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Abstract

Comparing the structures of proteins is one of the
most challenging problems in structural biology. Root
Mean Square Distance (RMSD) has become a standard
measurement to calculate the similarity between two
protein structures. However, to get the best result one
has to align and superpose the two protein structures,
which raises issues related to finding the best alignment
technique. In this paper, we propose a new approach
to protein structure comparison using canonical angles
between two subspaces generated from multiple views
of the protein structure visualization. The main advan-
tage of our approach is that no protein alignment is re-
quired. Moreover, since we also consider the various
visualization types of the 3D protein structures (back-
bone, ribbons, and rockets), our protein descriptors
contain more elaborate structures and characteristics
of the protein, which possibly cannot be represented by
only a single visualization geometry. The validity of our
proposed method is shown by experiments on classifi-
cations of four classes of protein in which our approach
exhibited better performance than the two well-known
methods of combinatorial extension alignment and the
Gauss integral tuning.

1. Introduction

In structural biology, finding the similarity between
protein structures is a fundamental problem, especially
to understand protein function and evolution as applied
to various purposes, such as designing new drugs and
investigating the evolution of organisms. To support the
study of protein structure, SCOP [1][2], a database of
comprehensive structural classification of proteins, has
been proposed. The SCOP database is constructed by
manual visual inspection and utilization of various au-
tomatic tools in which protein structures were obtained
from X-ray crystallography and NMR spectroscopy.

Figure 1. Overview of the proposed
method for comparing the similarity of
two proteins.

The Protein Data Bank (PDB) [3] provides a massive
dataset of such 3D protein structures. Nevertheless, cur-
rently more than half of the known protein structures in
the PDB are yet to be classified in the SCOP database,
which indicates a need for an automatic classification
framework with higher accuracy to reduce or omit the
necessity of manual inspection in comparing the protein
structures.

Most protein structure comparisons are based on
information, such as amino acid positions, about the
molecular structure of proteins. In such a method, the
similarity of two proteins is computed in two steps. The
first step is an alignment search to find the largest num-
ber of aligned amino acid positions within the pairs.
Some common structure alignment methods are the
Distance Alignment Matrix Method (DALI) [4] and
Combinatorial Extension (CE) [5]. The second step is



to superpose the aligned rigid body structure and com-
pute the similarity based on the spatial distance between
them. However, this conventional method has a disad-
vantage in that it highly depends on the backbone length
of the protein structures, which makes it sensitive to
local error due to non-optimal alignment. To address
such problems of finding a global protein measure, a
compact representation of 3D protein structure as a 31-
dimensional feature vector called Gauss Integral Tuning
(GIT) [6] has been proposed, in which the similarity is
defined simply by the Euclidean distance between the
two GIT vectors.

Based on the idea that a biochemist can identify the
similarity between a pair of proteins by observing the
3-D structure of the proteins from different viewpoints,
we propose an approach to compute the similarity of
protein structures using multi-views of the 3D shapes
of the protein structures captured from different angles.
Figure 1 shows the basic idea of our approach. In our
approach, the multiple viewpoints of the images are
synthesized by random rotation of the protein model.
After the multi view images are collected, feature vec-
tors are extracted and the subspace is generated by ap-
plying PCA. The similarity between protein structures
is defined by the cosine square of the canonical angles
between the two subspaces. The use of canonical an-
gles as the similarity is based on the Mutual Subspace
Method (MSM) [7], which is one of the widely used
3D object recognition methods based on multi-view of
images.

The most important contribution of our approach is
to provide the similarity between proteins with high ex-
tendability while avoiding the performance loss due to
non-optimal alignment. To view the characteristics of
a target protein in various ways, we can obtain vari-
ous visualizations of the 3D protein structures (back-
bone, ribbons, rockets, etc.) using 3D molecular graph-
ics software. For example, the backbone visualization
shows the backbone of a protein by connecting the al-
pha carbon atoms. The ribbons visualization represents
the backbone using a wide flat band along the adjacent
alpha carbon. The rockets visualization shows the pro-
tein conformation in which the cylinders represent he-
lices and arrows represent the strands of a sheet. This
implies that we can use these various visualizations of
the target proteins to define the similarity between the
proteins. In our framework, this idea can be realized by
combining different protein visualizations as a feature
vector which later can be used for computing the sim-
ilarity. We show the validity of our proposed method
by comparing the classification results of four classes
of protein based on the SCOP database using our pro-
posed method, with the commonly used CE alignment

Figure 2. Conventional method to com-
pute the similarity of protein structures.

method [5] and GIT descriptor [6].
This paper is organized as follows. First, we briefly

review the conventional method of RMSD. Next, we
describe the proposed method in section 3. The exper-
imental conditions and results are shown in section 4.
Finally, section 5 concludes.

2. Conventional Similarity Using RMSD

In the conventional method, after a pair of protein
structures is aligned by using a particular alignment
method such as DALI[4] or CE[5], their similarity is
computed by the root mean square distance (RMSD),
as illustrated by Figure 2. RMSD is defined as follows:
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whereδi is the distance between each of theith pair of
alpha carbon atoms andn is the number of atom pairs.

3. Proposed Similarity Method

3.1 Overview

Since proteins have a complex structure, relying on
a single representation may be inadequate. Unlike con-
ventional methods that rely solely on alpha carbon co-
ordinates of the backbone structure of the protein, our
approach considers several protein visualizations gener-
ated using molecular graphics software packages such
as Jmol [8]. Some protein visualizations are shown in
Figure 3. By considering the multiple types of visual-
izations of the protein structure such as backbones, rib-
bons, and rockets, the geometry of the protein structures
can be described more elaborately as they can comple-
ment each other.



Figure 3. Three types of protein visualiza-
tion.

3.2 Similarity Calculation with MSM

In the learning phase of MSM, we take a number off

dimensional features belonging to classc (= 1, ..., C),
whereC is the number of the class, and apply PCA
(without centering) to generate anN -dimensional ref-
erence subspacePc. In the test phase, theM dimen-
sional input subspaceQ is generated by applying PCA
to the input patterns. The similarity between the input
subspaceQ and reference subspacePc is defined by the
canonical angleθi between them.

M canonical angles (0 ≤ θ1 ≤ . . . ≤ θM ≤ π
2

)
betweenM -dimensional subspace andN -dimensional
subspace (M ≤ N ) are defined. Thei-th canonical
angleθi is defined as follows [9]:

cos θi = max
ui∈Q

max
vi∈Pc
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i vi (2)
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T
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In practice,cos θi is obtained by computing the sin-

gular value of the matrixX, whereX = A
T
B. A =

[φ
1
, ...,φM ], B = [ψ

1
, ...,ψN ]. φi andψi are the or-

thogonal basis vectors of the subspaceQ andPc respec-
tively. The similarity between two subspaces is finally
calculated as follows:

Sim =
1

M

M
∑

i

cos2 θi, (3)

where0 ≤ Sim ≤ 1. HigherSim values indicate that
two proteins are highly similar, while lower values of
Sim indicate that the two proteins are less similar.

3.3 Process Flow

Figure 4 shows the flow of the proposed similarity.
The steps are as follows:

Step 1: Normalization of the center coordinate of the
protein’s chain atoms based on the inertia tensor of
molecular physics.

Figure 4. Flow of the proposed method.

Step 2: The protein model is rotated randomly around
its three principal viewing axes and multi-view of
images from several types of visualization (back-
bone, ribbons, and rockets) are synthesized.

Step 3: Feature extraction using HLAC (Higher-
Order Local Autocorrelation) [10]. We use a 35-
dimensional HLAC feature that is position invari-
ant, because we want to compare only the shape of
the protein structure regardless of positions. Let
the image be denoted byI. The N th order of
the autocorrelation function withN displacements
a1, ..., aN is defined as follows:

x(a1, .., aN) =
∑

I(r)I(r+ a1)...I(r + aN), (4)

wherer is the image coordinate vector. The order
N is limited to the second order (N ∈ {0, 1, 2}).
aix, aiy ∈ {±∆r, 0}. Duplicate configurations of
r, r+a1, ..., r+aN are removed so that the final lo-
cal mask patterns are reduced to 35. Since we use
three types of visualization of the protein, the com-
bined HLAC features produce a 105-dimensional
HLAC feature vector.



Figure 5. Examples of each protein class.

Step 4: Subspace generation by applying PCA and the
similarity computation based on MSM.

4. Experiment

To evaluate the effectiveness of the proposed
method, we did experiments on classification of four
classes of protein: Alpha (α), Beta (β), Alpha/Beta
(α/β), and Alpha+Beta (α+β) as shown in Figure 5,
based on the SCOP database [2]. Alpha proteins con-
tain alpha helices. Beta proteins contain beta sheets.
Alpha/Beta proteins contain alpha-beta motifs (mainly
parallel beta sheets). In Alpha+Beta class, we usedα+β
proteins which has segregated alpha and beta regions
(mainly anti-parallel beta sheets) protein and also the
multi-domain proteins (alpha and beta).

4.1 Dataset and Experimental Conditions

We collected 80 proteins randomly from the RCSB
PDB [3] and cropped the protein chain accordingly by
referring to the class label from the SCOP using the
Matlab Bioinformatics toolbox. Jmol [8] was used
to synthesize the protein and acquire 9000 images at
32 × 32 pixels for each protein (3000 images×3 visu-
alizations type: backbone, ribbons, and rockets). The
visualization color was set to white (gray-scaled) with
black background. We adopt the leave-one-out cross
validation method so that one protein is used as test
data and the rest were used to generate four reference
subspaces. The classification process flow is shown in

Figure 6. Flow of the protein classifica-
tion.

Figure 6. The dimensions of the reference subspaces
were varied from 1 to 60. The dimension of the input
subspace was varied from 1 to 20. The experimental
results are based on the best result from the various pa-
rameters.

4.2 Results and Discussions

Table 1 shows the classification results of the pro-
posed method. As a comparison, we also did other ex-
periments based on CE alignment and GIT descriptor.

The experiment with CE alignment was conducted
as follows. First, we calculated the RMSD between the
test protein and the other proteins using the jCE tool
[11]. The protein chains were cropped beforehand using
the Bio3d package [12]. Next, we computed the average
of the RMSD of the test protein and the training data
from each class and categorized the test protein to the
class with the smallest average RMSD. Table 2 shows
the classification results of the CE alignment.

In the GIT experiment, we employed the tool in [6]
to extract GIT features. First, we computed the Eu-
clidean distance of the test and the training data. Then,
we categorized the test protein to the class with the
smallest average distance. However, since GIT does not
consider protein backbones with more than 3 missing
alpha carbons, we only used 70 of the 80 proteins. The
experimental results of GIT are shown in Table 3.

The experimental results demonstrate that our ap-
proach using multi-view and visualizations of the pro-
tein achieves better performance than that of both CE
and GIT. The average classification rate of our pro-
posed method was83.75%, while the CE and GIT only
achieved average classification rates of71.25% and



Table 1. Classification results of MSM.
Class α β α/β α+β Correct Rate

α 17 0 1 2 85%
β 0 17 1 2 85%
α/β 0 1 19 0 95%
α+β 2 0 4 14 70%

Average rate 83.75%

Table 2. Classification results of CE.
Class α β α/β α+β Correct Rate

α 16 1 3 0 80%
β 1 18 0 1 90%
α/β 0 1 17 2 85%
α+β 5 8 1 6 30%

Average rate 71.25%

Table 3. Classification results of GIT.
Class α β α/β α+β Correct Rate

α 18 0 0 0 100%
β 0 16 0 1 94.12%
α/β 6 0 13 0 68.42%
α+β 3 5 0 8 50%

Average rate 78.57%

78.57% respectively. Despite the good performance of
the conventional methods in classifyingα andβ pro-
teins, CE and GIT have difficulty in classifying compli-
cated protein with characteristics like alpha helices and
beta sheets that co-exist separately in different parts of
the structure. In contrast, by taking advantage of mul-
tiple visualizations, the proposed method can classify
such complicated structures more accurately.

5. Conclusion

In this paper we proposed a new approach to com-
pare 3D protein structure by using multi-views of the
synthesized 3D protein structure images. Our proposed
method has the benefit that no protein alignment is re-
quired. In addition, we can have more heterogeneous
descriptors by combining different visualizations of the
structures that complement one another in representing
the complex structure. The effectiveness of our pro-
posed method of using canonical angles as the simi-
larity metric is shown by experimental results in which
we achieved better performance than the conventional
methods in classifying four classes of 3D protein struc-
ture based on SCOP.

Since this is still an early work, we only used small

datasets. In the future, we will collect large amounts of
protein data from the PDB and consider different fea-
ture extraction methods for the protein images. We will
also consider the extensions of the MSM [13][14] to fur-
ther improve the performance of our method.
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