSM).

C. KOMSM

A linear subspace is not suitable for representing a set
of iris/face sequential patterns due to the highly nonlinear
structures of the set. To overcome this problem, OMSM has
been extended to a nonlinear method [14]. We introduce a
nonlinear map ϕ from the patterns x in a d-dimensional input
space I to an f -dimensional feature space F as ϕ : x → f .
To perform PCA and whitening on the feature space F , we
need to calculate the inner product fi ·fj between the features
fi,fj ∈ F obtained by mapping xi,xj ∈ I to F . However,
this calculation is difficult because the dimension of the feature
space F can be very high. We introduce a “kernel trick”, which
replaces the inner product fi · fj on the feature space F with
the value of a kernel function k(xi,xj). A common choice
for the kernel function is the Gaussian kernel:

k1(xi,xj) = exp

(
−||xi − xj ||2

2σ2
1

)
(5)

with a kernel bandwidth parameter σ2
1 > 0.

PCA that uses the kernel trick is called KPCA [10], and
the subspace in the feature space F is called the nonlinear sub-
space. Note that in KOMSM, each image set is represented by
a nonlinear subspace, and the distance between two nonlinear
subspaces can be calculated by using this kernel trick. For
details, refer to [14].

D. Additional Kernel Function for Head Position

To deal with changes in head position, we introduce an
additional kernel function defined as

k2(pi,pj) = exp

(
−||pi − pj ||2

2σ2
2

)
, (6)

where σ2
2 > 0 is the kernel bandwidth parameter, and pi ∈ R2

is the vector representing the coordinate (x, y) of the head
position in the ith input image.

We propose using a kernel function of the form

k({xi,pi}; {xj ,pj}) = α1k1(xi,xj) + α2k2(pi,pj) (7)

for estimating subspaces with KPCA. In this kernel function,
α1, α2 ≥ 0 are controlling parameters for balancing the impor-
tance of the two kernel functions k1(xi,xj) and k2(pi,pj).



Fig. 4. Flow of iris detection procedure by using the circular separability
filter.

Fig. 5. Extracted sequential patterns collected by giving visual attention to
the object. To enhance the effects of the images around the irises, we extract
the region around the irises and stack them above the whole face image.

E. Algorithm of Sensing Attention

Finally, we summarize the proposed algorithm for sensing
attention in the following steps, as shown in Fig. 6. We
consider the cases where the attention and non-attention areas
are arranged as shown in Fig. 7 (a).

1. Detect two irises from an image for registration. Fig. 4
shows examples of irises detected by using a circular
separability filter [17], [18], which can extract circular
objects with high speed and accuracy from a given
image.

2. Extract the patterns of the irises and normalize the
whole face pattern. As shown in Fig. 5, we extracted
the region around the irises and stacked them over the
whole face image to enhance the importance of the
iris area. The size of the extracted pattern is 32× 32
pixels.

3. Using images for registration, perform KPCA on
image sets for each class and generate subspaces
ζTi, i = 0, . . . , 8, then transform the subspaces
ζTi, i = 0, . . . , 8 by the orthogonalization matrix O
to obtain the corresponding orthogonalized subspaces
ζT0′ . . . ζT8′.

4. Whenever a new pattern is given, patterns are extracted
in the same manner as in step 2 and the input subspace
ζIt is created by KPCA followed by orthogonalization.

5. Calculate the attention degree for all the objects from
the orthogonalized input subspace ζIt′ and all the
orthogonalized attention subspaces, ζT0′ . . . ζT8′.

6. The input action is recognized as visual attention on
T0 when AD is the highest of all the NADTn(n =
1, . . . , 8) values.

We used the input and all the attention subspaces with
a reduced number of dimensions to calculate the canonical
angles efficiently. In our preliminary experiments, we found
that we can obtain good classification performance when the
number of dimensions of the input subspace is set to d = 5.

Fig. 6. Flowchart of the procedure for sensing visual attention.

(a) (b)

Fig. 7. Setting of attention and non-attention areas. (a) The attention area and
eight adjacent non-attention areas. (b) Face appearance patterns corresponding
to attention to each area.

Attention and non-attention subspaces are set to d = 15 for
linear classifiers and d = 45 for KOMSM.

IV. EXPERIMENTS

In this section, we perform several experiments to evaluate
the performance of the proposed method. First, we evaluate the
basic performance to confirm that the problem can be solved in
our framework. Second, we estimate AD and NAD and then
evaluate the validity of these estimates. Finally, we evaluate the
robustness of the proposed method with respect to the position
of the head and examine the effect of the location kernel.

A. Basic Performance

Casting the gaze detection problem as a classification
problem as explained in the previous sections, we evaluate the
performance of the proposed method when objects that are
assumed as attention and non-attention are placed near each
other. We first describe the location and the size of the objects
in this experiment. There are 9 objects placed as shown in
Fig. 7 (a). A user is instructed to gaze at the object displayed on
a monitor. In this experiment, we considered 3 different types
of distances between objects. Table I shows the details of the
setting. Note that we measure the distance between subspaces
as the minimum canonical angle in this experiment.

Fig. 7 (b) shows the face images when the distance level is
set to the narrow level. The distance between the user and the
monitor is set to 50 cm. The camera is located on top of the
monitor. We do not fix the position of the head by any special



TABLE I. DISTANCE LEVELS AND CORRESPONDING HORIZONTAL AND
VERTICAL DISTANCES BETWEEN EACH OF 9 ATTENTION AREAS.

Distance level Horizontal distance Vertical distance
Wide 15.4 cm 11 cm

Middle 8.8 cm 6.6 cm
Narrow 2.2 cm 2.2 cm

Fig. 8. Error rates for each distance level between objects.

devices. We collected 10 sequences of images, giving visual
attention to each object. Throughout this paper, one sequence
is assumed to be composed of 20 images, which means that we
use 20 images when estimating a subspace. The total number
of sequences of data is 90. We use the subspace method [11],
MSM [12], and KOMSM as classifiers. In KOMSM, we did
not use the location kernel. Instead, we used only a kernel
function k1 with a bandwidth parameter σ1 = 0.1. The average
error rate for each classifier is calculated by repeating the
following procedure 10 times.

• Collect one sequence for all the areas (T0, . . . , T8)
and generate nine input subspaces for them.

• Generate dictionary subspaces corresponding to each
area by using the rest of the sequences.

• Calculate the canonical angles between dictionary
subspaces and input subspaces.

The experimental results are shown in Fig. 8. From these
results, we can see that KOMSM outperformed the other
methods and gave perfect classification for the wide- and
middle-level distances. Even when the distance between the
areas was narrow, KOMSM obtained 97.8% classification
accuracy.

B. Investigation of Attention Degree

We next estimate the attention degree, defined in Sec-
tion II-A, and experimentally support the validity of the notion
of the attention degree for measuring whether the user is gazing
at a certain object.

Fig. 9 illustrates the setting used in the experiment. The
areas T0, T1, and T2 are defined as the attention areas. We
put a camera at the same location as T0. The distance between
the attention area T0 and each adjacent non-attention area
(T1 and T2) is 5 cm. The distance between the user and the
camera is set to 75 cm, and the head position of the user
is fixed in front of the camera. For estimating the dictionary

Fig. 9. Setting of the attention area and two adjacent non-attention areas.

Fig. 10. Transition of subject’s attention.

Fig. 11. Attention degree: from frame 20 to 146, giving attention to T0;
from frame 147 to 262, giving attention to T1; from frame 263 to 384, giving
attention to T0; from frame 385 to 400, giving attention to T2.

subspaces, 5 sequences of images of gazing at three areas T0,
T1, and T2 were collected. In the testing phase, we recorded
a video where a user is gazing at the three areas in turn, as
shown in Fig. 10. From the recorded video, we sequentially
estimated input subspaces in the following manner. For the
initial input subspace, we used the first 20 frames of the video
to generate an initial input subspace. We then updated the input
subspace using the next frame and discarded the oldest frame.
We performed this subspace updating for each new frame in
the video and computed the attention degree with respect to
the subspaces corresponding to T0, T1, and T2. The resulting
attention/non-attention degrees AD, NADT1, and NADT2

are regarded as a three-dimensional time series, as shown in
Fig. 11. From this graph, we can see that the attention degree
is high when the user is gazing at the corresponding target
area and is low when the user turns their eyes away from the
target area.

C. Stability against the Head Position

In this section, we evaluate the robustness of the proposed
method against changes in head position and examine the effect
of introducing the location kernel k2. For this purpose, we
collected images with various head positions by taking the
images of a user standing at the points shown in Fig. 12 and
gazing at the attention and non-attention areas shown in Fig. 9.
Note that we measure the distance between subspaces as the
minimum canonical angle in this experiment. We collected one
sequence from each standing point and each gazing target,
which amounted to 60 sequences in total. When we collected
the images, we also recorded the position of the user as



Fig. 12. Head positions for evaluation.

Fig. 13. Effectiveness of the location kernel.

reference data for use in the location kernel. We fixed the
parameter α1 = 1 in Eq. 7, and varied α2 from 0 to 2 in steps
of 0.05 to evaluate the effect of the location kernel. For the
bandwidth parameters, we set σ1 = 100.2 and σ2 = 10−0.2,
which we estimated on the basis of preliminary experiments.
We evaluated error rates (ER) and equal error rates (EER)
of the classification by our method with kernel functions
corresponding to different α2 values as follows.

• Since we have three sequences gazing at T0, T1,
and T2 for each position, we choose three sequences
corresponding to one position and use them for the
input subspaces.

• Construct dictionary subspaces for the attention area
and the two non-attention areas using the remaining 57
sequences, and calculate the canonical angles between
the input subspaces.

We performed this procedure 20 times using different positions
as input data. Fig. 13 shows the estimated ERs and EERs
in terms of α2. When α2 = 0, we could not obtain good
performance because we did not use the head position informa-
tion in the classification, and similar sequences with different
head positions were misclassified. However, when the location
kernel was introduced and α2 was set to an appropriate value,
the classification performance improved since the head position
information was also used in the classification. However, large
values of α2 caused poor performance. This suggests that it is
important to control the kernel combination parameters.

V. CONCLUSIONS

We proposed a view-based method for sensing human
visual attention by analyzing sequences of image patterns of
faces and irises without any restraint on head movement. The
proposed method is capable of sensing attention efficiently by
using the framework from KOMSM. In addition, to remove
the effects of head movement, we introduced the notion of
a location kernel to KOMSM. Experiments using real data
showed that the proposed method is robust to head movement.
In future work, we will evaluate the proposed method in detail
by using more participants in more complicated situations.
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