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Abstract. In this paper, we propose a novel method named the Multi-
ple Constrained Mutual Subspace Method which increases the accuracy of
face recognition by introducing a framework provided by ensemble learn-
ing. In our method we represent the set of patterns as a low-dimensional
subspace, and calculate the similarity between an input subspace and
a reference subspace, representing learnt identity. To extract effective
features for identification both subspaces are projected onto multiple
constraint subspaces. For generating constraint subspaces we apply en-
semble learning algorithms, i.e. Bagging and Boosting. Through experi-
mental results we show the effectiveness of our method.

1 Introduction

Recently, many face identification methods that perform recognition from a set
of patterns instead of a single pattern have been proposed[1–5]. Since these
methods are able to cope with variation in appearance under varying pose, a
robust face identification application can be built.

To identify faces using a set of patterns, we have previously proposed the
Mutual Subspace Method (MSM)[1]. In MSM, a set of patterns is represented
as a low-dimensional subspace. To compare the input subspace with the refer-
ence subspace representing learnt identity, we calculate their similarity which
is defined by the minimum angle between the input subspace and the reference
subspace. These subspaces are generated using principal component analysis
(PCA).

To improve the performance of MSM we have extended this method to the
Constrained Mutual Subspace Method (CMSM)[5]. In CMSM, to extract effec-
tive features for identification, we project the input subspace and the reference
subspace onto the constraint subspace, as shown in Fig. 1. Through this projec-
tion we can extract features that are insensitive to varying facial pose and illu-
mination, while remaining sensitive to change in individual appearance. Using
CMSM Sato et al.[6] illustrated the effectiveness in a practical security system,
while Kozakaya et al.[7] demonstrated an implementation of a real-time system
on an image processing LSI chip.
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Fig. 1. Concept of CMSM. The input subspace and the reference subspace are gener-
ated from the set of patterns. Then, both subspaces are projected onto the constraint
subspace. Finally, the similarity is determined with the angle θC

Although CMSM is effective, a large number of training patterns are required
for generating the constraint subspace. Since variation in appearance is large un-
der varying pose and illumination, it is difficult to acquire training patterns which
sufficiently represent these variations. Therefore, we need a method of generating
the constraint subspace which yields high performance from a limited number
of acquired training patterns. In the field of machine learning, ensemble learn-
ing has been proposed[8, 9]. Ensemble learning derives recognition performance
by combining hypotheses obtained from given training samples. Wang et al.[10]
applied ensemble learning to face identification based on Linear Discriminant
Analysis and demonstrated that they obtain high performance using only a few
training patterns.

In this paper we propose a new method which generates multiple constraint
subspaces by introducing the framework provided by ensemble learning. Us-
ing these constraint subspaces, we extend CMSM to the Multiple Constrained
Mutual Subspace Method (MCMSM). In MCMSM, the input subspace and the
reference subspace are projected onto each constraint subspace, and the similar-
ity is calculated on each constraint subspace. By combining these similarities we
finally determine the combined similarity as shown in Fig. 2. To generate con-
straint subspaces, we propose two approaches in which we apply the framework
provided by ensemble learning.

This paper is organized as follows. First, we describe the method for applying
MCMSM to face identification in section 2. Next, we describe two approaches
for generating constraint subspaces in section 3. Then, we demonstrate the ef-
fectiveness of our method using MCMSM by experiments in section 4.

2 Identification Using MCMSM

2.1 Algorithm for Face Identification

In this section, we describe the procedure of our face identification method. First,
an input set of face patterns is obtained from a video sequence. We locate the face
pattern from the positions of the pupils and the nostrils obtained automatically
by the method described in [1, 7]. The pattern is transformed to a vector by
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Fig. 2. Concept of MCMSM. The input subspace P and the reference subspace Q are
projected onto each constraint subspace Ci. By combining M similarities(cos2θCi),
which are calculated on Ci, we finally determine the combined similarity

raster-scanning of the pattern, and we apply PCA to the vectors to generate an
input subspace. Let x be a vector and NV be the number of the vectors, the
basis vectors of the input subspace are the eigenvectors of the correlation matrix
A = 1/NV

∑NV

i=1 xxT [12].
To compare the input subspace with the reference subspace, registered in a

database for each individual, we calculate their combined similarity. This com-
bined similarity is determined with similarities calculated on each constraint
subspace. The identified person is determined as corresponding to the reference
subspace of the highest combined similarity. The details of each process are
described in the following section.

2.2 Projection onto Constraint Subspaces

To project the input subspace P onto M constraint subspaces, we carry out the
following steps:

1. Project basis vectors of P onto the i-th constraint subspace Ci.
2. Normalize the length of each projected vector.
3. Apply Gram-Schmidt orthogonalization to the normalized vectors.

The orthogonal normalized vectors are basis vectors of the projected input sub-
space PCi . This procedure is repeated M times for each constraint subspace.
The projected reference subspace QCi can be obtained with the same procedure.

2.3 Calculation of the Similarity on Each Constraint Subspace

We define similarity SCi between the subspace PCi and the subspace QCi as

SCi = cos2 θCi , (1)

where θCi represents the canonical angle between PCi and QCi . The canonical
angle is calculated using MSM[1]. The similarity SCi can be obtained from the
largest eigenvalue λmax of X using

Xa = λa , (2)
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X = (xmn) m,n = 1 . . .N , and (3)

xmn =
N∑

l=1

(ψm, φl)(φl, ψn) , (4)

where ψm is the m-th basis vector of subspace PCi ; φl is the l-th basis vector of
subspace QCi ; (ψm, φl) is the inner product of ψm and φl; N is the dimension
of PCi and QCi . The similarity SCiequals λmax. If the input subspace and the
reference subspace are identical, the canonical angle θCi equals 0.

2.4 Combine Similarities

To combine similarities obtained on each constraint subspace, we define the
combined similarity ST as follows:

ST =
M∑

i=1

αiSCi , (5)

where M is the number of the constraint subspaces; αi is the i-th coefficient of
Ci; SCi is the similarity between PCi and QCi projected onto Ci.

3 Generation of Multiple Constraint Subspaces
with Ensemble Learning

In this section, we explain the method of generating a single constraint sub-
space for CMSM[5]. Next, we describe two approaches for generating multiple
constraint subspaces with ensemble learning for MCMSM.

3.1 Generation of a Single Constraint Subspace

To allow for the variation in appearance for each individual, we acquire the sets of
patterns while changing illumination and pose for L individuals. The variation
of the patterns is represented as a subspace for each individual. We call this
subspace the training subspace.

To generate a constraint subspace which separates the training subspaces by
projection, we calculate eigenvectors using

(P1 + P2 + . . .+ PL)a = λa , (6)

Pj =
NB∑

k=1

ψjkψ
T
jk , (7)

where Pj is the projection matrix of the j-th training subspace; NB is the
dimension of training subspace; ψjk is the k-th basis vector of the j-th training
subspace. The eigenvectors, selected in ascending order, are the basis vectors of
the constraint subspace. For details of CMSM see [5, 7].
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Fig. 3. Concept of the method for generating constraint subspaces using Boosting

3.2 Generation of Constraint Subspaces with Bagging

To generate constraint subspaces, we use Bagging[8], which is based on an ensem-
ble learning algorithm. Multiple classifiers are constructed using random sam-
pling in Bagging. To apply this framework to generating constraint subspaces, we
randomly select L′(< L) subspaces from L training subspaces. Each constraint
subspace is generated independently using selected training subspaces.

Algorithm Using Bagging
To summarize: we generate M constraint subspaces by the following steps:

1. Select L′ training subspaces randomly without replacement.
2. Generate a constraint subspace using selected L′ training subspaces in eq.(6).
3. Until M constraint subspaces are generated, go to 1.

3.3 Generation of Constraint Subspaces with Boosting

In another method of generating constraint subspaces, we use Boosting[9]. Each
classifier is constructed sequentially by reweighting the training patterns in
Boosting. The current weight is given to training patterns which were classi-
fied incorrectly in the previous constructed classifier.

In applying this framework to generate constraint subspaces we must de-
fine how to calculate the weight for each training subspace. Consider similarities
between training subspaces on the constraint subspace. As shown in Fig. 3(a),
when the projected training subspace P1Ci and the projected training subspace
P3Ci are similar on the constraint subspace Ci, the likelihood of the false identi-
fication is increased for these training subspaces. To cope with this problem, we
aim to separate P1Ci+1 and P3Ci+1 on Ci+1 as shown in Fig. 3(b). To achieve this,
we generate Ci+1 by assigning large weight to P1Ci and P3Ci , thereby increasing
their importance and decreasing the remaining error.

Algorithm Using Boosting
To summarize: we generate M constraint subspaces by the following steps:
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1. Define the initial weight W1(j).
2. Generate the i-th constraint subspace Ci using i-th weight Wi(j) and the

projection matrix Pj of the j-th training subspace as

(Wi(1)P1 + . . .+Wi(L)PL)a = λa . (8)

3. Calculate the next weight Wi+1(j) using Ci.
4. Until M constraint subspaces are generated, go to 2.

The weight Wi+1(j) is calculated using

Wi+1(j) =
S′

j
∑L

j=1 S
′
j

and (9)

S′
j =

L∑

j′ �=j

βjj′ , (10)

where βjj′ equals θCijj′ ; θCijj′ is the angle between Pj and Pj′ projected onto
the Ci. To generate a constraint subspace using only similar training subspaces,
we can set threshold T to be

βjj′ =
{

cos2 θCijj′ T ≤ cos2 θCijj′
0 T > cos2 θCijj′ .

(11)

4 Empirical Evaluation

4.1 Performance for Varying Illumination

To illustrate the performance of our face identification method, the lighting
condition was changed dynamically. We collected a video sequence at 5 frames
per second for each person under each lighting condition. We set 10 difference
lighting conditions using 7 light sources (A-G); see Fig. 4. A image of the set of
each lighting condition is shown in Fig. 5(a). A video sequence consisted of 140
face images which were captured in arbitrary facial pose, e.g. translation, yaw
and pitch. The size of each image was 240×320 pixels and 50 different individuals’
data were collected. From each image a 30 × 30 pixel pattern, as shown in Fig.
5(b), was extracted. This pattern was histogram equalized, resized to 15 × 15
pixels by subsampling, a vertical gradient operator was applied, and finally the
pattern was transformed to a 15 × (15 − 1) = 210-dimensional vector.

We divided the data into two groups that each consisted of 25 individuals’
patterns. The first group was used for identification and the second for generating
constraint subspaces. In the first group, we divided the patterns into input sets
and reference sets for each person. An input set consisted of 10 patterns for
each lighting condition and a reference set consisted of 70 patterns for each
lighting condition. We used 7 input sets per person for each lighting condition.
In the second group, to learn variation of patterns under varying illuminations, a
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training subspace was generated by using all lighting condition patterns. A set of
training patterns consisted of 140 patterns per lighting condition. We generated
25 training subspaces.

We compared the performance of MCMSM with those of conventional meth-
ods.
(a)Nearest Neighbor (NN)
The similarity was determined with the smallest Euclidean distance between the
pattern in the input set and the pattern in the reference set.
(b)Subspace Method[11] (SM)
The similarity was determined using the average of the angle calculated between
each pattern of the input set and the reference subspace. We generated the
40-dimensional reference subspace for each reference set.
(c)Mutual Subspace Method[1] (MSM)
The similarity was determined using the angle between the input subspace and
the reference subspace. We generated the 7-dimensional input subspace for each
input set and the 7-dimensional reference subspace for each reference set.
(d)Constrained MSM[5] (CMSM)
The similarity was determined with MSM after projection onto a single con-
straint subspace. The constraint subspace was generated with L = 25 training
subspaces. We set the dimension of the training subspace to NB = 30, and the
dimension of the constraint subspace to NC = 170.



78 Masashi Nishiyama, Osamu Yamaguchi, and Kazuhiro Fukui

(e)Multiple CMSM with Bagging (MCMSM-Bagging)
The similarity was determined with MSM after projecting onto multiple con-
straint subspaces. Each constraint subspace was generated from L′ = 8 training
subspaces selected randomly. We used M = 10 constraint subspaces. The coef-
ficient of the combining was αi = 1/10.
(f)Multiple CMSM with Boosting (MCMSM-Boosting)
The similarity was determined with MSM after projecting onto multiple con-
straint subspaces. Each constraint subspace was generated from weighted train-
ing subspaces. We used M = 10 constraint subspaces. The initial weight W1(j)(j
= 1 . . . 25) was 1/25, the threshold T was 3.5σi, and σi was the standard de-
viation of similarities which were calculated between training subspaces. The
coefficient αi was 1/10.

Table 1 shows the evaluation result of each method in terms of the correct
match rate (CMR) and the equal error rate (EER). CMR is the probability that
an input set of the right person is correctly accepted. EER is the probability
that the false acceptance rate (FAR) equals the false rejection rate (FRR). We
can see that the methods (e) and (f) using MCMSM are superior to (a)-(d) with
regard to CMR and EER. Figure 6 shows the receiver operating characteristic
(ROC) curves, which indicate FAR and FRR of each method. The superiority
of MCMSM (e) and (f) is also apparent from this.

Table 1. Experimental results under varying illumination (25 registered persons)

Method CMR(%) EER(%)

(a) NN 95.4 23.9
(b) SM 95.4 12.9
(c) MSM 95.4 9.8
(d) CMSM 95.4 5.0
(e) MCMSM-Bagging 98.2 4.0
(f) MCMSM-Boosting 98.6 3.9
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Fig. 6. ROC curves (25 registered persons, varying illumination)
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Figure 7 shows the performance of MCMSM versus the number of constraint
subspaces. We can see improved performance for both generating methods as
the number of constraint subspaces increased.

4.2 Performance Assessment on a Large Database

To evaluate performance for a large number of individuals, we collected a total of
1000 input sets for 500 people. The facial pose changed irregularly at each input
set although the lighting conditions were almost uniform. As before the dimen-
sion of the vector was 210. An input set consisted of 15 patterns and a reference
set consisted of 125 patterns. We compared the performance of three methods:
(i)CMSM, (ii)MCMSM-Bagging and (iii)MCMSM-Boosting. In these methods,
we used the 7-dimensional input subspace and the 7-dimensional reference sub-
space. We used 500 training subspaces for generating the constraint subspace.
The training subspace was generated with the reference set. The dimension of
the training subspace was NB = 10, and the dimension of the constraint sub-
space was NC = 170. In (i), we used a single constraint subspace generated with
500 training subspaces. In (ii), we used M = 10 constraint subspaces. Each con-
straint subspace was generated from L′ = 30 training subspaces. The coefficient
αi was 1/10. In (iii), we used M = 10 constraint subspaces. The initial weight
W1(j) was 1/500, the threshold T was 5σi, and the coefficient αi was 1/10.

Table 2 shows the evaluation result of each method. We can see that the
methods using MCMSM are superior to that using CMSM.

Table 2. Experimental results (500 registered persons)

Method CMR (%) EER (%)

(i) CMSM 94.7 2.3
(ii) MCMSM-Bagging 96.2 1.6
(iii) MCMSM-Boosting 96.8 1.6
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5 Conclusion

This paper presented the Multiple Constrained Mutual Subspace Method in which
we applied ensemble learning to the Constrained Mutual Subspace Method. To
extract effective features for face identification, we project the input subspace
and the reference subspace onto multiple constraint subspaces. In the experiment
we obtained high performance compared with projecting onto a single constraint
subspace. To generate constraint subspaces, we apply the framework provided
by ensemble learning, i.e. Bagging, Boosting. We evaluated the algorithms on
a database of varying illumination and a database with 500 individuals. The
effectiveness of MCMSM is demonstrated on both databases.
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