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Abstract—In structural biology, measuring the similarity
between two protein structures is an essential task. The most
common approach is to find the best alignment between two
protein backbone structures and use the root mean square
deviation (RMSD) of the superimposed alpha-carbon atom
coordinates as the distance measurement. Other approaches
extract features of the protein structures and the similarity
measure is based on the extracted features. However, there
is no single best approach, as each has its own advantages
and limitations. One intuitive idea is that a better result can
be obtained by combining complementary approaches. In this
paper, we propose a new approach to protein fold classification,
by introducing the concept of large margin nearest neighbor
for combining multiple measures of distance between protein
structures. We combine the Euclidean distance matrices of 12
features extracted from the amino acid sequence of the protein,
the RMSD obtained from the geometrical alignment using
Combinatorial Extension, and the canonical angles between the
subspaces generated from the synthesized multi-view protein
structure images. We demonstrate the effectiveness of the
proposed method by classifying 27 fold classes of proteins in
the Ding Dubchak dataset.

Keywords-metric learning, large margin nearest neighbor,
protein fold classification

I. INTRODUCTION

Proteins are one of the most important substances in
a living organism since proteins perform various crucial
functions in the biological processes of cells, such as catalyst
and transport. Protein structure is built from a sequence
of amino acids, which fold into a 3D structure due to the
interactions between the atoms and chemical bonding in the
chain of amino acid molecules. It is known that proteins
which have similar 3D folding share the same functionality,
although occasionally this correlation does not exist for the
poorly defined protein functions [1]. To support the analysis
of proteins, such as the categorization of proteins based on
their 3D folding, it is essential to have a reliable measure of
the similarity between pairs of 3D structures. However, there
is as yet no standard method for the automatic computation
of the similarity between protein structures.

The most common approach for comparing two protein
structures is to apply geometrical alignment to the 3D
structures of the two proteins and compute the root mean
square deviation (RMSD) of the pairs of superimposed
alpha-carbon atom coordinates. The performance of this sim-
ilarity measures relies mostly on the alignment technique,
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S are the optimal coefficients for combining the distance measures.

which is computationally expensive and hard, especially
when the protein structures are very different. Well-known
methods which use this approach are that of Dali [2]
and Combinatorial Extension (CE) [3][4]. Other approaches
extract features from the 3D protein structures, and the
similarity is measured by comparing the extracted features.
For examples, in [5] the protein structure is considered as an
oriented open curve from which a compact 31-dimensional
Gauss integral vector, called Gauss Integral Tuning (GIT), is
generated. Then, the dissimilarity is defined as the Euclidean
distance between the two GIT vectors. In [6] the similarity of
3D protein structures is measured by comparing the protein
structure visualizations. First, 2D multiple-view images of
a 3D protein structure are synthesized using 3D molecular
graphics software. Next, the set of multiple-view protein im-
ages is represented as a low-dimensional subspace. Finally,
the similarity is defined by the canonical angles between the
two corresponding subspaces.

Out of the similarity measures that have been proposed,
there is no overall best since a particular approach may be
superior in some cases but inferior in others. This leads to
the expectation that a more reliable similarity measure can
be obtained by combining multiple approaches. However,
combining different similarity measures is not a trivial
task because they have different metrics. In this paper,
we propose a new approach for protein fold classification,
that learns to combine multiple distance metrics using the
formulation of large margin nearest neighbor (LMNN) [7].
An overview of our idea is shown in Figure 1. First, multiple
distance measures are computed for each pair of protein
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features in training data. Then these distance measures are
fed into LMNN to obtain the optimal weight coefficients,
w∗, which are used for combining the measures. The dis-
tance metric learning algorithm is based on LMNN, because
of the algorithm’s effectiveness and simplicity. LMNN was
originally proposed as an algorithm to learn a Mahalanobis
distance metric for k-nearest neighbor (k-NN) problems.
It ensures that the points belonging to the same class are
moved closer to one another while at the same time the
margin between different classes is enlarged. In this paper,
we use the LMNN formulation to learn the optimal weight
coefficients w∗ for combining multiple distance metrics.

The validity of the proposed method is demonstrated
through experiments on protein fold classification using the
widely used Ding Dubchak protein dataset [8][9]. In the field
of protein fold classification, there have been many attempts
to predict protein fold categories using only the features
extracted from protein sequences and without exploiting
the 3D geometrical structure explicitly. For example, in [8]
and [9], 12 types of features were extracted from protein
sequences and their physico-chemical properties: amino acid
composition, predicted secondary structure, hydrophobicity,
van der Waals volume, polarity, polarizability, four types of
pseudo-amino acid compositions, and two sequence align-
ments using Smith-Waterman scores. In our experiments, we
combined the distance matrices of the 12 types of features
extracted from protein sequences [9], the RMSD of the
geometrical alignment of CE [3], the Euclidean distance
of GIT feature vectors [5], and canonical angle similarity
measures [6] in which we adopted the Constraint Mutual
Subspace Method (CMSM) [10]. Since the dataset from
[8][9] does not contain any geometrical features, such as
alpha-carbon atom coordinates, we retrieved the geometrical
features from the ASTRAL SCOP database [11][12].

The organization of this paper is as follows. First, we re-
view LMNN in section II. Next, we formulate our proposed
method for learning the optimal combination of multiple dis-
tance metrics using LMNN in section III. Then, we discuss
the experimental results in section IV. Finally, conclusions
and an indication of future work are provided in section V.

II. LARGE MARGIN NEAREST NEIGHBOR

In this section we briefly review the concept of LMNN [7].
Let D = {(xi, yi)}

n
i=1 be a training set, where xi is a data

point and yi ∈ {1, 2, . . . , C} is the class label of xi. The
objective of LMNN is to learn a distance measure such
that the distances between data points in the same class are
minimized and the margin between data points in different
classes are maximized. Let the distance measure between
two data points xi and xj be d(xi, xj ;w), where w ∈ W
specifies a concrete distance function. The goal of LMNN
can be formalized as

min
w∈W

J(w), (1)

where J(w) is

n∑
i=1

∑
j:yj=yi

⎡
⎣d2(xi, xj ;w) + μ

∑
h:yh �=yi

[L(i, j, h;w)]+

⎤
⎦ ,

(2)
L(i, j, h;w) = l + d2(xi, xj ;w)− d2(xi, xh;w). (3)

In this objective function, μ > 0 is a balancing parameter,
l ≥ 0 is a margin parameter, and [x]+ is the hinge loss
defined as [x]+ = max(0, x). In the original formulation of
LMNN, the distance d is parameterized as a Mahalanobis
distance, while in this work the distance is parameterized as
a convex combination of multiple distance measures. This
formulation of distance metric learning is similar to multiple
kernel learning [13][14], which is intensively studied in the
field of machine learning.

III. DISTANCE METRIC LEARNING USING LMNN
A similarity and a distance measure are basically inter-

changeable; it is possible to convert a similarity measure to
a distance measure and vice versa. In this paper, we combine
multiple distance metrics with the similarity measure based
on canonical angles. Each distance can be normalized to
0 ≤ Dij ≤ 1, by redefining Dij = Dij/max(D), where
Dij is the scalar distance between xi and xj , and the n×n
matrix D is the distance matrix for n training samples.
In the case of similarity measures using canonical angles,
since 0 ≤ cos2 θij ≤ 1, converting canonical angles to
normalized distance measures can be simply done by setting
Dij = 1− cos2 θij .

A. Convex Combination of Multiple Distance Measures
Distance measure between data points have to be nonneg-

ative. Thus, a convex combination of S distance measures
can be written as

d(xi, xj ;w) = w1d1(xi, xj) + · · ·+ wSdS(xi, xj), (4)

where ds(xi, xj), s = 1, . . . , S are given distance measures,
such as the RMSD of CE and canonical angles, between
xi and xj . The weight of each distance measure w =
(w1, . . . , wS)

ᵀ ∈ R
S can be regarded as an element of the

S-simplex which must satisfy
S∑

s=1

ws = 1, ws ≥ 0, ∀s ∈ {1, . . . , S}. (5)

B. Formulation using the subgradient method
The distance combination from (4) is optimized by min-

imizing (2). Let dij = (d1(xi, xj), . . . , dS(xi, xj))
ᵀ ∈ R

S

and d(xi, xj ;w) = wᵀdij . The objective function J(w) can
be rewritten as

J(w) = wᵀMw + μ

n∑
i=1

∑
j:yj=yi

∑
h:yh �=yi

[L(i, j, h;w)]+

(6)
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Figure 2. The flow of the classification using the proposed method.

L(i, j, h;w) = l +wᵀdijd
ᵀ

ijw −wᵀdihd
ᵀ

ihw, (7)

M =

n∑
i=1

∑
j:yj=yi

dijd
ᵀ

ij . (8)

The objective function J(w) contains the hinge loss [x]+,
which is not differentiable. However, it is possible to obtain
a subgradient with respect to w. Therefore, we can formulate
an iterative method based on a subgradient to solve the
convex minimization problem. In general, the subgradient
of a function f : Rn → R at x is a vector z ∈ R

n such that
f(x)+zᵀ(x′−x) ≤ f(x′) for any x′ ∈ R

n. For J(w) the
subgradient of L(i, j, h;w) is given by

gijh =

{
2(dijd

ᵀ

ij − dihd
ᵀ

ih)w L(i, j, h;w) > 0,(9)
0 otherwise, (10)

where gijh ∈ R
S . After updating w using the subgradient

gijh, the next step is the projection to the S-simplex to
ensure the constraint in (5). The complete iterative algorithm
using the subgradient method is shown in Algorithm 1.

Algorithm 1 Subgradient algorithm to minimize J(w)

Initialize: w0 = (1/S, ..., 1/S), μ > 0, ε > 0, l > 0,
Threshold > 0, and M as in (8).
while (||w −wold||2 > Threshold ) do

w ← w − ε

{
Mw + μ

n∑
i=1

∑
j:yj=yi

∑
h:yh �=yi

gijh

}
for s = 1, . . . , S do: if ws < 0 then ws ← 0
for s = 1, . . . , S do: ws ←

ws∑
S
s=1

ws

end while
Output: optimal coefficient w∗

C. Flow of the classification
The flow of the classification is shown in Figure 2.

1) Training phase:
Step 1: Calculate S distance matrices for the training

samples, {D1,D2, . . . ,DS}.
Step 2: Find optimal coefficients w∗ using Algorithm 1.
2) Test phase:
Step 1: Compute S distance measurements between an

input protein and each training protein to obtain
distances {d1, d2, . . . , dS}.

Step 2: Combine {d1, d2, . . . , dS} and w∗ as in (4) to
obtain the final distance measure.

Step 3: Classify the input protein to the fold category with
the smallest distance using k-NN.

IV. EXPERIMENTS AND RESULTS

We used the Ding Dubchak dataset [8][9] to evaluate the
proposed method. There are 12 features extracted from the
protein sequences including the additional features from [9]:
amino acid composition (C), predicted secondary structure
(S), hydrophobicity (H), van der Waals volume (V), polarity
(P), polarizability (Z), pseudo-amino acid compositions (λ1,
λ4, λ14, λ30), and attributes from sequence alignment using
Smith-Waterman scores (SW1, SW2). The dataset contains
27 fold categories, of proteins which are distributed nonuni-
formly among 313 training and 385 testing proteins. Due to
the lack of a sequence record for some proteins [9] and
because some GIT features could not be extracted using
tools from [5], only 298 training proteins and 383 testing
proteins were used. Examples of the proteins are shown in
Figure 3. The protein with PDB code 2lhb belongs to fold
Globin-like; 1ccr belongs to Cytochrome c; and 1enh belongs
to DNA-binding 3-helical bundle. As mentioned previously,
this database does not contain any geometrical features.
Thus, to apply 3D structure based methods, we downloaded
atom coordinate data for each protein from the ASTRAL
SCOP database [12].

To evaluate the performance of the proposed method, we
adopted the accuracy scheme of [8] in which accuracy is
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2lhb 1ccr 1enh

Figure 3. Examples of protein structures in 3D visualization.

defined as the ratio of the number of correctly classified
testing data to the total number of testing data. The overall
accuracy is defined as a weighted accuracy with weights
proportional to the number of the testing data in the fold
category.

A. Distance matrix construction and parameter setting

We constructed distance matrices for each of the 12
features extracted from protein sequences by computing the
Euclidean distance between the feature vectors of each of
the training proteins. Since there were 298 training proteins,
the size of each distance matrix was 298×298. GIT features
were extracted using the tool from [5] and the distance
matrix was constructed similarly. The tool from [4] was used
to construct the CE distance matrix. For canonical angle
based similarity, we followed the procedure described in
[6]. First we synthesized the backbone, ribbons, and rockets
visualizations for each protein structure using 3D molecular
graphics software (Jmol [15]) by randomly rotating the 3D
protein model 3000 times. After 3000 images at a size of
128× 128 pixels had been collected for each visualization,
HLAC [16] feature extraction was applied to each image
and a linear subspace was generated for each image set.
However, instead of directly computing the canonical angles
between the two subspaces, we adopted the Constraint Mu-
tual Subspace Method (CMSM) [10]. In CMSM, a constraint
subspace C is generated by taking the M eigenvectors
corresponding to the M lowest eigenvalues of the sum of
the projection matrices of dictionary subspaces as the basis
vectors. Here, each dictionary subspace was generated by
applying PCA to the merged set of the training proteins
belonging to the same fold category. In the computation of
the similarity, the subspace corresponding to each protein
was projected to the constraint subspace C. The similarity
is then defined by the canonical angles between the two
projected subspaces. The distances and the canonical angle
measures were finally normalized as described in section III.

In the implementation of Algorithm 1, the balancing
parameter μ and the margin l were both set to values ranging
from 0.01 to 1 in steps of 0.05. The iteration step size ε and
the threshold used as the stopping criterion were both fixed
to 10−5. The parameter k in the k-NN procedure was set to
values ranging from 1 to 20.

Table III
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD (%)

Fold DM-1 DM-2 DM-3 DM-4 DM-5 DM-6
1 83.33 100.00 100.00 100.00 100.00 100.00
2 77.78 100.00 100.00 100.00 100.00 100.00
3 40.00 90.00 90.00 90.00 90.00 100.00
4 62.50 100.00 100.00 100.00 100.00 100.00
5 77.78 100.00 100.00 100.00 100.00 100.00
6 22.22 88.89 88.89 88.89 88.89 77.78
7 47.73 90.91 90.91 93.18 90.91 93.18
8 25.00 100.00 100.00 100.00 100.00 100.00
9 53.85 84.62 84.62 92.31 92.31 100.00
10 16.67 100.00 100.00 100.00 100.00 100.00
11 37.50 87.50 87.50 87.50 87.50 100.00
12 26.32 94.74 89.47 89.47 89.47 94.74
13 75.00 100.00 100.00 100.00 100.00 100.00
14 25.00 100.00 100.00 100.00 100.00 100.00
15 42.86 100.00 100.00 100.00 100.00 100.00
16 54.17 97.92 97.92 97.92 97.92 100.00
17 66.67 100.00 100.00 100.00 100.00 100.00
18 38.46 76.92 76.92 84.62 76.92 76.92
19 62.96 85.19 85.19 85.19 85.19 81.48
20 41.67 75.00 75.00 75.00 75.00 66.67
21 25.00 100.00 100.00 100.00 100.00 100.00
22 75.00 100.00 100.00 100.00 100.00 66.67
23 57.14 85.71 85.71 100.00 100.00 100.00
24 25.00 75.00 75.00 75.00 75.00 100.00
25 25.00 75.00 75.00 87.50 87.50 75.00
26 37.04 85.19 85.19 88.89 88.89 70.37
27 92.59 96.30 81.48 85.19 88.89 92.59

Overall 50.91 91.91 90.60 92.43 92.17 91.12

B. Initial experiment
We conducted an initial experiment using conventional

k-NN for each distance measurement. The best results for
various values of k are shown in Table I. In structural
biology, it is already known that protein fold category is
determined by the geometry of the 3D structure. Therefore,
the classification results using CE, GIT, and CMSM are
much better than those using the 12 extracted features,
as expected. These experimental results also confirm that
one method might be superior for some cases and inferior
for others. When focusing on the measures based on the
3D structure, for example, CE was inferior for recognizing
fold 18 with only 46.15% accuracy, while GIT had 76.92%
accuracy. On the other hand, both CE and GIT had an
accuracy of 50% for fold 20, while CMSM achieved an
accuracy of 58.33%.

C. Experiments using the proposed metric learning
To understand how the metric learning improves the

classification performance, we used several combinations of
distance matrices as shown in Table II. The experimental
results are shown in Table III.

First, only the 12 distance matrices based on the extracted
features were used (DM-1). From the results shown in
Table III (DM-1), we can see that by learning the optimal
combination of distances from the 12 extracted features, the
overall accuracy improved from 45.43% to 50.91%.

Next, the CE distance matrix was added (DM-2). As
shown in Table III (DM-2), the overall accuracy improved
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Table I
INITIAL EXPERIMENTAL RESULTS IN TERMS OF ACCURACY FOR EACH FOLD (%)

Fold (C) (S) (H) (V) (P) (Z) (λ1) (λ4) (λ14) (λ30) (SW1) (SW2) (CE) (GIT) (CMSM)
1 83.33 66.67 66.67 50.00 66.67 50.00 83.33 83.33 50.00 50.00 50.00 66.67 100.00 100.00 100.00
2 33.33 22.22 33.33 22.22 22.22 22.22 33.33 33.33 33.33 33.33 33.33 33.33 100.00 44.44 77.78
3 30.00 30.00 30.00 25.00 15.00 20.00 20.00 20.00 20.00 25.00 15.00 35.00 100.00 60.00 70.00
4 62.50 50.00 25.00 25.00 37.50 25.00 50.00 62.50 37.50 37.50 37.50 37.50 87.50 100.00 100.00
5 77.78 77.78 44.44 44.44 55.56 44.44 55.56 77.78 55.56 55.56 55.56 55.56 100.00 88.89 77.78
6 33.33 11.11 22.22 0.00 11.11 0.00 44.44 22.22 22.22 11.11 100.00 66.67 88.89 77.78 11.11
7 43.18 31.82 34.09 38.64 31.82 34.09 34.09 40.91 40.91 43.18 20.45 22.73 95.45 79.55 90.91
8 16.67 25.00 8.33 33.33 25.00 16.67 16.67 16.67 16.67 16.67 16.67 16.67 100.00 91.67 58.33
9 53.85 15.38 30.77 38.46 23.08 46.15 61.54 61.54 76.92 38.46 23.08 69.23 84.62 92.31 84.62
10 33.33 33.33 16.67 33.33 16.67 16.67 33.33 33.33 33.33 33.33 50.00 50.00 100.00 50.00 100.00
11 0.00 0.00 12.50 25.00 12.50 12.50 12.50 12.50 0.00 0.00 37.50 25.00 75.00 25.00 62.50
12 15.79 21.05 21.05 21.05 26.32 26.32 21.05 21.05 21.05 15.79 21.05 26.32 94.74 73.68 63.16
13 50.00 50.00 25.00 50.00 25.00 50.00 75.00 75.00 75.00 50.00 75.00 75.00 100.00 100.00 100.00
14 50.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 50.00 75.00 50.00 100.00 75.00 75.00
15 57.14 28.57 28.57 28.57 57.14 28.57 57.14 71.43 42.86 42.86 42.86 42.86 100.00 85.71 85.71
16 75.00 62.50 45.83 43.75 50.00 50.00 45.83 41.67 31.25 29.17 14.58 16.67 91.67 91.67 100.00
17 50.00 75.00 41.67 33.33 33.33 33.33 50.00 41.67 58.33 50.00 33.33 33.33 100.00 100.00 100.00
18 23.08 30.77 15.38 15.38 23.08 15.38 7.69 15.38 7.69 7.69 7.69 15.38 46.15 76.92 53.85
19 33.33 33.33 25.93 29.63 22.22 18.52 18.52 25.93 29.63 22.22 14.81 18.52 92.59 74.07 74.07
20 50.00 41.67 50.00 33.33 58.33 41.67 33.33 25.00 16.67 16.67 16.67 16.67 50.00 50.00 58.33
21 25.00 37.50 25.00 12.50 25.00 25.00 25.00 12.50 12.50 12.50 12.50 12.50 100.00 75.00 50.00
22 50.00 50.00 58.33 50.00 50.00 50.00 50.00 41.67 41.67 50.00 33.33 33.33 41.67 91.67 50.00
23 57.14 42.86 57.14 57.14 42.86 42.86 42.86 42.86 57.14 57.14 28.57 28.57 85.71 100.00 71.43
24 25.00 50.00 75.00 50.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 50.00 100.00 75.00
25 25.00 37.50 25.00 25.00 25.00 37.50 25.00 25.00 25.00 25.00 25.00 25.00 50.00 87.50 37.50
26 25.93 18.52 18.52 22.22 22.22 18.52 7.41 11.11 14.81 7.41 7.41 18.52 85.19 70.37 51.85
27 81.48 59.26 14.81 48.15 14.81 18.52 66.67 51.85 14.81 14.81 88.89 81.48 81.48 18.52 62.96

Overall 45.43 38.90 31.33 33.42 31.07 30.03 35.77 35.51 30.55 27.94 29.50 32.64 86.68 74.67 73.89

Table II
DISTANCE METRICS COMBINATIONS

Amino acid sequence features 3D structure based
Combination (C) (S) (H) (V) (P) (Z) (λ1) (λ4) (λ14) (λ30) (SW1) (SW2) (CE) (GIT) (CMSM)

DM-1 � � � � � � � � � � � �

DM-2 � � � � � � � � � � � � �

DM-3 � � � � � � � � � � � � � �

DM-4 � � � � � � � � � � � � � �

DM-5 � � � � � � � � � � � � � � �

DM-6 � �

significantly to 91.91%. In DM-3, the distance measure
based on GIT was added in the combination. The overall
accuracy of DM-3 was better than the single distance mea-
sure, although it is not better than that of DM-2. In DM-
4, the GIT distance matrix was replaced with the CMSM
distance matrix, and we see that this combination could
boost the accuracy to 92.43%. In DM-5 we combined all the
distance metrics. The overall accuracy of this combination
was 92.17%. Finally, we tried the combination of only the
CE and CMSM distance matrices (DM-6). As can be seen
by comparing the overall results for DM-4 and DM-6 in
Table III, omitting the features extracted from the amino acid
sequences made the performance is slightly worse. These
experimental results suggest that the extracted features from
protein sequences contain distinctive information for protein
fold classification.
D. Discussions

In this part, we discuss the problem when using naive
approaches for combining the multiple distance metrics.

Table IV
EXPERIMENTAL RESULTS USING SIMPLE METHODS (%)

Method DM-1 DM-2 DM-3 DM-4 DM-5 DM-6
Averaging 46.21 61.10 61.10 68.67 68.41 90.86

Voting 48.56 54.83 62.66 62.40 71.54 NA

Table IV shows the recognition rates for two simple ap-
proaches for combining the multiple distance metrics. In the
averaging method, the average of all the distances was used.
Comparing the results in Table IV (DM-2, DM-3, DM-4,
and DM-5) with those in Table III shows that the accuracy
is significantly lowered if there are only few good measures
available. The averaging method only performed better than
a single distance measurement when only the CE and
CMSM measures were used (DM-6). In the voting approach,
the input protein is categorized to the fold category that
has the most votes among the distance metrics. The voting
approach has similar problems to the averaging method,
although it can perform better than averaging when there are
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Table V
OPTIMAL WEIGHT COEFFICIENT IN w

∗ (%)

Amino acid sequence 3D structure based
Combination (C) (S) (CE) (GIT) (CMSM)

DM-4 0.45 18.32 62.55 0 18.68
DM-5 3.27 18.46 56.98 1.86 19.43

more measurements available for the voting. On the other
hand, the voting approach is impossible if there are only two
measurements available, such as in DM-6.

Unlike the naive approaches, distance metric learning
using LMNN can produce a high recognition rate, although
not all the distance measures perform well. However, the
results of the proposed method also show that combining
more distance measures did not always improve perfor-
mance. For example, the result of combining all the 15
types of measurements (DM-5) was slightly worse than
just combining 14 measurements (DM-4). To understand the
contribution of each distance measure in the classification,
the coefficients in w∗ from DM-4 and DM-5 are shown in
Table V (Coefficients that are zero for both DM-4 and DM-5
are not shown). We can see that the optimal coefficients are
quite similar with the highest contribution coming from the
distance matrix of the geometrical alignment (CE), followed
by the appearance of the protein structure visualization
(CMSM) and two features extracted from the protein se-
quences ((C) and (S)).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new approach for protein
fold classification that combines multiple distance measures
using an algorithm based on large margin nearest neighbor
(LMNN). We adapted the formulation of LMNN, which was
originally proposed for Mahalanobis distance learning, for
multiple distance metric learning, and solved the convex
optimization problem using the subgradient method. The
experimental results demonstrate the effectiveness of the
proposed method: the accuracy was improved significantly
by combining several multiple distance measures. However,
a linear combination of the multiple distance measures may
not be the best solution. So in the future, we will try to
develop a non-linear version of the proposed method.
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