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Abstract. We propose to construct a 3D linear image basis which spans
an image space of arbitrary illumination conditions, from images of a
moving object observed under a static lighting condition. The key ad-
vance is to utilize the object motion which causes illumination variance
on the object surface, rather than varying the lighting, and thereby sim-
plifies the environment for acquiring the input images. Since we then need
to re-align the pixels of the images so that the same view of the object
can be seen, the correspondence between input images must be solved
despite the illumination variance. In order to overcome the problem, we
adapt the recently introduced geotensity constraint that accurately gov-
erns the relationship between four or more images of a moving object.
Through experiments we demonstrate that equivalent 3D image basis is
indeed computable and available for recognition or image rendering.

1 Introduction

In appearance-based object recognition, lighting variation is one of the most
significant issues. As Moses et al.[10] pointed out in the context of face recog-
nition, “the variations between the images of the same face due to illumination
and viewing direction are almost always larger than image variations due to
change in face identity.” In order to deal with this problem several approaches
using image bases have been proposed, and successful results were reported. See,
for example, [2,5]. The advantage of these methods is due to the fact that an
arbitrary image of an object under a distant light source has low-dimensional
representation of the object. The observation concerning the low-dimensional
representation originated in Shashua’s works[14,15]. He showed that images of
an object under arbitrary lighting conditions are represented by linear combi-
nations of three base images, given that the surface of the object follows the
Lambertian model without shadows. Yuille and Snow [21] further considered
ambient background illumination, Belhumeur and Kriegman [3] extended the
representation to the case with attached shadows. They proved that a set of im-
ages with attached shadows under arbitrary lighting conditions forms a convex
polyhedral cone which is again based on three base images. As is obvious from
these observations, the notion of base images provides a foundation for repre-
senting images under arbitrary illumination. In this paper, we call the set of the
three base images illumination image basis.
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In previous approaches the illumination image basis has been obtained from
images of an object in a fixed pose under various lighting conditions. To acquire
such images, therefore, the object and the camera must be kept stationary, and
the direction of illumination be varied. As opposed to this situation, if we could
equally construct the illumination image basis from images of an object that is
in motion under a stationary lighting condition, the process of capturing input
images would be substantially simplified. This is especially true for an object
such as a human head, which we mainly deal with in this article, since the only
required action is to move the object in 3D space. However, to our knowledge
there has been no attempt to consider the possibility, and the purpose of this
paper is to propose a technique for constructing the illumination image basis
from object motion.

Given images of an object captured in different poses, the set of pixels at the
same coordinate in the images do not correspond to an identical point in the 3D
surface. For the construction of illumination image basis, thus, we basically need
to re-align the pixels in the images as if the object were seen from an identical
direction, and the problem therefore becomes that of finding the corresponding
image points.

For the point correspondence, typically exploited is the constraint that the
corresponding parts of the images have equivalent intensity, regarding the varia-
tion in illumination as noise. Unfortunately, however, the constraint is nearly al-
ways invalid for an object in motion, since relatively non-uniform lighting causes
the intensity at a specific location on the surface of the object to change as
the object moves [13]. Among the few efforts to address this issue, recently the
geotensity constraint1 [8] has been derived to overcome the problem with respect
to camera geometry, and to replace the constant intensity constraint. Based on
the notion of linear intensity subspaces [14], the geotensity constraint governs
the relationship between four or more images of a moving object.

The algorithm for point correspondence using the geotensity constraint pro-
ceeds basically in two stages. The first stage is to derive the parameters of the
Geotensity constraint by analyzing coordinates and image intensity of some sam-
ple points on the object in motion. That is, computing structure from motion
gives the geometric parameters of the situation, whereas computing the linear
image subspace gives the lighting parameters of the situation. By combining
both sets of parameters we arrive at the Geotensity constraint. Using the same
set of input images, the second stage is to take each pixel in an arbitrary ref-
erence image in turn and search for the depth along the ray from the optical
center of the camera passing through the pixel. The correspondence is evaluated
by measuring the agreement of the entire set of projected intensities of a point
on the object surface with the Geotensity constraint.

Although the geotensity constraint was proposed originally for the task of 3D
surface reconstruction, we will show that the constraint can be applied directly
for our porpose, that is, to obtain the illumination image basis from images
of an object in motion under stationary illumination. Further, once we obtain
the illumination image basis, images of the object under arbitrary lighting con-

1 Geotensity stands for “geometrically corresponding pixel intensity.”
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ditions can be generated simply by linear combinations of the basis as stated
earlier. Since the Geotensity constraint can be applied to any choice of reference
frame, different choices allow us to construct illumination bases corresponding
to different viewing directions and thereby we can synthesize variations of object
images both in terms of lighting conditions and object poses. While such varia-
tions are obviously useful for recognition problems in general, it should be noted
that they become available from a minimum of four input images. Although the
resulting variations may look similar to what is obtained by the method in [5],
we should point out that the entire scheme is different in that we explicitly solve
for the point correspondence instead of estimating the surface geometry in the
framework of photometric stereo [20].

This paper is organized as follows: First, we introduce the low-dimensional
representation for images captured under arbitrary illumination in Section 2
and the geotensity constraint in Section 3. Then, in Section 4 we describe an
algorithm to construct the illumination image basis by applying the geotensity
constraint. Experiments are shown in Section 5. In Section 6, the final section,
discussions and conclusions are presented.

2 Illumination Image Basis

In this section we briefly describe the low-dimensional representations for varia-
tions of illumination which have been successfully utilized in appearance-based
object recognition.

Consider the case of a convex object with a surface conforming to a Lam-
bertian reflectance model with varying albedo, the ratio of outgoing to incoming
light intensity, under a single point light source at infinity. Let us assume fur-
ther that both the camera and object are stationary, but that the light source
can be moved. The key advantage of this assumption is that the correspondence
problem between frames is solved in advance since the same view of the object
is always seen.

If we have three pictures of the object I(j)(j = 1, 2, 3) from light source direc-
tions s(j)(j = 1, 2, 3), respectively, then the intensities in any fourth frame, taken
from a novel setting of the light source, must simply be a linear combination of
the intensities in the first three frames. Mathematically,

I(4) =
3∑

j=1

a(j)I(j)

for some coefficient a(j) [14].
Epstein et al. [4] showed empirically that this relationship is generally quite

good, but it was left to Belhumeur and Kriegman [3] to prove that the correct
relationship assuming no self-shadowing is in fact

I(4) = max(
3∑

j=1

a(j)I(j), 0) , (1)
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Fig. 1. Images of an object under variable lighting and an illumination basis.
                                                

                                    

Fig. 2. Images of an object in motion and an illumination basis.

where images I(j)(j = 1, 2, 3) must be taken with the light source in the bright
cell, which is the cell of light source directions that illuminate all points on the
object, and the maximum operator is effected independently on each pixel and
establishes whether or not that pixel was illuminated at all by the light source.

These first three images form a 3D image basis from which all other images
can be derived and hence can be replaced by any equivalent basis of images.
Hence Equation 1 can be replaced by,

I(j) = max([Ĭ(1) Ĭ(2) Ĭ(3)]a(j), 0) , (2)

where a set of Ĭ(j)(j = 1, 2, 3) is an image basis, which we call illumination
image basis, and the 3D vector a(j) contains linear coefficients that map the
basis to the jth image.

An example is shown in Figure 1. The four images on the left are original
images of a statue of Caesar in frontal view under variable lighting. Applying the
principle component analysis (PCA) to these images, we obtain an illumination
image basis. It is shown in the three images on the right in Figure 1 arranged
in the order of the eigenvalues. In theory, the illumination image basis can be
obtained directly as three images captured in a fixed pose under three different
lighting conditions. In this case, however, the illumination image basis remains to
be contaminated if the captured images contain any noise. In order to obtain an
illumination image basis in which the noise is attenuated, PCA is often applied to
a larger number of images which are captured as inputs. Although we illustrate
it in Figure 1 using only four images as the minimum number for the inputs, it
is to show the relevancy of the method, and also for the consistency with the
remaining examples. The concept of illumination image basis is quite general,
and has been employed to develop further sophisticated algorithms for object
recognition as well as image rendering as seen for example in [16].
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In this paper, we deal with images of an object in motion captured by a
fixed camera under stationary illumination. In such a situation, the object is
observed differently according to the motion. Figure 2 shows four images of the
statue of Caesar in various poses illuminated from its frontal direction. From
these images we wish to construct an illumination image basis as shown in the
right-hand part of Figure 2 that is a counterpart to the illumination image basis
obtained in the conventional way in Figure 1. Methods for object recognition
which give successful result for arbitrary lighting conditions should then become
analogously available without collecting images under various illumination. Un-
like the conventional situation, however, it is not so straightforward to construct
an illumination image basis from images of an object in motion. While this is due
to the correspondence problem between frames which is not solved in advance,
we do overcome the problem by adapting the geotensity constraint which was
originally proposed for 3D surface reconstruction in [8]. We introduce the geoten-
sity constraint in the context of constructing an illumination image basis in the
next section, and describe the actual algorithm constructing the illumination
image basis in Section 4.

3 Geotensity Constraint

The geotensity constraint is a constraint on geometrically corresponding pixel in-
tensity between four or more images of an object seen from different views under
static lighting conditions. In this section, we introduce the geotensity constraint
for a single light source from the viewpoint of constructing an illumination image
basis; a detailed explanation of the geotensity constraint can be found in [8]. In
general, the geotensity constraint consists of two parts, the geometry constraint
and the intensity constraint, from which the geotensity constraint is derived.

3.1 Intensity Constraint

As shown in Equation 2, images of an object in a fixed pose captured under
arbitrary illumination can be represented by three base images, and the repre-
sentation is also valid for an intensity at each pixel. That is, the key advantage
of Equation 2 is that the same view of the object is always seen and the corre-
spondence problem between frames is solved in advance.

Now let us assume a static camera and light source and a moving object.
Although we no longer have correspondence between images, we consider the
intensity Ii(j) of the ith point on the surface of the object projected into the jth

image. Ii(j) must then satisfy

Ii(j) = max([Ĭi(1) Ĭi(2) Ĭi(3)]a(j), 0) , (3)

where a set of Ĭ(j)(j = 1, 2, 3) represents the intensity at corresponding points
in the three base images. Equation 3 is the intensity constraint between images.
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3.2 Geometry Constraint

Regarding the first image as the reference frame, for simplicity we discuss the
affine and scaled-orthographic camera models [11] for projection.

Consider the ith world point Xi = (Xi, Yi, Zi)� on the surface of an object
projected to image point xi(j) = (xi(j), yi(j))� in the jth frame. The affine
camera model defines this projection as

xi(j) = M(j)Xi + t(j) ,

where M(j), an arbitrary 2×3 matrix, and t(j), an arbitrary 2-dimensional vec-
tor, encode the motion parameters of the object.

The scaled orthographic camera model replaces M(j) with the first two rows
of a scaled 3×3 rotation matrix R(j) so that

xi(j) = λ

(
R�

1 (j)
R�

2 (j)

)
Xi + t(j) .

Note that R(j) represents the rotation of the object from the first frame to
the jth frame. The Euclidean structure and motion parameters fitting the weak
perspective camera model can be recovered by the technique of structure from
motion [18]. There is an arbitrary choice of affine or Euclidean frame which can
be partially fixed by choosing the first frame to be canonical [7] such that

xi(1) =
(

1 0 0
0 1 0

)
Xi +

(
0
0

)
. (4)

A result of choosing the canonical frame is that the structure vectors have
the form, Xi = (x�

i (1), Zi)� and we can derive the relationship,

xi(j) = M(j)
(
xi(1)
Zi

)
+ t(j) . (5)

This relationship effectively describes the epipolar constraint between two im-
ages. This constraint says that given a point, xi(1), in one image then the cor-
responding point in another image, xi(j), will lie on a line defined by the object
motion parameters, M(j) and t(j), between the two frames and that the exact
position along that line depends on the correct depth, Zi, of the point. The
corresponding point on an epipolar line is shown in Figure 3.

Indeed, given a point in one image and the motion parameters for a number of
other frames, then the corresponding points in all the other images are uniquely
determined by a particular choice of Zi. We will use Equation 5 as a practical
affine form of the geometric constraint later. A similar form of this geometric
(epipolar) constraint can be easily derived for the more complex camera models.

3.3 Geotensity Constraint

Consider a set of nj images, I(j)(j = 1, . . . , nj), and a point (xT
i , Zi)T on the

surface of an object with depth Zi that projects to point, xi(1), in the first image.
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Fig. 3. Given a point in one image, according to the choice of depth Z, corresponding
points in the other images are searched on the epipolar lines while investigating the
intensity constraint.

Under object motion and affine imaging conditions we can recall Equation 5 for
the geometric constraint imposed on a sequence of images and the corresponding
pixel in the jth image, xi(j), is given by Equation 5. Hence, the corresponding
pixel intensity, Ii(j), is given by

Ii(j) = I(j)[xi(j)] = I(j)[M(j)
(
xi

Zi

)
+ t(j)] . (6)

If the motion parameters, M(j) and t(j), and the depth of the point on the object
surface, Zi, are given, Ii(j) is measured from the intensity at the corresponding
pixels in the jth image.

On the other hand, when the corresponding pixel intensity Ii(j) is non-zero,
it has another representation by the intensity constraint defined by Equation 3
which we can rewrite as

Ii(j) =
[
Ĭi(1) Ĭi(2) Ĭi(3)

]
a(j) . (7)

For n′
j measured intensities Ii(j) which are non-zero, it follows

I�
n′

j
=

[
Ĭi(1) Ĭi(2) Ĭi(3)

]
an′

j
(j) , (8)

where In′
j

and an′
j

are n′
j-dimensional vector consisting of the non-zero measured

intensity and a 3 × n′
j matrix containing the columns a(j), respectively. When

the linear coefficients a(j) are known in advance, using the non-zero measured
intensity Ink

, Ĭi(j)(j = 1, 2, 3) can be computed by the solution of Equation 8
in the form [

Ĭi(1) Ĭi(2) Ĭi(3)
]

= I�
nk
a�

nk
(ank

a�
nk

)−1. (9)

Then, the other representation of the corresponding pixel intensity, Îi(j), is given
by

Îi(j) = max(
[
Ĭi(1) Ĭi(2) Ĭi(3)

]
a(j) , 0). (10)
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Now let us define an error between the measured and estimated intensities
as

Ei =
∑

j

(Ii(j) − Îi(j))2 . (11)

If the estimated values Îi(j) are correct, they agree with the measured intensity
Ii(j). Hence, the constraint on geometrically corresponding intensity between
captured images, namely the geotensity constraint, can be stated simply as Ei =
0. Since the measured intensity Ii(j)(j = 1, · · · , nj) includes noise in practice,
the corresponding intensity between captured images, Îi(j)(j = 1, · · · , nj), is
estimated so as to minimize the error in Equation 11.

4 Construction of Illumination Image Basis

In this section we propose a method to construct an illumination image basis
from an image sequence by applying the geotensity constraint. The basic concept
is to search for the depth, Zi, of the surface of the object at each pixel, xi, in
a reference image while computing the error Ei in the geotensity constraint.
Then, the corresponding pixels are searched along the epipolar lines in the other
images as schematically depicted in Figure 3. The algorithm for constructing
an illumination image basis is detailed, preceded by descriptions of practical
schemes for solving for the geometry and the intensity constraints.

4.1 Solving for Geometry

Computing geometric correspondence requires that M(j) and t(j) in Equation 5
be known. To recover these components we solve the well-known affine structure
from motion problem using SVD [17].

An initial measurement matrix containing the coordinates of a few corre-
sponding sample points is thus needed and these must be provided by an inde-
pendent mechanism. One way to sample proper points through a sequence is to
employ a scheme to extract corners and find their correspondence automatically,
as seen for example in [1,19]. For the obtained corresponding sample points, we
solve not only for motion parameters but also compute the correspondences be-
tween pixel intensity that are required for the next stage of solving for intensity.

4.2 Solving for Intensity

Using the sample corresponding points obtained in the process of solving for
motion parameters, we must now acquire the linear coefficients a(j) acting on
the illumination image basis in Equations 9 and 10. We assume Lambertian
surface properties, a convex object, and a single point light source. Observing ni

sample corresponding pixels in each image through nj frames, we can form the
matrix equation

I = Ĭa (12)
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Fig. 4. Re-assigned images in frontal view.                                                                                                

Fig. 5. Synthesized images under various illumination.

where I is an ni ×nj matrix containing the corresponding sample pixel intensity
I′
i(j), Ĭ is an ni × 3 matrix containing a 3D basis for the sparse elements in
Ĭ′(j)(j = 1, 2, 3) such that

Ĭ = [Ĭ′(1) Ĭ′(2) Ĭ′(3)]

and a is a 3 × nj matrix whose columns are the linear coefficients a(j) as

a = [a(1) a(2) . . . a(nj)].

We record the corresponding sample pixel intensity, I ′
i(j), in I, which we call

illumination matrix. Equation 12 is then in the familiar form for solution by
singular value decomposition to obtain a rank 3 approximation to the matrix I.
Hence, the linear coeffecints are acquired from the intensity of the small number
of sample pixels in advance.

In order to solve for singular value decomposition of I, in this case, at least
four sample points are required through four images in the sequence. The astute
reader would have noticed that Equation 12 can only be used if all the pixels
used in forming I were illuminated in all j images. This is easy to ensure since
under a single light source these pixels will all have non-zero intensity values
and thus it is not necessary for the images to have been taken with the light in
the bright cell. In practice we employ a robust random sampling and consensus
technique (RANSAC) to ensure that artifacts that are caused by an object not
fulfilling the assumed conditions (eg. specularities and self-shadowing) do not
distort the correct solution.

As is well known, the solution is unique up to an arbitrary invertible 3×3
transformation A since

Ĭa = (ĬA)(A−1a). (13)

However, we may leave A undetermined, since A is canceled when computing
the estimated intensity using Equations 9 and 10.

4.3 Constructing Illumination Image Basis

We describe an algorithm for constructing illumination image basis by way of
dense search for the corresponding pixel intensity applying the geotensity con-
straint. Note that we have acquired M(j), t(j) and a(j) through the techniques
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discussed in the previous two sections. At each pixel in the reference image,
xi(1), we measure the corresponding pixel intensity, Ii(j), estimate Îi(j), and
compute the error, Ei, in the geotensity constraint at depth, Zi, at regular small
intervals. The corresponding pixel intensities are computed from Equations 6, 9,
and 10 armed with M(j), t(j) and a(j). As is apparent in Equation 6, the pixel
coordinate where we acquire the intensity depends on the depth map. When the
depth is correct we expect the error to approach zero. The effective search range
for the depth is determined according to the pointalistic model of the object
computed in Section 4.1 so that it is limited to the range where the object may
exist in space.

By the minimization of the error at each pixel in the reference frame, xi(1),
we acquire the intensity at the corresponding pixels in the other frames, Ii(j).
With the acquired intensity in the pixels xi(j), we can construct the images of
the object seen from the same view as the reference frame. Figure 4 shows the
images constructed from four images on the left shown in Figure 2 in various
views. The viewing direction in the constructed images is aligned to that in the
reference frame and the images appear to be illuminated by variable lighting
source. We can either employ a set of three images from the constructed images
directly as an illumination image basis, or apply the PCA to the constructed
images and form an illumination basis by the three eigenvectors corresponding
to the highest eigenvalues. The three images on the right in Figure 2 compose
an illumination image basis obtained by applying the PCA to the constructed
images shown in Figure 4. Indeed, images under arbitrary illumination can be
synthesized by the resulting illumination basis as shown in Figure 5.

Given nj images of an object in motion, the framework of the algorithm is
summarized as follows:

1◦ We set a reference image as the first one, I(1).
2◦ For a pointalistic model, we compute the motion parameters M(j)(j =

1, · · · , nj) and t(j)(j = 1, · · · , nj), and linear coefficients, a(j)(j = 1, · · · , nj).
3◦ For a particular guess of depth, Zi, at point xi, we measure Ii(j)(j =

1, · · · , nj) using Equation 6 with M(j), t(j), and a(j).
4◦ These measurements are fed into Equation 9 to calculate the values Ĭi(j)(j =

1, 2, 3).
5◦ The estimated values, Îi(j)(j = 1, · · · , nj), are computed using Equation 10.
6◦ The error Ei can be obtained using Equation 11.
7◦ Do 3◦ – 6◦ while searching for a depth that minimizes the error Ei.
8◦ Do 3◦ – 7◦ for all pixels in the reference frame, xi(1).
9◦ The corresponding pixel intensity Ii(j)(j = 2, · · · , nj) is aligned to the pixel

in the reference image xi(1).
10◦ We apply the PCA to the aligned images and the reference frame. Then,

an illumination basis is acquired as three eigenvectors corresponding to the
highest eigenvalues.

In the process 10◦, alternatively, we may choose three images directly from
the reference and aligned images as an illumination basis.
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Fig. 6. Images of a face under variable lighting and an illumination basis.
                                                

                                    

Fig. 7. Input images of a face in motion and an illumination basis in frontal view.
                                                

                                    

Fig. 8. Images of another face under variable lighting and an illumination basis.
                                                

                                    

Fig. 9. Input images of a face in motion and an illumination basis in frontal view.

5 Experiments

In this section, we show several experiments to confirm the validity of the pro-
posed algorithm. We apply the algorithm to a statue of Caesar and human faces.
First, we compare the results obtained by the proposed algorithm with those ob-
tained in the conventional way. Then, we explore the possibility of utilizing the
proposed method for face recognition by comparing the difference between the
obtained illumination image bases for faces of different subjects. It is also shown
that the method makes it possible to construct illumination image bases in var-
ious views according to the choice of the reference frame.

5.1 Illumination Image Bases of a Statue of Caesar and Human
Faces

Let us begin by confirming the validity of the proposed method. Using a statue of
Caesar and human faces as objects, we compare illumination bases constructed
from images of the objects under motion with those constructed from images
under variable illumination. Although the results for Caesar have already been
referred to in the previous sections for explanation, we discuss more of the details
here.
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Table 1. (a) Similarities between the subspaces of the same subjects spanned by
illumination image bases constructed in the conventional and proposed methods. (b)
Similarities between person A and B.

subjects Caesar person A person B
similarities 0.99 0.99 0.99

person A \ B illumination object motion
illumination 0.94 0.95

object motion 0.95 0.94

(a) (b)

In Figures 1, 6, and 8, four images on the left are captured under variable
lighting. We extract the central area including eyes, nose, and mouth from the
images. By applying PCA to the extracted areas, each illumination image basis
is obtained by three eigenvectors. It is shown in the right-hand parts of Figures
1, 6, and 8 and arranged according to eigenvalues. As observed in [6], the first
illumination base image is illuminated from the front, the second from the right
or left, and the third from the top or bottom. In Figures 2, 7, and 9, on the other
hand, four images on the left are input images of the objects in motion. The left
image in frontal view is set to be a reference frame. By applying the geotensity
constraint to the input images, we search correspondences between the images,
and then images in frontal view under variable illumination are obtained by re-
aligning the intensity in the process 9◦ in Section 4.3. The re-alinged images for
Caesar are shown in Figure 4. It is observed that searching of correspondences
is successful. These images are the analogues to the four left-hand images of the
object under variable lighting shown in Figure 1. As in Figures 1, 6, and 8 PCA
is applied to the re-aligned images to obtain an illumination image basis. The
results are shown in the right-hand parts of Figures 2, 7, and 9. The first base
image is illuminated from the front, the second from the right or left, and the
third from the top or bottom. These aspects are similar to those in Figures 1,
6, and 8 except the reverse of white and black which means that only the signs
of elements of the base image are opposite. Hence, each of the base images in
Figures 2, 7, and 9 appears to correspond with each of those in Figures 1, 6, and
8.

Mathematically, however, since there exist infinite illumination image bases
which span the illumination subspace unique to one object in one pose, it is
not prerequisite for an illumination image basis constructed from images under
object motion to exactly correspond with the counterpart from images under
varying illumination. In order to evaluate the illumination image basis acquired
by the proposed method, thus, we investigate its closeness to the counterpart
due to varying illumination by comparison in the level of the subspaces. For
computing the similarities between the subspaces spanned by illumination image
bases constructed in the conventional and proposed methods in quantity, we
introduce a canonical angle θ. It represents an angle between two spaces, S1 and
S2, and defined by
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cos2θ = sup
s1∈S1,s2∈S2

||s1||�=0,||s2||�=0

(s1, s2)
||s1||2||s2||2 . (14)

If S1 exactly corresponds to S2, then cos2θ is equal to 1. The results of computing
Equation 14 between the illumination subspaces represented by illumination
image bases shown in Figures 1 and 2, 6 and 7, and 8 and 9 are 0.99 as listed
in Table 1 (a). From the results, it can be inferred that an illumination image
basis is constructed from object motion by the proposed algorithm as well as
from variable illumination. As for the human faces, the second and third base
images in Figures 7 and 9 have some destroyed parts in their appearance, which
are seemingly caused by the non-rigidity of the subjects especially around the
eyes (the statue of Caesar is rigid on the other hand). Nevertheless, the resulting
figures of similarity in terms of the illumination subspaces are not deteriorated
and thereby show the validity of the proposed algorithm.

We also explore the possibility of utilizing the illumination image bases ob-
tained by the proposed method for face recognition, by computing the differ-
ences between the illumination subspaces for two different human subjects. The
resulting angles computed by Equation 14 for all possible combinations of the
illumination subspaces derived from the two different human subjects are listed
in Table 1 (b). The computed similarities for the two subjects, shown in Figures
6 through 9, are 0.94 or 0.95 for different cases of utilizing varying illumination
and object motion interchangeably. The values are smaller than those for the
similarity between the illumination image bases of the same subject, 0.99. In the
same way, illumination image bases are constructed for several different subjects,
and similar results are obtained. That is, the similarities for the same subjects
are 0.99 and for different subjects are around 0.94. Hence, the difference be-
tween the two subjects can be regarded as reasonably well conserved. Although
the difference between 0.94 and 0.99 may seem trivial, it is in practice a sig-
nificant difference when considered in algorithms for face recognition. In Fisher
face [2], for example, the ratio of dispersion of images classified in a correct cat-
egory to dispersion of images classified in a false category is minimized. Since
the minimization has the effect of emphasizing differences between categories,
the observed difference will be feasible recognized in the algorithm.

5.2 Illumination Image Bases in Various Views

In the proposed method, illumination image bases in various views can be con-
structed according to the selected reference frames. Here, we use the input images
in Figure 7 again. The four input images are set to be a reference frame in turn,
and illumination image bases are constructed. Then, we synthesize images under
various illumination represented by the linear combination of the obtained illu-
mination base images with various linear coefficients. The synthesized images in
views corresponding to the reference frames are shown in Figure 10. It can be
seen that the proposed method makes construction of illumination image bases
in various views possible only by replacing the reference image with other images
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Fig. 10. Illumination bases in various views. The reference images are selected from
the input images in Figure 7.

in different views. Therefore, constructing illumination image bases from object
motion is useful to deal with variations of not only illumination but also views
in the appearance-based object recognition.

When replacing the reference frame, we do not need to search the small
number of sample points and to recompute motion parameters and linear coef-
ficients. Once the motion parameters and linear coefficients are computed, the
new motion parameters for a different reference image are easily derived from
the previous motion parameters which represent the relative motion between the
frames and the linear coefficients can be used directly as they are.

6 Discussions and Conclusions

We have proposed a method to construct an illumination image basis from images
of an object in motion under fixed illumination. The experiments showed the
validity of the proposed method for a statue of Caesar and human faces. The
advantages of the method are:

1. An illumination image basis is constructed from images of an object in mo-
tion without changing illumination or camera view.

2. Images under arbitrary illumination are synthesized by linear combination
of the obtained illumination base images equivalently to the conventional
method.

3. Illumination image bases in various poses are constructed from an image
sequence only by replacing the reference frame.

4. By utilizing the illumination image bases in various poses, we can enjoy the
advantages of an object recognition algorithm that considers the varieties of
illumination and poses.

Although we dealt with the geotensity constraint in the case of a single lighting
source for simplicity in this paper, extension to the case of multiple light sources
is possible by applying the geotensity constraint under multiple light sources [9].
In general, illumination image bases in various views constructed by the proposed
method can be utilized for image rendering [16], and for object recognition [12],
although occlusion problem is left as the future work.
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