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Abstract

Multiple observation improves the performance of
3D object classification. However, since the distri-
bution of feature vectors obtained from multiple view
points have strong nonlinear structure, the kernel-based
methods are often introduced with nonlinear mapping.
By mapping feature vectors to a higher dimensional
space, kernel-based methods transform the distribution
to weaken its nonlinearity. Although they have been
succeeded in many applications, their computation cost
is large. Therefore we aim to construct a compara-
ble method with the kernel-based methods without us-
ing nonlinear mapping. Firstly we attempt to approxi-
mate a distribution of feature vectors with multiple local
subspaces. Secondly we combine local subspace ap-
proximation with ensemble learning algorithm to form
a new classifier. We will demonstrate that our method
can achieve comparable performance with kernel meth-
ods through evaluation experiments using multiple view
images of 3D objects from a public data set.

1. Introduction
This paper proposes a view-based method for classi-

fying 3D object which can achieve comparable perfor-
mance with kernel-based method without using nonlin-
ear mapping.

Among various view-based object classification
methods that have been proposed, Mutual Subspace
Method (MSM)[1] has been applied for face and object
recognition and was shown to be one of the most effi-
cient methods for object recognition. In view-based ob-
ject classification, an n×n image pattern is represented
as a feature vector in n×n-dimensional vector space.
MSM generates a class subspace by applying principal
component analysis (PCA) in learning phase. This is
done from the distribution of feature vectors belong to
each class. In classification phase, an input subspace is
generated from multiple input feature vectors by PCA.
The canonical angles[7] between the input subspace and

class subspaces are then calculated. Finally, the end re-
sults is the class label of the subspace which has small-
est canonical angle.

In general the distribution of feature vectors obtained
from multiple view points has strong nonlinear struc-
ture. MSM therefore does not work well in classifying
multiple view distribution, because such a distribution
cannot be represented by a linear subspace without any
overlap.

To solve this problem, MSM has been extended
to a nonlinear method called Kernel Mutual Subspace
Method (KMSM) [2][3] by introducing nonlinear map-
ping with a kernel function. KMSM has improved
the performance of MSM largely. However KMSM
consumes more computation time compared to MSM.
KMSM follows an N2 order, as a result the above prob-
lem becomes more serious when the number of feature
vectors and classes of the object is larger. Also KMSM
has a difficult problem of parameter selection of the
kernel function. Since these parameters are difficult to
be determined theoretically, while the performance de-
pends extremely on the characteristic of these parame-
ters.

For the above reasons, we aim to achieve comparable
performance with KMSM for the classification of non-
linearly distributed feature vectors without using non-
linear mapping. Our key idea is that we approximate a
distribution of feature vectors with multiple local sub-
spaces instead of a single subspace as in MSM.

This operation weakens the nonlinearity in each lo-
cal subspace as shown in Fig.1. However, it is difficult
to optimize the number of local subspaces and the di-
mension of each local subspace, we generate multiple
sets of local subspaces by changing these parameters.
Then ensemble learning is applied with the above local
subspaces.

The rest of this paper is organized as follows: In Sec-
tion 2, the detail of the proposed method is presented.
Section 3 outlines the process of classification. In Sec-
tion 4 we evaluate the proposed method through classi-
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Figure 1. Comparison between approxi-
mation using a linear subspace and a set
of local subspaces .

fication experiments. Finally in Section 5, the conclu-
sion is made.

2. The proposed method

2.1 Definition of local subspace

To realize our idea, we apply k-means method to the
distribution to obtain k sub sets. We then apply PCA
to each sub set, to obtain basis vectors of a subspace
as shown in Fig.1. The basis vectors of each subspace
are calculated as the eigenvectors corresponding to the
larger eigenvalues of autocorrelation matrix. We call
these subspaces as local subspaces.

2.2 Definition of similarity based on sets of lo-
cal subspaces

Let an input subspace be A, a set of local subspaces
belong to class c be Bc , the j-th local subspace belongs
to Bc be Bc

j . We assume the dimension of A be M ,
the dimension of Bc

j be N , for convenience N ≤ M .
The similarity between A and Bc

j is defined by using
the canonical angle θ between these two subspaces as
follows[1].

Ang(A,Bc
j ) = cos2 θ (1)

= max
u∈A,v∈Bc

j

||u||̸=0,||v||̸=0

|(u,v)|2

||u||2||v||2
, (2)

where cos2 θ is calculated as the largest eigenvalue
of the following matrix.

X = (xmn) m,n = 1...M (3)

xmn =
N∑

l=1

(ψm, ϕl)(ϕl, ψn) , (4)

where ψm and ϕl are the m-th and the l-th basis vec-
tor of subspace A and Bc

j , (ψm, ϕl) represents the inner
product of ψm and ϕl.

Dimension i of local subspaces

Number k of clusters to generate local subspaces
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Original distribution of feature vectors

Figure 2. The relation between the number
of clusters and the dimension of the local
subspaces.

The similarity of A and Bc is calculated from the
following equation.

Simweak(A, Bc) =
k∑

j=1

Ang(A,Bc
j ) . (5)

2.3 Ensemble learning

Classification performance changes in relation to the
dimensions of the local subspaces and the number of
clusters (k in k-means method). Thus, to achieve the
best classification performance, we need to optimize
these parameters. However, since we have many possi-
ble combinations of these parameters as shown in Fig.2,
it is difficult to select the most optimum one from them
theoretically. To overcome this problem we consider a
classifier using each set of local subspaces, and apply
ensemble learning to these classifiers.

By changing the dimension i of local and input sub-
spaces and the number k of cluster to generate local
subspace, multiple weak classifiers are obtained. We
combine their similarities to obtain the final similarity
as follows.

Sim(A, Bc) =
∑

i

∑
k

Simweak(A, Bc) (6)

2.4 Adjusting weights of local subspaces

Although each set of local subspaces represents the
distribution of the training patterns well, there is no rea-
son to assume a priori that it is the optimal set of local
subspaces in terms of classification performance. We
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Figure 3. Flow chart of the learning phase.

therefore introduce a weight to each local subspace,
considering the relation with rival class sets of local
subspaces. To introduce weights, we rewrite Equation
(5) as follows.

Simweak(A, Bc) =
k∑

j=1

αc
j Ang(A, Bc

j ) , (7)

where αc
j is the weight of the local subspace Bc

j . The
weights are obtained by preliminary classification ex-
periments using training data as follows.

1. Initialize: αc
j = 1

2. Do for t = 1, ..., N , (N is the number of learning
data)

Record the number of classification error EBc
j

for
each Bc

j

3 Calculate the training error rate εBc
j

as EBc
j
/N

4 Calculate weight: αc
j ← 1 − εBc

j

5. Normalize weight

3. Flow of classification process
The process of the proposed method consists of

learning phase as shown in Fig.3 and classification
phase as shown in Fig.4. We outline the process of the
proposed method, considering the case with L classes
as an example.

In learning phase, we use a set of local subspaces to
approximate the distribution of each class. Multiple sets
of these local subspaces are generated with changing the
number of clusters and dimension of local subspaces.
The weight of each local subspace is adjusted after local
subspace generation.
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Figure 4. Flow chart of the classification
phase.

In classification phase, The similarity of an input
subspace A with each local subspace Bc

j is calculated
by using Equation (5) and then combine these similar-
ities following Equation (6). The class that has highest
similarity is the result of the classification.

4. Experiments

We use a public data set ’The ETH-80 Image Set[8]’
to evaluate the proposed method. The data set has been
created from 8 classes, 10 objects for each class. There
are images taken from 41 different view points for each
object. 5 objects are randomly choosed from the data
set for each class for evaluation experiment. In learn-
ing phase 4 objects, 164 images per class are used for
training. In classification phase 10 images (view points)
of an untrained object are used as test input. By chang-
ing input and training data, classification experiment is
repeated 1640 times for each method. The contribution
rate for the dimension selection is set to 98%. The num-
ber of clusters for distribution division is set from 2 to
5.

Firstly we compare the performance of the proposed
method with MSM and KMSM. Secondly we com-
pare the result of each weak classifier and the ensem-
ble learned result, to demonstrate the contribution of
ensemble learning to the classification performance.
Thirdly we compare the performance of the proposed
method before weighting (I) and after weighting (II).
The weight of the proposed method is trained from
learning data (trained for 800 times).

Separability is an indicator normalized to 1.0, higher
is better. EER (Equal Error Rate) is the intersection
point of FAR (False Acceptance Rate) and FRR (False
Reject Rate) curves, lower is better.

The performance of MSM, the proposed method be-
fore weighting (I), and KMSM are shown in Table 1.
The proposed method achieved a 17% advancement in
classification performance compared to MSM. At the



Figure 5. The ETH-80 Image Set.

Table 1. Result of each method.
Method Accuracy Sep. EER(%)

rate(%)
MSM 69.5 0.34 20

KMSM 87.2 0.41 15
Proposed method I 86.5 0.44 14
Proposed method II 94.7 0.55 9

same time the proposed method also achieved compara-
ble performance with KMSM. In Table 2, we show the
calculation time of each method in classification phase,
which proved the computation complexity of the pro-
posed method is far less than KMSM.

We show the performance of each weak classifier in
Table 3. It is shown that classification performance of
the proposed method is higher than any of its weak clas-
sifier.

Finally as shown in Table 1, the proposed method af-
ter weighting (II) further improved classification perfor-
mance by 8% compared to the proposed method before
weighting (I).

5. Conclusion
We proposed a 3D object classification method using

multiple view points. We approximate a distribution of
feature vector with strong nonlinear structures by mul-
tiple local subspaces. We change number and dimen-

Table 2. Calculation time per input of each
method.

Method Time (second)
MSM 0.1

Proposed method (I,II) 0.4
KMSM 3.1

Table 3. Result of weak classifiers.
Cluster number Accuracy Sep. EER(%)

rate(%)
2 73.0 0.41 14
3 77.5 0.40 15
4 75.3 0.41 17
5 72.0 0.40 15

Proposed method I 86.5 0.44 14

sion of local subspaces and generate local subspaces at
each combination. By applying ensemble learning to
these local subspaces, the proposed method improved
performance compared to MSM. The experimental re-
sults demonstrated that our method can achieve compa-
rable performance with KMSM.

References

[1] O. Yamaguchi, K. Fukui, K. Maeda: Face recog-
nition using temporal image sequence. Proc. IEEE
Third International Conference on Automatic Face
and Gesture Recognition, pp.318-323, 1998.

[2] H. Sakano, N. Mukawa: Kernel mutual subspace
method for robust facial image recognition. Proc.
Fourth International Conference on Knowledge-
Based Intelligent Engineering Systems and Allied
Technologies, Vol.1, pp.245-248, 2000.

[3] L. Wolf, A. Shashua: Learning over sets using ker-
nel principal angles. Journal of Machine Learning
Research, Vol.4, pp.913-931, 2003.

[4] Y. Freund: Boosting a weak learning algorithm
by majority. Information and Computation, Vol.121,
pp.256-285, 1995.

[5] Y. Freund, R. E. Schapire: A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, No.55, pp.119-139, 1997

[6] B. Schölkopf, A. Smola, K. R. Müller: Nonlinear
principal component analysis as a kernel eigenvalue
problem. Neural Computation, Vol.10, pp.1299-
1319, 1998.

[7] F. Chatelin: Eigenvalues of matrices. John Wiley&
Sons, Chichester, 1993.

[8] B. Leibe, B. Schiele: Analyzing appearance and
contour based methods for object categorization.
CVPR’03, Vol.2, pp.409-415 2003.


