
One-shot Algebraic Effects as Coroutines?1

Satoru Kawahara1,2?? and Yukiyoshi Kameyama1,3
2

1 Department of Computer Science, University of Tsukuba, Japan3

2 sat@logic.cs.tsukuba.ac.jp4

3 kameyama@acm.org5

Abstract. [Kwhr: fix 32] This paper presents a translation from algebraic6

effects and handlers to asymmetric coroutines, which provides simple,7

portable and widely applicable implementation of algebraic effects. Al-8

gebraic effects and handlers are an emerging new feature to model ef-9

fectful computations and attract attention not only from researchers but10

also from programmers. They are implemented in various ways as part11

of compilers, interpreters, or as libraries. We present a direct embedding12

of one-shot algebraic effects and handlers in a language which has asym-13

metric coroutines. The key observation is that, by restricting the use of14

continuations to be one-shot, we obtain a simple and sufficiently general15

implementation via coroutines, which are available in many modern pro-16

gramming languages. Our translation is a macro-expressible translation,17

and we have implemented it embedding as a library in Lua and Ruby,18

which allows one to write effectful programs in a modular way using19

algebraic effects and handlers.20

Keywords: Algebraic Effects and Handlers · Coroutines · Continuations21

· Control Operators · Macro Expressibility22

1 Introduction23

Algebraic effects [21] and handlers [22] (AEH for short) are an emerging new fea-24

ture to model effectful computations in a modular way. They are gaining more25

and more attention not only from researchers but also from practitioners. [Kwhr:26

fix 1] There are a few dedicated programming languages such as Eff [1], Multicore27

OCaml [7] and Koka [17] which have AEH as language primitives, and several28

main-stream programming languages such as Haskell, OCaml, Scala, JVM byte-29

code and C have library implementations for AEH. However, AEH is not yet30

available in many other main-stream programming languages, which is a big ob-31

stacle to utilize theoretical results on AEH in real-world software. We, therefore,32

think that it is an important and timely issue to develop a systematic imple-33

mentation method for AEH which is available in many existing programming34

languages.35

? Research Paper
?? Student

mailto:sat@logic.cs.tsukuba.ac.jp
mailto:kameyama@acm.org

2 Satoru Kawahara and Yukiyoshi Kameyama

AEH have been so far implemented in several ways such as the one based1

on stack manipulation, delimited-control operators [6], or free monad. Unfortu-2

nately, none of them are fully satisfactory; [Kwhr: fix 5 and 34] The implementation3

method based on stack manipulation is used for JVM bytecode and C [4,18],4

however, [Kwhr: fix 6 and 7] an implementer needs deep insight on its internal5

structure. It then follows that the implementation cost is rather high, which6

prevents the feature from being implemented in various language systems. [Kwhr:7

fix 5 and 34] The implementation method via delimited-control operators is used8

for OCaml and Scala [3,16]. It is a systematic way to implement AEH, since9

it needs no knowledge on low-level features, however, only few languages have10

delimited-control operators as built-in primitives. The implementation method11

based on free monads is yet another systematic way, and used in Haskell and12

Scala [14,15]. While elegant, its major demerits are that it enforces a programmer13

to use monadic-style, and that it is often inefficient.14

This paper presents a new systematic method of implementing algebraic ef-15

fects and handlers which is general, available in many languages, and simple and16

portable, compared to the existing implementations. The key of our method is17

to use coroutines to embed them in programming languages. Today we see a18

number of programming languages which have coroutines as a built-in feature,19

which makes it possible to apply our implementation method in various lan-20

guages with no or little cost. While coroutines are less expressive than general21

delimited-control operators, [Kwhr: fix 2] they are as expressive as one-shot de-22

limited control-operators, a restricted control operator that is allowed to invoke23

a delimited continuation at most once [20]. One-shot delimited-control oper-24

ators are known to be implemented more efficiently than general, multi-shot25

ones, [Kwhr: fix 31] thanks to the fact that no copying of continuations is neces-26

sary [5]. [Kwhr: fix I rewrote the following paragraph completely.] Hence, we face the trade-27

off between expressiveness and efficiency. This paper studies the one-shot variant28

which gives less expressive, but more performant primitives for AEH. In fact,29

various control effects are expressible with the one-shot variant.30

We translate one-shot AEH to asymmetric coroutines. The salient feature31

of our translation is that it is a macro-expressible translation in the sense of32

Felleisen. Thanks to this property, we can implement AEH as a simple library,33

and we have created AEH libraries for Lua 4 and Ruby5, which have been pub-34

lished via github. Our libraries have been used by several users, and interested35

users have ported our libraries to other languages67.36

Our main contributions in this paper are the following.37

– [Kwhr: fix 12] We show an embedding of one-shot algebraic effects and handlers.38

We use standard asymmetric coroutines only, and no special control features39

4 https://github.com/nymphium/eff.lua
5 https://github.com/nymphium/ruff
6 https://github.com/MakeNowJust/eff.js
7 https://github.com/pandaman64/effective-rust [Kwhr: fix 25] Since Rust does not

have coroutines, Future is used instead.

https://github.com/nymphium/eff.lua
https://github.com/nymphium/ruff
https://github.com/MakeNowJust/eff.js
https://github.com/pandaman64/effective-rust

One-shot Algebraic Effects as Coroutines 3

are needed. Hence our embedding is applicable to various languages as long1

as they have asymmetric coroutines.2

– [Kwhr: fix 13] Comparing to the embedding based on free monads, our method3

does not force programmers to use monadic style, and our embedding is more4

performant in many cases than the one based on free monads.5

– Our embedding is defined as local and compositional translation from alge-6

braic effects and handlers. Thanks to this property, we can implement the7

embedding as a library, and in fact we have done it for Lua and Ruby, which8

is available on GitHub. [Kwhr: fix 33] Algebraic effects and handlers is a com-9

plex system, and the implementation can be therefore error-prone. So our10

formalized implementation is desirable.11

This paper is organized as follows. Section 2 shows typical examples using12

AEH and demonstrates our algebraic-effect library for Lua. Section 3 describes13

the embedding method by defining the [Kwhr: fix 39] translation from λeff , a lan-14

guage with algebraic effect handlers, to λac , a language with asymmetric corou-15

tines. We also show that our translation is macro expressible in the sense of16

Felleisen. Section 4 discusses the extension of our model definitions for imple-17

menting our libraries in Lua and Ruby, and problems in actual use. Section 518

shows the performance evaluation of our embedding by comparing ours with the19

embedding based on free monads. Section 6 describes related work, and Section 720

concludes.21

2 Examples of one-shot algebraic effects22

This section illustrates programming with AEH by examples. To express them,23

we use the programming language Lua extended with our library, which is im-24

plemented using our embedding explained in the subsequent sections.25

2.1 Exception26

In our view, AEH is a generalization of exceptions, which is justified by the27

following examples.28

The function inst provided by our library creates, when called with zero29

argument, a new label for an algebraic effect, and returns it.30

1 local DivideByZero = inst()

We can invoke the labeled effect by calling the function perform in our library.31

1 local div = function(x, y)

2 if y == 0 then

3 return perform(DivideByZero, nil)

4 else

5 return x / y

6 end

7 end

4 Satoru Kawahara and Yukiyoshi Kameyama

This code snippet is Lua’s definition for the function div, which takes two ar-1

gument x and y. It returns the result of dividing x by y unless y is 0. If y is 0, it2

performs the effect labeled by [Kwhr: fix 30] DivideByZero, which means that an3

effect is raised and the control of the program is brought to the nearest effect4

handler (which is not shown in the above code) similarly to exception handling.5

Our library provides the function handler to create a new effect handler.6

1 local with_nil = handler {

2 val = function(_) return nil end,

3 [DivideByZero] = function(_, _)

4 return nil

5 end

6 }

The function handler receives a table, Lua’s data structure for an associative7

array8, as its sole argument in which e1 = e2 represents the key-value pair [8

"e1"] = e2. The first key-value pair (Line 2) has the key val, and defines a9

value handler which is used when no effect happens, and the second key-value10

pair (Lines 3 and 4) defines how the effect DivideByZero is processed. The11

value part of the key-value pair is a function in both cases. While the value12

handler receives one argument (which corresponds to the result of the handled13

expression), the effect handler receives two arguments, the first of which is the14

argument of the effect invocation and the second is a delimited continuation15

when the effect has been invoked (up to the handler invocation).16

In the above snippet, the arguments are ignored, and the whole computation17

returns nil in both cases, representing simple exception capturing. By evaluating18

with_nil(function() return div(3, 0) end), we get nil as the result.19

We can turn the above simple exception to a resumable exception by changing20

the effect handler as follows.21

1 local with_default_zero = handler {

2 val = function(v) return v end,

3 [DivideByZero] = function(_, k)

4 return k(0)

5 end

6 }

Here we changed the second case of the handler (Lines 3 and 4) so that a pa-22

rameter k is bound to the second argument (delimited continuation), which is23

invoked with the argument 0, and its value becomes the final result.24

We can test the handler with_default_zero as follows.

1 with_default_zero(function()

2 local v = div(3, 0)

3 return v + 20

8 https://www.lua.org/manual/5.3/manual.html#3.4.9

https://www.lua.org/manual/5.3/manual.html#3.4.9

One-shot Algebraic Effects as Coroutines 5

4 end)

When we execute Line 2 of this code, the effect DivideByZero is performed1

(raised) as before. Then the handler with_default_zero catches it, and captures2

the delimited continuation local v = �; return v + 20, which is bound to3

the variable k. (Strictly speaking, the delimited continuation should be sur-4

rounded by the handler [Kwhr: fix 30] with_default_zero, but we omit it here5

since there is no effect in the continuation and its value handler is the identity6

function.) Then we execute k(0), which is equivalent to local v = 0; return7

v + 20. The net effect is the same as the case when div(3,0) returns 0, and8

the entire computation results in 0 + 20 = 20.9

2.2 State10

AEH can express not only exceptions, but also many other effects. Here, we show11

how state can be expressed in terms of these operations using the state-passing12

technique.13

We first create two effect labels.14

1 local Get = inst()

2 local Put = inst()

We then define the function run to execute stateful computations.15

1 local run = function(init, task)

2 local step = handler {

3 val = function(_) return function() end end,

4 [Get] = function(_, k)

5 return function(s)

6 return k(s)(s)

7 end

8 end,

9 [Put] = function(s, k)

10 return function(_)

11 return k()(s)

12 end

13 end

14 }

15

16 return step(task)(init)

17 end

The function takes two arguments init for the initial state (such as a single value16

or a tuple of several values) and a thunk task for the stateful computation. It17

first defines the handler step, which manipulates the normal-return case and18

the two effects labeled by Get and Put. Following the state-passing scheme,19

the value handler returns a function which ignores its argument (for state). In20

6 Satoru Kawahara and Yukiyoshi Kameyama

the stateful computation, [Kwhr: fix 43] when the effect Get is invoked, then the1

handler returns the function that retrieves the current state s. and supplies it to2

the current continuation (k(s) in line 6) with the same state s. When the effect3

Put with an parameter s is invoked, the handler returns a thunk in which a4

meaningless value () is passed to the continuation, but a new state s is installed5

(line 11). After defining the handler, the function run executes the computation6

task with the initial state init (line 16).7

Note that it is important that the captured continuation is surrounded by8

the same handler step. In fact, the algebraic effects and handler are similar to9

the control operators shift0 and reset0 [19]; when an effect is invoked by shift010

and captured by reset0, the captured delimited continuation is surrounded by11

the delimiter reset0.12

2.3 Expressing other Computational Effects13

We can express other advanced control effects using one-shot algebraic effects14

and handlers. Examples include generators and iterators, let-insertion in partial15

evaluation, and Go language’s defer9, Due to lack of space, we cannot show16

these examples in this paper. See the github repository of our library. We have17

already implemented async/await, shift/reset, fetching current time (a sort of18

dependency injection) and measuring execution time, by our library.19

3 Embedding Algebraic Effects with Coroutines20

This section explains our translation from one-shot algebraic effects and handlers21

to asymmetric coroutines. For this purpose, we define λeff , a language which has22

one-shot AEH, and λac , a language which has asymmetric coroutines. We then23

translate λeff to λac , and show that it is a macro-expressible translation.24

3.1 λeff25

λeff is an untyped language with one-shot AEH based on Effy [23]. For simplicity,26

we omit dynamic creation of effect lablels.27

Figure 1 defines the syntax of λeff . The set Effects is a finite set of ef-28

fect lables, and we use eff as meta variables for it. The syntactic categories29

v, e, and h, resp. represent values, expressions and handler expressions, resp.30

The expression perform eff v invokes the effect eff with the argument v, and31

with v handle e evaluates e under the handler specified by the value v. A usual32

let binding is written as let x = c1 in c2.33

The handler expression handler eff (val x→ e1) ((y, k)→ e2) creates a han-34

dler which catches the effect eff and returns the value of e2 where y is bound to35

the argument of the effect-performing operation, and k is bound to the delimited36

continuation when the effect is invoked. The expression val x→ e1 gives a value37

9 https://golang.org/ref/spec#Defer statements

https://golang.org/ref/spec#Defer_statements

One-shot Algebraic Effects as Coroutines 7

x ∈ Variables
eff ∈ Effects
v ::= x | h | λx. e
e ::= v | v v | let x = e in e
| perform eff v | with v handle e

h ::= handler eff (val x→ e) ((x, x)→ e)

w ::= clos (λx.e, E) | closh (h,E)
F ::= (� e, E) | w �

| (let x = � in e, E)

| (with w handle �)eff

| (with � handle e, E)
C ::= e | w
E ::= [] | (x = w) :: E
K ::= [] | F :: K

Fig. 1: Syntax and runtime representation of λeff

handler, namely, a handler which is used when the body of a handler returns1

normally (does not invoke an effect). For simplicity, λeff can handle only one2

effect per handler, whereas handlers in Effy can cope with multiple effects. But3

the latter can be simulated by our single-effect handlers, and our library actually4

provides the multi-effect variant; see Section 4.5

The syntactic category w and the subsequent lines are used to define the6

semantics of λeff . The class w represents runtime values for function closures7

(clos (λx.e, E)) and handlers (closh (h,E)) where E is a runtime enviroment,8

and [Kwhr: fix 47] F represents a frame, or a singular context, which means a9

’one-step’ fragment of a continuation. A (delimited) continuation K is a list of10

frames.11

[Kwhr: fix 45] The call-by-value operational semantics of λeff is defined in the12

CEK-machine style [9]. We give it in Section A of the appendix of this paper,13

and here we informally explain the effect primitives only. The handler expression14

handler eff (val x→ ev) ((x, k)→ eef) creates a handler which consists of a15

value handler and an effect handler, and associates the effect label eff to it. The16

expression with h handle e (which is called a handling expression) evaluates the17

expression e under the handler h. The expression perform eff v invokes the effect18

eff with an argument v. Note that handling expressions may be nested, and an19

effect invocation is caught (handled) by the nearest (innermost) handler which20

can handle the effect. When the handled expression is evaluated to a value, the21

value handler is used.22

8 Satoru Kawahara and Yukiyoshi Kameyama

3.2 λac1

De Moura and Ierusalimschy’s seminal work [20] classified various forms of corou-2

tines found in programming languages, and formalized calculi for symmetric3

coroutines and asymmetric coroutines. The former represents classic coroutines4

which can call (resume) other coroutines, but coroutines cannot return to their5

callers. The latter represents modern coroutines where the caller-caller relation6

exists, hence, coroutines may return to their callers.7

The language λac is based on asymmetric coroutines10. For the purpose of8

translation and practical programming, we have added to this language several9

constructs such as data constructors, let with recursion, pattern matching, and10

comparison operators.11

Figure 2 defines the syntax of λac . The syntactic categories K and l, resp.,12

represent data constructors and labels for coroutines, resp. The set eff corre-13

sponds to the set of effect labels in λeff , and we assume that its elements are14

constants in λac Values v are either constants, an expression formed by applying15

a data constructor to values K −→v ?, labels, variables, or lambda expressions. Ex-16

pressions e are those in lambda calculus extended with conditional expressions,17

pattern matching and mutual recursion, plus those for asymmetric coroutines:18

l : e for a labeled expression which represents the “return point” of resuming a19

coroutine, create e for creating a coroutine and returning its label, resume e1 e220

for resuming (calling) a coroutine, and yield e for yielding a value and returning21

to the caller of the current coroutine.22

f −→x is an abbreviation of f x0 x1 · · · · · · xn and
−−−−−−−−−→
and g −→y = e is of and g0

−→y =23

e0 and g1
−→y = e1 and · · · · · · and gm −→y = em. A similar abbreviation is applied24

to constructors and pattern matching.25

The expression match e with cases is for pattern matching. We add restricted26

guards to pattern matching so that cases may contain a form K −→x when x =27

x→ e. This restricted form is sufficient for our purpose.28

The call-by-value operational semantics of λac is defined in the same way29

as de Moura and Ierusalimschy and given in Section B of Appendix. Here we30

briefly explain the semantics of the primitives for coroutine; create e creates a31

unique label and a coroutine with its body being the value of e, and returns the32

label. The expression resume l v resumes the coroutine labeled with l against33

the argument v. It is an error if a coroutine whose label is l does not exist, or34

has already been called. A resumed coroutine must return to the caller, so we35

create an expression l : e3 where ee is the body of the resumed coroutine. When36

an expression yield v is called in the evaluation of a coroutine, the coroutine is37

suspended and stored for future use, and v is returned to the caller of the current38

coroutine. It is an error if there is no caller of the current coroutine when yield39

is invoked.40

10 More strictly speaking, our calculus is the one for stackful asymmetric coroutines
according to de Moura and Ierusalimschy’s classification.

One-shot Algebraic Effects as Coroutines 9

x ∈ Variables
K ∈ {Eff ,Resend ,True,False}
l ∈ Labels

eff ∈ Effects
v ::= nil | eff | K −→v ? | l | x | λx.e
e ::= v | K −→e ? | l : e | e e | let x = e in e
| match e with cases
| create e | resume e e | yield e

letrec ::= let rec x −→x = e
[−−−−−−−−−→
and x −→x = e?

]
in e

cases ::=
−−−−−−−−−−→
pat [cond]→ e;

cond ::= when x = x

pat ::= K
−→
pat? | x

C ::= � | C e | v C | let x = C in e | let x = v in C
| match C with cases | let rec f −→x = e in C
| C = e | eff = C

| let rec f −→x = e
−−−−−−−−−→
and f −→x = e? in C

| create C | resume C e | resume l C | yield C | l : C

Fig. 2: the syntax of λac

3.3 Translation from λeff to λac1

We present a program translation from λeff to λac , which is syntax-directed and2

[Kwhr: fix 30] compositional. The whole translation is defined in Figure 3 where a3

λeff -term e is translated to a λac-term VeW.4

The translation is homomorphic for a variable, a λ-abstraction, an applica-5

tion, and the let expression. An effect label eff is translated to a constant with6

the same name.7

We translate perform to yield based on the following observation. In the8

calculus for AEH, when an effect is invoked, the control is transferred to a handler9

corresponding to the effect, while in the calculus for coroutines, when a yield is10

called, the control is transferred to its parent coroutine. Hence we can emulate11

the behaviour of perform by yield. The translation wraps the arguments of12

perform with the tag Eff and translates them. [Kwhr: fix 50] This tag is used to13

determine whether the effect has been yielded from the handled expression itself,14

or the effect has been resent (forwarded) by the handler. The handling expression15

with h handle e is translated to a simple application as the handler is mapped16

to a function.17

The translation for a handler (the last case in Figure 3) is highly non trivial,18

and we shall explain it using an example.19

Consider the program M in λeff with the effects C1, C2, and C3 (Figure 4).20

Here we assume that our calculus is extended to have natural numbers arith-21

10 Satoru Kawahara and Yukiyoshi Kameyama

metic operations. Then M is translated to the program in Figure 5 where some1

variables and let-bindings are renamed or inlined for readability.2

VxW = x

Vλx.eW = λx.VeW
Vv1 v2W = (Vv1W) (Vv2W)

Vlet x = e in e′W = let x = VeW in Ve′W
Veff W = eff

Vperform eff vW = yield (Eff (Veff W) (VvW))

Vwith h handle eW = VhW (λ .VeW)

Vhandler eff (val x→ ev) ((x, k)→ eeff)W =

let eff = Veff W in

let vh = λx.VevW in

let effh = λx k.Veeff W in

handler eff vh effh

where handler =

let rec handler eff vh effh th =

let co = create th in

let rec continue arg = handle (resume co arg)

and rehandle k arg = handler eff continue effh (λ .k arg)

and handle r =

match r with

| Eff eff ′ v when eff ′ = eff → effh v continue
| Eff → yield (Resend r continue)
| Resend (Eff eff ′ v) k when eff ′ = eff → effh v (rehandle k)
| Resend effv k → yield (Resend effv (rehandle k))
| → vh r

in continue nil

in handler

Fig. 3: Translation from λeff to λac

The term after translation contains the function handler defined in Fig-3

ure 3, which works as follows: handler makes a thunk from (λ . · · · · · ·), defines4

three functions continue, rehandle and handle, and then evaluates continue nil.5

continue passes arg to co, resume-s it, and passes the return value to handle.6

One-shot Algebraic Effects as Coroutines 11

M = let h1 = handler C1

(val v → v) ((x, k)→ kx) in

let h2 = handler C2

(val v → v) ((x, k)→ kx) in

let h3 = handler C3

(val v → v) ((x, k)→ kx) in

with h3 handle

with h2 handle

with h1 handle

let a = perform (C1 10) in

let b = perform (C1 13) in

let c = perform (C3 17) in

a+ b+ c

Fig. 4: Example program in λeff

VMW = let h1 = let vh1 = λv. v in

let effh1 = λx. λk. k v in

handler C1 vh1 effh1 in

let h2 = let vh2 = λv. v in

let effh2 = λx. λk. k v in

handler C2 vh2 effh2 in

let h3 = let vh3 = λv. v in

let effh3 = λx. λk. k v in

handler C3 vh3 effh3 in

h3 (λ . h2 (λ . h1 (λ .

let a = yield (Eff C1 10) in

let a = yield (Eff C1 13) in

let a = yield (Eff C3 17) in

a+ b+ c)))

Fig. 5: Example after translation

handle splits the process from the return value of resume according to the equiv-1

alence of tags and effect labels.2

When continue is evaluated by passing nil , Eff C1 10 is yield-ed first in the3

handled expression and caught by the innermost handler h1. In this case, since it4

has an Eff tag and h1 can handle C1, the first pattern of handle matches it. effh5

is applied to the effect’s argument 10 and a continuation. By passing continue6

as the continuation, the computation of a handled expression can be resumed,7

which is suspended at the yielded position. And since continue passes the return8

value of resume to handle, the effect can be handled by the same handler again.9

So a is bound to 10. When Eff C1 13 is yielded in the continuation resumed by10

the handler, it is processed by h1 again in the same way, and b is bound to 13.11

When the effect C3 is invoked, h1 catches the effect first. h1 can’t handle C3,12

so the second pattern of handle matches. The effect is sent to a handler one step13

outside, and the effect is processed by that handler. As with invoking an effect,14

an effect is re-sent to an outside handler by using a yield. At this time, the tag15

Resend wraps the effect and a continuation to indicate resending. Then, as in16

the first pattern, pass continue as a continuation.17

The resent C3 is captured at h2. Since it has Resend tag and h2 can’t handle18

C3, the fourth pattern of handle matches. As in the second pattern, it uses yield19

to re-send the effect to an outside handler. At this time, rehandle k is wrapped by20

Resend tag as a continuation. rehandle is a function that creates a handler that21

handles the thunk of the application of two given arguments. By setting continue22

12 Satoru Kawahara and Yukiyoshi Kameyama

to the value handler, the computation of the current handling expression can1

be resumed when the computation of the rehandle passed as a continuation is2

finished. rehandle has another role which adjusts the layers of the coroutines.3

In the second clause of handle, handle calls yield , so control is exited from one4

coroutine. In the third and fourth clauses, we could write λarg .handle (karg)5

instead of rehandle k, if only to manipulate the return value of the continuation.6

In this case, the layers of the coroutines would decrease, and eventually, we would7

get an error calling yield outside of coroutine. Therefore rehandle encapsulates8

the expression with coroutine internally and avoid to decreasing the layer of9

coroutines.10

The effect resent again is captured by h3. It has Resend tag and h3 can11

handle C3, so the third pattern of handle matches. Same to the fourth pattern,12

rehandle k is passed to effh as a continuation. Then it returns 17 to the handled13

expression, and c is bound to 17.14

The handled expression results in 40. Then h1 receives it, and the fifth wild-15

card pattern of handle matches the untagged value, and the value is passed to16

the value handler. Same to the h1, h2 and h3 receive the value and pass to the17

value handler. Finally the entire expression returns 40.18

Although our translation looks complicated, we emphasize that our trans-19

lation is compositional and local, syntax-directed, and does not rely on higher-20

order stores or other fancy features, but need only basic functionality of asym-21

metric coroutines. With this simplicity, several programmers have already ported22

our translation to other languages than Ruby and Lua.23

3.4 Macro-expressible Translation24

We claim that the translation from λeff to λac in the previous section is simple25

and efficient. To support the former claim, this subsection shows that it is a26

macro-expressible translation in the sense of Felleisen. The latter claim will be27

discusses in the subsequent section.28

Felleisen studied the notion of macro expressivity, which is a more fine-29

grained notion than most others to measure the expressive power of language30

primitives [8]. For instance, call/cc (call-with-current-continuation) can be trans-31

lated away by a CPS translation to a pure lambda calculus, yet, it is not macro-32

expressible in pure lambda calculus since the translation is global. On the other33

hand, a simple let expression let x = e1 in e2 can be locally translated by34

(λx.e2) e1, therefore, it is macro-expressible in the pure lambda calculus.35

While Felleisen defined the notion for the setting where a language L1 is a36

proper extension of another language L2, we want to compare the expressive37

power of two languages L1 and L2 where L1 and L2 are extensions of a common38

language L0. To deal with this setting, we use Forster et al.’s definition for the39

macro-expressible translation [10], and we give its slightly simplified version here.40

Definition 1 (Macro-expressible translation). Let L0 be a language, and41

L1 and L2, resp., be the language L0 augmented with a set of primitives X1, · · · , Xn42

One-shot Algebraic Effects as Coroutines 13

and Y1, · · · , Ym, resp. A translation φ from L1 to L2 is macro-expressible trans-1

lation if and only if all of the following conditions hold.2

– φ is homomorphic for the primitives in L0. For instance, if a binary infix3

operator ⊕ is in L0, then φ (e1 ⊕ e2) is φ (e1)⊕ φ (e2).4

– φ maps each Xi of arity n to a syntactic expression Mi in L2 which has n5

free variables x1, · · · , xn such that the following holds:6

φ (Xi(e1, · · · , en)) = Mi [φ (e1) /x1, · · · , φ (en) /xn]

The expression in the right-hand side represents simultaneous substitution7

for the variables x1, · · · , xn in Mi.8

To state the above definition we have made two simplifications. First, the9

equality in this definition should be, in general, semantic equality where we10

assume that each language is equipped with a certain semantics, but in this11

paper, we can regard it as syntactic equality. Second, we do not consider the12

case when Xi works as a binder such as the let expression11, but we do not13

need to consider such cases.14

It is easy to show that our translation in the previous subsection conforms15

the conditions for a macro-expressible translation.16

Theorem 1. Our translation in Figure 3 is a macro-expressible translation.17

Proof sketch. It is easy to check that our translation V·W is homomorphic for the18

variable, lambda abstraction, application, let, the effect expression.19

For the primitives of algebraic effects and handlers, we need to check each20

case. For the primitive perform, let M be yield (Eff x1 x2), then we have21

Vperform e1 e2W = M [Ve1W/x1, Ve2W/x2], and we are done. Other cases are22

similar. (end of proof sketch)23

As we wrote above, a macro-expressible translation is rather discriminating,24

or sensitive to small differences between language primitives. Only local transla-25

tions are macro-expressible translation. Since global translations such as a CPS26

translation and a state-passing translation do not qualify as macro-expressible27

one, state and first-class continuations are not macro-expressible in pure lambda28

calculus.29

Put differently, if we have a macro-expressible translation for a primitive X in30

a language L0, then we can implement X using the translation without changing31

any other primitives in L0 This is a simple, but rather important property for32

our work, as it is a necessary condition to implement X as a simple library in33

L0, unless we have an access to language’s run-time, or reification is allowed.34

4 Implementation35

We have implemented AEH in Lua and Ruby based on the translation in Sec-36

tion 3. Since the translation is macro-expressible, we can realize our implemen-37

tation as a simple library. [Kwhr: fix 31] Our implementations are compact. The38

11 Felleisen considers the case where each argument may be bound by the construct.

14 Satoru Kawahara and Yukiyoshi Kameyama

Lua library is implemented in 160 lines and the core of the Ruby library is in1

340 lines, even including comments for documentation generation. All our code2

is available via Github.3

Several issues have arisen in the process of implementation we will address4

below.5

Multiple Effect Handlers Our calculus λeff has the restriction that a handler6

can catch only one effect. However, this restriction is only for the presentation7

purpose, and in our actual implementation, one handler may catch multiple8

effects, All examples including the examples in this paper that use multiple9

effects per handler run without problems using our library. We also note that10

there is no critical performance downgrade of having multiple effects per handler.11

Dynamic Effect Creation In the language λeff , we have no way to create new12

effect labels dynamically. Again this is due to simplicity, and we have eliminated13

this restriction in our implementation. The merit of allowing dynamic creation of14

effect instances is that a certain kind of effectful programs needs the uniqueness15

of effect instances, for instance, higher-order effects[16].16

Conflict with Other Effects An assumption on our translation is that all effects17

are written via AEH. If our source program uses other effects besides AEH, it18

will cause a serious problem, since other effects may interfere with the internally19

used coroutines. For instance, if we use our library in Lua, and simultaneously20

use Lua’s native coroutine directly, yielding a value in the source program may21

be accidentally caught by an internal coroutine. As consequence we must not22

use native coroutines with (our implementation of) AEH.23

[Kwhr: fix 22 and 23] This problem can be solved as follows, thanks to the ex-24

pressivity of AEH. See the following code.25

1 local Yield = inst()

2

3 local yield = function(v)

4 return perform(Yield, v)

5 end

6

7 local create = function(f)

8 return { it = f, handled = false }

9 end

10

11 local resume = function(co, v)

12 if co.handled then

13 return co.it(v)

14 else

15 co.handled = true

16 return handler({

17 val = function(x) return x end,

One-shot Algebraic Effects as Coroutines 15

18 [Yield] = function(u, k)

19 co.it = k

20 return u

21 end

22 })(function() return co.it(v) end)

23 end

24 end

The code above is an implementation of asymmetric coroutines by algebraic1

effects and handlers in Lua. The function yield should throw a value to resume2

, so yield should be an effect invocation and resume should be a handler. This3

correspondence is the inverse of the translation in Figure 3. So we define Yield4

effect (line 1) and yield function (line 3) as a wrapper for the invocation of5

the effect. The function create (line 7) creates a reference cell by a table. We6

represent a coroutine as a reference cell, which is initialized to the function f and7

the flag handled explained later. The handler resume (line 11) catches Yield8

effect with an argument and a continuation. This continuation is the rest of9

computation of the coroutine, so the handler stores the continuation to the cell10

and returns the value u (line 19 and 20). Since we provide a deep handler, it is11

not necessary to set the handler multiple times. The tag handled is to assert12

if the function is handled by the handler or not (line 12). The function resume13

checks the flag; if the flag is off, resume turns on the flag and runs the function14

with the handler. Otherwise, resume runs the function only.15

Although we believe that the above technique may be used in other compu-16

tation effects, it is left for future work to combine them with algebraic effect and17

handlers without big downgrade of performance.18

5 Evaluation19

We have conducted experiments on microbenchmark using our library in Lua,20

and implementation in Lua based on free monads [23], and compare their per-21

formance. All the code for the benchmark is publicly available in the GitHub22

repository12. In the following figures, the symbol N represents the result of our23

library, and � does of the free-monad based implementation. One of the bench-24

marks compares to native coroutines of Lua and indicates the result as the25

symbol ? in a graph. The experiments have been conducted on the environment26

in Table 1.27

Figure 6 is the result of the benchmark for emulating a state monad. The28

benchmark uses the function count, cited from [14], adjusted for our library and29

free monad, and recursively runs a simple computation consisting of one-layer30

one-effect handlers for the number of times as the input parameter. The result31

shows that our library is approx. 10 times faster than the free-monad based32

implementation for this simple case. The reason why free monads are rather33

slow is that the bind operator requires a continuation as the next action, but34

12 https://github.com/nymphium/effs-benchmark

https://github.com/nymphium/effs-benchmark

16 Satoru Kawahara and Yukiyoshi Kameyama

Table 1: Environment for Benchmark
OS Arch Linux

CPU Intel Core i7-8565U

Main memory 16GB DDR4

Lua processor LuaJIT 2.05

2 3 4 5
·105

0.5

1

1.5

2

param

time(sec)

param (105×) 1 2 3 4 5

free 0.3560 0.7199 1.1741 1.5449 2.0303

ours 0.0273 0.0521 0.0939 0.1811 0.2090

Fig. 6: Result of onestate benchmark

the cost for creating function closures is rather high for imperative languages1

such as Lua. Also, functional languages such as Haskell may offer optimization2

for free monads, while the benchmark uses naive implementation. Nevertheless,3

the results are encouraging for our embedding.4

In the next experiments in Figure 7, the benchmark program iterates count5

function 3,000 times in deeply nested handlers. The parameter in the table

20 30 40 50

0.2

0.4

param

time(sec)

param (10×) 1 2 3 4 5

free 0.0174 0.0303 0.0508 0.1374 0.1594

ours 0.0572 0.1722 0.3181 0.4064 0.5041

Fig. 7: Result of multistate benchmark

6

corresponds to the number of nested handlers/coroutines, hence 50 (the right-7

most column) is already a rather unrealistic situation, but we included this8

experiment as an extreme. As expected, our library runs three times slower than9

the free monad does for this case. The reason is that rehandle creates a new10

One-shot Algebraic Effects as Coroutines 17

coroutine, which is called every time an effect is caught from the other handler1

shown in Figure 3, so it degrades the performance.2

In the next experiment, the function looper performs algebraic effects in the3

iteration of the for loop, where the number of iteration is given as a parameter4

shown in the table of Figure 8. The benchmark program invokes an effect in a

2 3 4 5
·105

0.2

0.4

0.6

0.8

param

time(sec)

param (105×) 1 2 3 4 5

free 0.1650 0.3455 0.5304 0.7204 0.9319

ours 0.0215 0.0416 0.0630 0.0844 0.1064

Fig. 8: Result of looper benchmark

5

for-loop and sets a handler out of the loop to catch the effect. Our library runs6

9 times as fast as the free-monad based implementation. Note that free monads7

need the forM-operator which has large overhead. Again an advanced compiler8

may be able to eliminate all or part of this overhead.9

Figure 9 shows the result of the benchmark, which solves the same-fringe10

problem [11] by using algebraic effects and coroutines. [Kwhr: fix 54] The problem

2 3 4 5
·104

0.2

0.4

param

time(sec)

param (104×) 1 2 3 4 5

free 0.0507 0.1837 0.3522 0.4761 0.5886

ours 0.0067 0.0127 0.0186 0.0252 0.0296

coroutines 0.0042 0.0082 0.0119 0.0158 0.0190

Fig. 9: Result of same_fringe benchmark

11

is to determine whether given two trees have the same “fringe”, an enumeration12

of leaves of the tree in a certain order. The benchmark is given the number of13

leaves as a parameter. We implement coroutines to solve it, by algebraic effects14

with free monad, and our library, described in Section 4. We also implement the15

solver with native coroutines of Lua. Our library yields 18 times performance16

18 Satoru Kawahara and Yukiyoshi Kameyama

gain compared to the free-monad method. Remarkably, our library is only 1.61

times slower than native coroutines.2

In summary, our way of implementing AEH is advantageous in several pro-3

gramming languages from the performance viewpoint. We also emphasize that4

writing effectful programs using coroutines is harder than writing the same pro-5

grams using AEH, which provide high-level abstraction.6

6 Related Work and Discussion7

In this section, we discuss closely related work which has not been mentioned in8

this paper and picks up a few important issues for discussion.9

Shallow Handler We have shown the embedding with deep handlers, which can10

catch the effect invocation even during the execution of the continuation.11

In the literature, there has been a discussion on deep vs shallow handlers [12],12

and it has its own merits. We have also implemented the shallow handler with13

coroutines shown in Figure 10. The idea is simple; after a handler catches an14

effect, it always resends any effects to the outer handler. We have explained15

the role of rehandle in Figure 3 that it encapsulates the continuation with a16

coroutine to adjust the layer of coroutines, and rehandles the effect invocation17

in the continuation. In the shallow setting, it is also necessary to reset the number18

of the layer of coroutines, which might degrade the performance. On the other19

hand, rehandling is not needed because it is shallow.20

One-shot Continuations It should be noted that we are not the first to study21

the one-shot variant of control operators. Bruggeman et al. give an one-shot22

control operator call/1cc with the observation that almost continuations are run23

at most once [5]. When a compiler knows a continuation can be run at most once,24

it can generate more sophisticated code. They state that, by replacing call/cc25

using continuations at most once for call/1cc, program can be run with less26

memory consumption and higher performance. Berdine et al demonstrate that27

many control abstractions can be translated into typed CPS including one-shot28

continuations, with linear-types [2].29

[Kwhr: fix 55] James and Sabry stated that the yield operator for generator,30

which is a restricted variant of coroutines and can be found in various languages,31

is one-shot delimited continuations [13]. They also defined a generalized yield32

operator which has multi-shot continuations and show the connection between33

it and the delimited-control operators.34

Multicore OCaml is a dialect of OCaml which natively supports algebraic35

effects by runtime stack manipulation. Its motivation is to write concurrent36

programming in direct-style[7]. They provide one-shot continuations due to the37

performance problem, and if multi-shot continuations are needed, they allow38

explicit copy for continuations.39

One-shot Algebraic Effects as Coroutines 19

Vhandler† eff (val x→ ev) ((x, k)→ eeff)W =

let eff = Veff W in

let vh = λx.VevW in

let effh = λx k.Veeff W in

handler† eff vh effh

where handler† =

let rec handler eff vh effh th =

let co = create th in

let rec continue arg = handle (resume co arg)

and rehandle k arg = handler eff continue effh (λ .k arg)

and continue0 = resume co

and rehandle0 k = resume (create k)

and handle r =

match r with

| Eff eff ′ v when eff ′ = eff → effh v continue0

| Eff → yield (Resend r continue)
| Resend (Eff eff ′ v) k when eff ′ = eff → effh v (rehandle k)
| Resend effv k → yield (Resend effv (rehandle0 k))
| → vh r

in continue nil

in handler

Fig. 10: translation from shallow handlers to coroutines

Free monad We have already compared our with with free-monad based im-1

plementations of algebraic effects. On the positive side, it gives a systematic2

and elegant implementation for various effects. Its downside is it has significant3

overhead in performance. We also point out that our embedding-based imple-4

mentation does not interfere with surface languages, while free-monad based5

implementations force a programmer to use monadic style, which is good for6

some programmers, but is not for others. With our implementation, the surface7

language with algebraic effects and handlers can be presented in direct style or8

monadic style.9

7 Conclusion10

We have presented a novel embedding technique for algebraic effects and handlers11

into asymmetric coroutines, and shown translation from the former to the lat-12

20 Satoru Kawahara and Yukiyoshi Kameyama

ter as simple, direct, syntax-directed compositional translation. Compared with1

other embeddings or other ways, our technique can apply to many languages2

which have coroutines due to the simplistic nature of our embedding. We have3

demonstrated the applicability of our embedding by implementing the libraries4

in Lua and Ruby. Our technique seems to be attractive for other researchers,5

and some of them have implemented our translation for other languages such6

as JavaScript and Rust. We expect that the simplicity of our implementation is7

advantageous to be used by more people, more languages, and more applications.8

The key of our development is the one-shotness restriction of continuations.9

Our embedding uses the rest of the coroutine thread as a continuation, and the10

status of the coroutine cannot be copied, so the limitation exists that a con-11

tinuation can be executed at most once. One-shotness is a dynamic property,12

and its static approximation, linearly used (delimited) continuations, or linear13

continuation-passing style, are the target of active research in the past. We hope14

that the formal foundation of this paper’s result is studied more deeply, and15

coroutines and their connection with other control operators find a solid theo-16

retical foundation.17

We briefly state future work. There are many directions to extend our work.18

Of particular interest is to prove the semantics preservation of our translation.19

Introducing an appropriate type system is also an interesting next step. Another20

exciting issue is to relate and compare various control abstractions in the litera-21

ture and in the practical programming languages. For instance, React, a popular22

web framework for JavaScript, has a utility software Hooks13, which allows pro-23

grammers to build components with side-effects modularly. Abramov pointed24

out the relevance between Hooks and algebraic effects in his blog post14, and we25

think that investigating this relationship based on our work is promising.26

References27

1. Bauer, A., Pretnar, M.: Programming with Algebraic Effects and Handlers. Journal28

of Logical and Algebraic Methods in Programming 84, (03 2012)29

2. Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear Continuation-Passing.30

Higher-Order and Symbolic Computation 15, 181–208 (09 2002)31

3. Brachthäuser, J., Schuster, P.: Effekt: extensible algebraic effects in Scala (short32

paper). pp. 67–72 (10 2017)33

4. Brachthäuser, J., Schuster, P., Ostermann, K.: Effect handlers for the masses.34

Proceedings of the ACM on Programming Languages 2, 1–27 (10 2018)35

5. Bruggeman, C., Waddell, O., Dybvig, R.: Representing Control in the Presence of36

One-Shot Continuations. vol. 31, p. (02 1970)37

6. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM38

Conference on LISP and Functional Programming. p. 151–160 (1990)39

7. Dolan, S., White, L., Madhavapeddy, A.: Multicore OCaml. In: OCaml Users and40

Developers Workshop (2014)41

13 https://reactjs.org/docs/hooks-reference.html
14 https://overreacted.io/algebraic-effects-for-the-rest-of-us/

https://reactjs.org/docs/hooks-reference.html
https://overreacted.io/algebraic-effects-for-the-rest-of-us/

One-shot Algebraic Effects as Coroutines 21

8. Felleisen, M.: On the Expressive Power of Programming Languages. In: Selected1

Papers from the Symposium on 3rd European Symposium on Programming. p.2

35–75. ESOP ’90, Elsevier North-Holland, Inc., USA (1991)3

9. Felleisen, Matthias and Daniel P. Friedman: Control operators, the SECD-machine,4

and the λ-calculus. In: Formal Description of Programming Concepts (1987)5

10. Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the expressive power of user-6

defined effects: Effect handlers, monadic reflection, delimited control. J. Funct.7

Program. 29, e15 (2019). https://doi.org/10.1017/S0956796819000121, https://8

doi.org/10.1017/S09567968190001219

11. Gabriel, R.P.: The Design of Parallel Programming Languages, p. 91–108. Aca-10

demic Press Professional, Inc., USA (1991)11

12. Hillerström, D., Lindley, S.: Shallow Effect Handlers. In: Asian Symposium on12

Programming Languages and Systems. pp. 415–435. Springer (2018)13

13. James, R., Sabry, A.: Yield: Mainstream Delimited Continuations. p. (01 2011)14

14. Kammar, O., Lindley, S., Oury, N.: Handlers in Action. vol. 48, pp. 145–158 (0915

2013)16

15. Kiselyov, O., Ishii, H.: Freer Monads, More Extensible Effects. ACM SIGPLAN17

Notices 50, (03 2015)18

16. Kiselyov, O., Sivaramakrishnan, K.: Eff Directly in OCaml. Electronic Proceedings19

in Theoretical Computer Science 285, 23–58 (12 2018)20

17. Leijen, D.: Algebraic Effects for Functional Programming. Tech. rep., Technical21

Report. 15 pages. (2016)22

18. Leijen, D.: Implementing Algebraic Effects in C. pp. 339–363 (11 2017)23

19. Materzok, M., Biernacki, D.: Subtyping delimited continuations. In:24

Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th25

ACM SIGPLAN international conference on Functional Programming,26

ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 81–93. ACM (2011).27

https://doi.org/10.1145/2034773.2034786, https://doi.org/10.1145/2034773.28

203478629

20. Moura, A.d., Ierusalimschy, R.: Revisiting Coroutines. ACM Transactions on Pro-30

gramming Languages and Systems 31, (07 2004)31

21. Plotkin, G., Power, J.: Algebraic Operations and Generic Effects. Applied Cate-32

gorical Structures 11, 69–94 (02 2003)33

22. Plotkin, G., Pretnar, M.: Handling Algebraic Effects. Logical Methods in Computer34

Science 9, (12 2013)35

23. Pretnar, M., Saleh, A.H., Faes, A., Schrijvers, T.: Efficient compilation of algebraic36

effects and handlers. CW Reports, volume CW708 32 (2017)37

A Semantics of λeff38

A.1 Helper functions39

We introduce three helper functions for semantics in Figure 11: [Kwhr: fix 16]40

https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/2034773.2034786

22 Satoru Kawahara and Yukiyoshi Kameyama

split
((

(with w handle �)eff :: K
)
, eff

)
=
(

[] , (with w handle �)eff ,K
)

split ((F :: K) , eff) =
(
F :: K′, F ′,K′′

)
where F 6= (with w handle �)eff

and
(
K′, F ′,K′′

)
= split (K, eff)

LF :: KM = λx. LKM F [x]

L [] M = λx. x

K ∗ E = clos (λx.LKM x,E)

Fig. 11: Helper Functions for Semantics

split (K, eff) returns a triple (K1, F,K2) where F is the frame that handles1

the effect named by eff, and K = K1 :: [F] :: K2 holds. [Kwhr: fix 31] If more2

than one frame can handle the effect eff, the first one is selected, and if none3

have the named effect, the result is undefined. LKM converts a stack K to a4

continuation in functional form. (K ∗ E) creates a closure with a stack frame K5

and an environment E.6

A.2 Small-step semantics7

Figure 12 defines the small-step, call-by-value, left-to-right semantics (−→eff) in8

the CEK-machine style [9].9

In the rule Lookup, E (x) is the value associated with the variable x in the10

environment E. The rules PushLet, Bind, and Close, PushApp, PushArg,11

and App are [Kwhr: fix 17] standard. The rest of the rules are the one for alge-12

braic effects and handlers. The rules PushWithHandle and CloseHandler13

push or pop evaluation contexts to the stack. The rule Handle manipulates14

a with-expression with h handle e: if h evaluates to a handler value, then e is15

going to be evaluated under this handler. The rule PushPerform pushes the16

frame of perform-ing an effect eff to the stack. The rules HandlePerform17

and HandleValue are the key rules for algebraic handlers. In the rule Han-18

dlePerform, the code component is a value w. Hence, the first frame in the19

stack perform eff � is retrieved and evaluated. Then we look for a handler20

whose name is eff in the stack K, and if we find it, we use the handler to21

cope with this effect where formal parameters y and k are bound to the value22

w and the delimited continuation K ′ under environment E. We adopt the deep23

handlers, hence the handler (with wh handle �)
eff

remains in the stack after24

this step. The rule HandleValue is used when the handled expression does not25

invoke an effect and returns a value w. Then the value handler (val x→ ev) is26

used, and the handler is eliminated from the stack after this step.27

One-shot Algebraic Effects as Coroutines 23

B Semantics of λac1

Auxiliary functions Figure 13 defines two auxiliary functions for pattern match-2

ing of λac . FV p (pat) is the set of free variables in pat. matchable (v, pat) is a3

predicate to assert that,given a value v and a pattern pat, the value matches the4

pattern. The operator ⊕ concatenates two stores and ∅ is an empty store. The5

function genstore creates a new store which consists of pairs of a variable and6

a value (which consists of constructors). For example, by calling genstore with7

the arguments Resend (Eff w v) u (for some values w, v and u), and a nested8

pattern Resend (Eff y x) k, we get a new store ∅ [y ← w , x← v, k ← u].9

Small-step Semantics Figure 14 shows the operational semantics of λac by the10

transition (−→ac) of the state 〈e, θ〉, an expression e and a store θ. dom (θ) is11

the domain of θ, and θ (x) is a value associated with the variable x. Note that12

even if θ (l) = nil, we include l in dom (θ). In those cases such as introducing a13

variable or a label (App, Let, LetRec, Create, Match, and MatchWhen),14

we identify α-equivalent terms and assume that we rename bound variables15

appropriately for substitution to be defined at any time. The distinctive pattern16

is similar to a variable but generates no binding after pattern matching, so we17

allow to be overwritten. The rules contain those for variable lookup (Lookup),18

function application (App), let, and let rec (Let and LetRec). The function19

Create is to make a new coroutine. It creates a fresh label l, binds the coroutine20

to l, and returns its label to the context C. The function Resume produces a21

labelled expression, an application θ (l) v with a label l. θ (l) v is what finds22

the body corresponding to the label l from θ and apply v. The created labelled23

expression l : θ (l) v expresses the computation in the coroutine labelled by24

l. To prevent the rest of the coroutine from being referred, the rule Resume25

invalidates the associated26

value by setting it to nil. The function Yield suspends the current com-27

putation of a coroutine and returns to the parent coroutine with an argument.28

Since the target calculus represents asymmetric coroutines, a coroutine can be a29

parent of another coroutine by resuming it. [Kwhr: fix 29] The rule have an assump-30

tion that C2 does not have any labelled expresses. The assumption indicates that31

C2 is the innermost active coroutine. The function LabelledReturn transfers32

the result of the computation v in the coroutine l to its caller. The functions33

EqT and EqF compare two effect operations. The operator =eff judges whether34

two given effects are the same. The functions Match and MatchWhen are for35

pattern-matching. The second rule applies when K −→v matches a pattern, and36

the match case has a guard c. This rule transforms the guard to another match37

expression, with assigning the values to the corresponding variables in the pat-38

tern. The assignment may affect pattern variables in the guard c. If a guard39

returns True, pattern matching is successful, and the body of the True clause is40

evaluated; otherwise, we go to match against the rest of the patterns.41

24 Satoru Kawahara and Yukiyoshi Kameyama

C Reply to reviewers1

Dear reviewers of an earlier version of this paper,2

3

Thank you very much for your careful reading and helpful comments.4

We do appreciate all your comments very much. In this revision,5

we did our best to address the issues you raised. We have solved6

most issues but unfortunately we have not been able to manage all,7

and here we show how and what we did for your comments. (To avoid8

clutter, we omitted responses for small literal errors.)9

10

Best regards,11

Satoru Kawahara and Yukiyoshi Kameyama12

13

14

>>----------------------- REVIEW 1 ---------------------15

>>Cons:16

>> - No comparison is made with de Moura and Ierusalimschy’s earlier work,17

>> which already shows that one-shot continuations can be encoded into18

>> asymmetric coroutines.19

>> In fact, perhaps the encoding presented here could be presented as the20

>> composition of a simpler encoding (from multiple effects to a single21

>> effect) with de Moura and Ierusalimschy’s encoding. (See below.)22

23

It is true that we can give a translation from a calculus with one-shot24

control operators to a calculus with asymmetric coroutines, by such a25

composition. The merit of our translation is that it is given as26

a simple, local translation (de Moura and Ierusalimschy’s translation27

uses mutable state which may store higher order functions.) This property28

is made explicit as a ’macro-expressible’ translation in the sense of29

Felleisen (Sect. 3.4 in the revised paper). Although it is a very simple30

property, we think that it is sufficient to claim that our translation is31

simple. The property also lets us implement the translation as a simple32

library (which does not need any external resource).33

34

>> - The encoding is not well-explained.35

36

We are sorry for this. In fact, we did not give explanation in the37

earlier version. The revised version contains a concrete example of38

translation (encoding) and we gave a detailed explanation based on the39

concrete example. (Sect. 3.3)40

41

>>MAJOR GENERAL COMMENTS42

>>43

>>44

>>> It seems to me that coroutines, as presented in this paper (the calculus45

One-shot Algebraic Effects as Coroutines 25

>>> lambda_{ac}), are a mix of delimited control and dynamically-allocated mutable1

>>> state. Because of this, instead of implementing delimited control in terms of2

>>> coroutines, as proposed in the present paper, it would seem rather more3

>>> natural to me to explain (or implement) coroutines in terms of delimited4

>>> control and mutable state. I can see that the encoding proposed in this paper5

>>> is useful in situations where the host language has coroutines (e.g. Lua), but6

>>> otherwise this encoding seems to be going in the wrong direction. In a7

>>> language where mutable state and (one-shot) effect handlers are primitive,8

>>> coroutines can be programmed as a library. (See e.g. Section 4 of "Effect9

>>> Handlers for the Masses", by Brachthäuser et al.) Isn’t that a more pleasing10

>>> approach?11

12

Thank you for your insight. We agree that the converse direction is worth studying,13

but we still do believe the present direction (from algebraic effects and handlers to14

corouines) is interesting, as it gives an implementation of the former in a huge number15

of programming languages. (The cretin Henry in Wikipedia has a large list of16

programming languages with native support for coroutines; although we have not17

examined the list in detail, as to whether they support stackful asymmetric coroutines18

which is needed for our work, we can surely say that the direction to coroutines19

is worth studying.) In the revised version, we modified the introduction (Sect. 1)20

to mention these facts briefly.21

22

>>> p.2, I am confused by the sentence "However, as we will see in this paper,23

>>> coroutines are as expressive as one-shot delimited control-operators, a24

>>> restricted control operator that is allowed to invoke a delimited continuation25

>>> at most once [13]." Without the citation at the end, this sentence seems to26

>>> suggest that the equivalence between coroutines and one-shot delimited control27

>>> is a contribution of this paper. The abstract of the paper suggests the same28

>>> thing. Yet, once one looks up the citation [13], one discovers that this29

>>> equivalence has already been pointed out by de Moura and Ierusalimschy. As a30

>>> result, at this point, I am confused, and do not know exactly how the present31

>>> paper improves on (or distinguishes itself from) de Moura and Ierusalimschy’s32

>>> paper. This should be clarified!33

34

The sentence was our mistake; we do not claim that we are the first to35

make this equivalence (or connection), and we have removed the phrase "as we will36

see in this paper,".37

38

>>> Although the encoding (Figure 5) is relatively compact, the key part (the39

>>> definition of "handler") is still 10 lines of complex code, and the40

>>> explanation on page 12 does not really help; it is a paraphrase of the code.41

>>> I suspect that part of the complexity has to do with the fact that the source42

>>> calculus has multiple named effects (like "Get", "Set", "Defer", etc.) and it43

>>> is possible to perform an effect that is handled by a handler which is *not*44

>>> the nearest handler; whereas the target calculus does not have a comparable45

26 Satoru Kawahara and Yukiyoshi Kameyama

>>> mechanism ("yield" transfers control to the nearest mark on the stack). So,1

>>> I wonder if the encoding could be viewed as the composition of two separate2

>>> (simpler) encodings, namely:3

>>>4

>>> - an encoding of a calculus with multiple (named) effects5

>>> into a calculus with a single effect; and6

>>> - an encoding of this calculus with a single effect7

>>> into a calculus with coroutines.8

>>>9

>>> The first encoding would take care of comparing effect labels for equality,10

>>> wrapping effects in "Resend", etc., while the second encoding would take care11

>>> of encoding "perform" into "yield". Does that make sense? Is this possible?12

13

This perfectly makes sense, but, the definitions in this way are (conceptually14

much simpler, but) not that simple, and we need to explain two non-trivial15

translations, which needs huge space. Also if our translation is a composition16

of two translations, which is less efficient the one given in this paper.17

We will try again when we revise this paper in future (e.g. writing a journal version).18

19

>>> Furthermore, the second encoding above might be essentially identical to the20

>>> encoding proposed by de Moura and Ierusalimschy. (They encode a calculus with21

>>> a "spawn" operator, which looks analogous to shift/reset, into a calculus with22

>>> coroutines.) If that were the case, then the contribution of this paper would23

>>> have to be re-explained in a different way.24

25

As we wrote above, one of the major merits of our translation is that it is26

a macro-expressible translation, which distinguishes itself from the earlier27

work by de Moura and Ierusalimschy (though the translations share the same spirit.)28

29

>>MINOR GENERAL COMMENTS30

31

>>> Is there a proof that this encoding is correct? (A machine-checked proof would32

>>> be ideal.) I would not be interested in reading the details of the proof, but33

>>> I would be interested in reading the main invariants that explain why the34

>>> encoding works, and it would be good to know that a proof exists.35

36

Unfortunately the precise (e.g. formalized in Coq) proof does not yet exist, though37

it is a relatively routine work to carry out the proof.38

39

>>> If the source and target calculi were equipped with (standard) type systems,40

>>> would the encoding be type-preserving? It would be worth answering this41

>>> question (if the answer is obvious) or explicitly deferring it to future work42

>>> (if nonobvious).43

44

Well, it *is* an interesting future work and we mention it in the conclusion.45

One-shot Algebraic Effects as Coroutines 27

The type system of asymmetric coroutines is not so trivial -- there exist a few1

such proposals, but as long as we have examined much earlier, none of them2

is sufficiently strong (even a very simple typed calculus for shift and reset3

cannot be translated to any of them in a type-preserving way.)4

5

>>DETAILED COMMENTS6

>>> p.1, "Implementations based on stack manipulation are used in JVM bytecode and7

>>> C implementations". Please provide citations at this point. Same request about8

>>> "OCaml implementation and one of Scala implementations". (In fact, the9

>>> required citations are given at the end of the first paragraph, but it was not10

>>> evident to me at first that these citations were specifically concerned with11

>>> the implementation of effect handlers; I initially thought that were generic12

>>> citations about the programming languages Haskell, OCaml, etc.)13

14

Thank you for the comment. We have added citations and also rewritten the sentences.15

16

>>> p.1, "it highly depends": what does "it" refer to?17

>>> p.1, "which needs deep insight on language processors": who needs deep insight?18

>>> The runtime system? What does that mean? And what is a "language processor"?19

>>> I don’t think this terminology is standard.20

21

We rephrased this to "an implementer needs deep insight on its internal structure."22

23

>>> p.1, the English in paragraph 2 is not great. It would be good if the paper24

>>> could be proof-read by someone who is proficient in English.25

26

We are sorry. We tried to revise it based on the comments.27

28

>>> p.2, "implementing delimited control-operators in a language is non-trivial":29

>>> isn’t just as difficult to implement delimited control operators and to30

>>> implement effect handlers? Each feature can encode the other. (Assuming an31

>>> appropriate control operator is chosen.) (See e.g., Forster et al, "On the32

>>> expressive power of user-defined effects: Effect handlers, monadic reflection,33

>>> delimited control".)34

35

Yes, you are right and we have removed the sentence.36

37

>>> p.2, "We will show that using coroutines to implement algebraic effects and38

>>> handlers have another merit: a programmer does not have to think about what39

>>> data structures are used to embed algebraic effects." This sentence is unclear40

>>> to me in several ways. The authors write that this implementation scheme has a41

>>> "merit": in comparison with what other implementation scheme? And why would42

>>> the programmer have to think about data structures? One might hope that,43

>>> regardless of how effects are implemented, the programmer does not have to44

>>> think about it.45

28 Satoru Kawahara and Yukiyoshi Kameyama

1

We have removed the sentence.2

3

>>> p.2, "Although implementations of algebraic effects using coroutines already4

>>> exist such as 10 11 12, each one has such problems as it does not provide a5

>>> first-class continuation to the user, or is rather complicated." Please6

>>> clarify which implementation has which deficiency. Also, please clarify your7

>>> criticisms. "Not providing a first-class continuation to the user" sounds like8

>>> a critical problem: if that is the case, then this library *cannot* be called9

>>> an implementation of algebraic effects, can it? "Being rather complicated" is10

>>> somewhat vague; could you be more specific?11

12

We have removed the original sentences, and rewritten the whole paragraph.13

14

>>> p.3, "We show a new embedding". The word "new" suggests that there already15

>>> exist known encodings of algebraic effects in terms of coroutines in the16

>>> literature? Is this the case? If so, please cite them explicitly. If not,17

>>> then remove the word "new". (I suggest writing "We give an encoding of18

>>> one-shot algebraic effects and handlers into asymmetric coroutines.")19

20

Yes, there is no such encoding, and we have removed ’new’.21

22

>>> p.3, "We do not use continuation-passing style nor user-level control23

>>> operators. As a consequence, our embedding is more performant in many cases24

>>> than other embeddings, including the one with free monads." This sentence25

>>> could be clarified to indicate exactly which other encodings you are comparing26

>>> against.27

28

We were comparing it with free-monad based embedding, and we rephrased the sentence.29

30

>>> Section 2.2, this material is standard. A citation of the original paper where31

>>> this is described would be welcome. Also, I am not sure how this example adds32

>>> value to the paper.33

34

Well, we think that many readers are not familiar with even syntax of Lua etc.35

and an easy introductory example is necessary for a technical paper.36

37

>>> Section 2.3, this example seems a little underwhelming (I mean, not very38

>>> convincing), because it seems clear that "defer" can be implemented using39

>>> just first-class functions and references.40

41

Thank you. We tried to fix the problem, but unfortunately due to lack of space,42

finally we had to eliminate the example completely.43

44

>>> The placement of Figure 2 is not great. There is one line of text below it.45

One-shot Algebraic Effects as Coroutines 29

1

Thank you, fixed it.2

3

>>> p.9, what does "more or less standard" mean?4

5

Removed the phrase "more or less".6

7

>>> p.9, "We adopt the deep handlers". A citation of a paper that explains the8

>>> distinction between shallow and deep handlers would be welcome.9

10

We have added one reference, though we have not found any good reference about this11

discussion.12

13

>>> p.11, "Due to lack of space [...]". The reader who is not familiar with14

>>> coroutines needs at least an intuitive explanation of the meaning of15

>>> labeled expressions and the operations create, yield, resume. It would16

>>> be easy to make some room in the paper by removing Section 2.2 or 2.3.17

18

We have revised the explanation of the informal semantics of coroutines.19

20

>>> In Figure 5, the various renamings of x to x’ are just noise, as far as21

>>> I can see. Why not just keep the name x?22

23

Yes, you are right, primes have been eliminated.24

25

>>> p.13, "our translation [...] does not rely on higher-order stores": the26

>>> operational semantics of coroutines does rely on a store (a mapping of27

>>> labels l to lambda-abstractions), so this statement is questionable.28

29

De Moura and Ierusalimschy’s translation (not semantics) does use higher-order30

stores.31

32

>>> p.14, "Representing coroutines and other effects using algebraic effects and33

>>> handlers is possible, but tedious if the language has coroutines from the34

>>> beginning." I am not sure if "tedious" is the right word. It does not sound35

>>> difficult to encode coroutines in terms of effects (the encoding is known),36

>>> but this adds a lot of overhead, since one has to go through two layers of37

>>> encoding instead of using native coroutines.38

39

Yes, we have removed the word ’tedious’ and rewritten the whole sentence.40

41

>>> p.14, "This problem can be solved as follows [...]." I do not understand what42

>>> is going on here. The previous sentence suggested that encoding coroutines in43

>>> terms of effects is of course possible, but very costly. The text that follows44

>>> repeats that it is possible to encode coroutines in terms of effects, and gives45

30 Satoru Kawahara and Yukiyoshi Kameyama

>>> the encoding. How does that "solve" the problem? The encoding remains very1

>>> costly.2

3

Since we have removed the sentence just before this one, we think the resulting4

text makes sense.5

6

>>> p.15, "Although we know several solutions to this direction, clearly we need7

>>> to do more [...]". This sentence is very unclear. Which solutions do you know,8

>>> and why are they not satisfactory? Only one solution has been shown.9

10

We have rewritten it to11

Although we can combine our library and coroutines by re-12

implementing coroutines as above, whenever we want to use other native effects,13

we must deal with them.14

15

>>> p.19, "Some of them have implemented our translation for other languages such16

>>> as JavaScript and Rust". This seems puzzling: does Rust have coroutines? How17

>>> are they implemented? As far as I know, they are not a primitive construct in18

>>> Rust.19

20

Thank you. We rewrote the footnote to21

Since Rust does not have coroutines, we use Future instead.22

23

>>> p.20, "a new store which consists of pairs of a variable and a value".24

>>> A store usually maps *locations* to values. An environment usually maps25

>>> *variables* to values. It is confusing to see these notions apparently26

>>> mixed up here. What is going on?27

28

The paper ’Revisiting coroutines’ uses this terminology (which might be somewhat29

non-standard) and we want to follow their way as long as coroutines are concerned.30

31

>>> p.21, "θ is a partial map from variables or labels to values". This is also a32

>>> bit confusing. A map of variables to values is an environment. However, here,33

34

Yes, but again we followed the paper ’Revisiting coroutines’.35

36

>>> The authors adopt environment-based semantics, as opposed to37

>>> substitution-based semantics, for the source and target calculi.38

>>> Why is that? Could this decision be discussed?39

40

We think environment-based semantics is also natural (and slightly more41

practical).42

43

>>> p.22, the reduction rule (Yield) seems non-deterministic, as there could be44

>>> several marks "l:" on the stack. Should one add a side condition stating that45

One-shot Algebraic Effects as Coroutines 31

>>> the context C_2 contains no marks? (See the distinction between C and C’ in1

>>> de Moura and Ierusalimschy’s semantics.)2

3

The rule have an assumption that C2 has no labeled expresses, then C2 must4

be the innermost active coroutine.5

6

>>>done p.4, line 2 begins with a stray comma.7

>>>8

>>>done p.4, "with still handled" does not make sense.9

>>>10

>>>done p.11, "propositional": do you mean "compositional"?11

12

Thank you for careful reading and spotting typos.13

14

>>----------------------- REVIEW 2 ---------------------15

16

>>I think this should be accepted for presentation. It’s certainly in scope,17

>>describes a topic which is certainly part of a trend, and applies it in a18

>>less conventional (for this audience) setting. I’m not sure it’s ready yet19

>>to be accepted for publication though. I’d like to see more discussion of20

>>the motivation and limitations. I assume, since Lua is a dynamically21

>>typed imperative language, the main motivation is to allow effects to be22

>>handled in different ways in different contexts? In which case, it’d be nice23

>>to be explicit about this and show examples to illustrate it. Another24

>>motivation for algebraic effects is to be explicit about the capabilities of25

>>a function in its type, so could your approach be adopted by a statically26

>>typed language to achieve this? And is it a serious limitation to have27

>>one shot continuations - it would prevent implementing non-determinism as28

>>an effect, for example.29

30

We hoped so, but introduction type systems and making the translation type-preserving31

are tricky, as the existing type system for coroutines are not expressive enough.32

But this is an interesting future work, and we mention it.33

34

>>It’s nice to see the benchmarks, but they are fairly small and I would also35

>>like to know what the overhead of the library is compared to writing36

>>effectful programs directly, and some discussion of whether that overhead37

>>is worth it. One example suggests the overhead is not too bad, but there38

>>has to be a strong enough motivation to explain why it’s worthwhile.39

40

We have added more figures and more benchmarks. Although they are still41

microbenchmarks, we think that the extreme-case examples show the small overhead42

of our implementation.43

44

>>> p4 I’m not familiar with Lua, and I can guess what the notation45

32 Satoru Kawahara and Yukiyoshi Kameyama

>>> [DivideByZero] means, but for this audience it might be worth explaining a1

>>> bit more2

3

We are sorry and we should not assume the familiarity with Lua. We have added more4

explanations for Lua syntax and the code.5

6

>>> p6 Instead of giving this in Go, could you should how it’s used in your7

>>> library instead?8

9

We have tried to do so, but unfortunately we had to eliminate the last example10

due to lack of space.11

12

>>> p7 "To implement the full functionality of defer..." - have you done this?13

14

Yes, you can find it in our Github repository.15

16

>>> p16 Can you say in more detail what these benchmarks do? Rather than just17

>>> saying which effect they use. Also for state in particular, it’d be nice18

>>> to know the overhead over implementing state directly.19

20

We have thoroughly revised the section for benchmark and performance evaluation,21

which hopefully addresses your concern.22

23

>>>done p2 "thanks to that fact that" => "thanks to the fact that"24

25

Thank you, fixed.26

27

>>> p3 What is ’inst()’? Something which creates a unique new effect label?28

29

We explained it in the text.30

31

>>> p4 typo "catches the effect DivideByZero"32

>>> p8 "more than one frames have" => "more than one frame has"33

34

Fixed.35

36

>>> p14 "The implementations are simple and easy to understand" - this is a37

>>> strong claim, without showing any of the code here! Is there any part of it38

>>> which you can present?39

40

We have clarified the meaning (and rephrased the sentences).41

42

>>> p15 "the result of ours library" => "...our library"43

44

Fixed.45

One-shot Algebraic Effects as Coroutines 33

1

>>----------------------- REVIEW 3 ---------------------2

>>One issue with the paper is that it doesn’t, from the start, state a clear, main goal.3

>>The abstract states context, and the fact of what was implemented, but to what end?4

>>As an advantage "modularity" is given. I think this could be made much stronger5

>>pointing to the good performance results, and referring to the other aspects as6

>>additional7

>>advantages.8

9

Thank you for the comment. Our goal is to make AEH available in MANY languages. (AEH10

for algebraic effects and handlers).11

We think that algebraic effect and handlers are good abstraction for writing12

control effects, and implementer who write controlful programs in Lua would13

benefit from our work very much, as composing two effects realized by coroutines14

is not an easy task, while composing two algebraic effects is straightforward.15

We have revised the abstract and introduction along with this line.16

17

>>The formal presentation builds on the CEK machine, and adds rules for performing and18

>>handling effects. The target of the translation is an existing calculus of asymmetric19

>>coroutines. No formal correctness proof is given, so correctness of the translation20

>>can’t be seen as a contribution. But the operational semantics of the CEK machine21

>>with effects, and the translation look plausible. Also, the implementation has been22

>>tested on a range of micro-benchmarks that are used for the performance results.23

>>24

>>Notably, the style of the translation should be applicable to a range of languages,25

>>and the paper makes the point that it has been implemented not only in Lua and Ruby,26

>>but also (by others) in more main-stream languages such as JavaScript and Lua.27

>>28

>>The performance results compare this translation with an existing free-monad29

>>based implementation of effects and show sizable gains, and good scalability,30

>>over increasing31

>>numbers of iterations. However, there is an additional cost for the unlikely case of a32

>>high number of nested handlers.33

34

Thank you for your analysis, which spots merits and demerits of our current approach35

correctly.36

37

>>> From the start, state the main goal: is it performance? or finding a translation38

>>> that is modular, portable and high-performant at the same time.39

>>> Too much space is spent on context here, IMHO, and could go into intro.40

41

We have added a sentence. "This paper presents a translation from algebraic42

effects and handlers to asymmetric coroutines, which provides simple,43

portable and widely applicable implementation of algebraic effects."44

45

34 Satoru Kawahara and Yukiyoshi Kameyama

>>> Might mention that reasoning about effects is notoriously difficult,1

>>> and implementations2

>>> are therefore error-prone. Therefore a formalized implementation is very desirable.3

4

We could have mentioned it, but since we do not really ’reason about’ programs,5

we hesitate to do so. But thank you for the very encouraging comment!6

7

>>> p2, top: refers to a range of implementations of effects, with pros and cons,8

>>> but doesn’t9

>>> give references (at least to the main ones).10

11

>>> Highlight the "new embedding of alg effects and handlers" as main novelty.12

13

We have revised the paper accordingly.14

15

>>> I’d expect more of a rationale why Lua and Ruby are used as languages.16

17

Well, we think they are popular languages, and in particular, we believe that18

Lua is the best language to study coroutines (but we cannot prove this claim).19

20

>>> Good to have several repos of implementations mentioned early in the paper.21

>>> Good summary of contribs: mention the main ones in the abstract already.22

>>> "conversion of \lambda_eff" is a bit vague: stick to the phrasing "translation"23

>>> throughout.24

25

Yes, thank you, we revised it.26

27

>>> Before the first example I’d expect some words about Lua syntax. As it stands28

>>> it’s hard29

>>> to read for someone not already familiar with the lang (main audience of TFP).30

>>> Suggest to number the lines in the examples to more easily refer to it.31

>>> Could use comments in the code to e.g. clarify that the 2 params to handler are the32

>>> (value) argument and the continuation.33

34

We have added more explanations about the code with line numbers etc.35

36

>>> Some background on delimited continuations earlier in the paper would be useful.37

38

It is hard to mention it within the limited space, but we have shown a concrete39

example of a delimited continuation as a context.40

41

>>> What’s the role of the value 0 passed to the continuation in case of a DivideByZero?42

43

Not very much, but it is natural to pass some default value...44

45

One-shot Algebraic Effects as Coroutines 35

>>> p5, bottom: in the text you talk about "binds s to v" and creating a thunk. Refer to1

>>> the lines in the code to link things up.2

3

We did it.4

5

>>> last para: if you are saying the simplicity of implementation with your notation is6

>>> an advantage in itself, you should expand on it and mention this more prominently.7

8

Our notion of simplicity is based on macro-expressiveness, which is now detailed9

in Sect. 3.4.10

11

>>> Since you are building on the CEK machine, more context and concrete pointers12

>>> would be useful!13

14

We have added a reference.15

16

>>> Giving intuitions for frames, possibly as "break-points" in the execution,17

>>> would be good18

>>> (together with general CEK machine background)19

20

Here we use frames as just an element of a continuation (where a continuation21

is a list, or a stack of frames.) We have added a simple explanation for frames.22

23

>>> Fig 2: minor issue, but I don’t find the notation for these operations24

>>> very intuitive;25

>>> maybe something more verbose such as "lookup" for // would be better?26

>>> Fig 3 and text: mention that CloseHandler and Handle rules are analogous to27

>>> Close and App rules in the plain CEK machine.28

>>> I think some rules can be simplified: in CloseHandle you don’t refer to29

>>> the syntactic components of the handler h, so you don’t need to30

>>> expand its structure in the rule31

>>> Might mention that HandlePerform and HandleValue correspond to the effect32

>>> and no-efect33

>>> cases respectively.34

35

Well, we wanted to explain the semantics more but due to space limitation36

we had to move the semantics section to appendix.37

38

>>> One bigger issue I have with the notation is that ’::’ is used both for39

>>> sequencing the list of frames in the continuations part, and40

>>> for adding a binding to the environment.41

>>> I think using more established notation for the latter, and42

>>> thus separating the two43

>>> operations would help here.44

45

36 Satoru Kawahara and Yukiyoshi Kameyama

Here we use the symbol to mean the ’cons’ operation for lists.1

2

>>> Fig 4: give in the text at least an intuition for the meaning of Eff, Resend etc.3

4

We have added detailed explanation.5

6

>>> Fig 5 and text: the translation of the main case ’handler’ is intricate,7

>>> but looks plausible;8

>>> it would help to give some explanation on the structures Eff and9

>>> Resume as well as the10

>>> operations yield and resume that are used here. Maybe a simple11

>>> presentation in a12

>>> sequence-diagram style figure would help. I think at least this13

>>> level of detail is needed14

>>> as context for the last 2 paras on p12.15

16

We have added a concrete example to show how the translation (and the translated17

code) work.18

19

>>> A summary of the main characteristics for the bench-mark programs20

>>> at the beginning would21

>>> be useful. In particular, the meaning of the ’parameter’ in each22

>>> of the benchmarks is23

>>> different (Fig 6 and 8: number of iterations; Fig 7: number of nested24

>>> handlers), and25

>>> this should be highlighted. Possibly, restructure into sub-section,26

>>> to measurement27

>>> the impact of different kinds of params.28

29

Yes, we have added more explanation.30

31

>>> In general, good analysis of the reasons for performance gains.32

>>> It would help to back up33

>>> the statements by supportive data (isolating the costs for the main34

>>> impact factor), but35

>>> given the focus of the paper I don’t think this is strictly necessary.36

37

Yes, we have revised the section within the page limitation.38

39

>>> What is the same-fringe problem? Give an intuition. And thanks for40

>>> giving a link to the repo!41

42

We are sorry, now you see a short explanation for ’fringe’.43

44

>>> Reference to "James and Sabry" is missing45

One-shot Algebraic Effects as Coroutines 37

1

Fixed.2

3

>>> Overall: several spelling mistakes in the paper4

5

We have tried our best.6

7

Thank you for all your comments!8

38 Satoru Kawahara and Yukiyoshi Kameyama

〈C; E; K〉 −→eff 〈C′; E′; K′〉

〈x; E; K〉 −→eff 〈E (x) ; E; K〉 (Lookup)

〈let x = e in e′; E; K〉 −→eff 〈e; E; (let x = � in e′, E) :: K〉 (PushLet)

〈w; E; (let x = � in e, E′) :: K〉 −→eff 〈e; (x = w) :: E′; K〉 (Bind)

〈λx. e; E; K〉 −→eff 〈clos (λx.e, E) ; E; K〉 (Close)

〈e e′; E; K〉 −→eff 〈e; E; (� e′, E) :: K〉 (PushApp)

〈w; E; (� e, E′) :: K〉 −→eff 〈e; E′; (w �) :: K〉 (PushArg)〈
w; E;

(
clos (λx.e, E)′ �

)
:: K

〉
−→eff 〈e; (x = w) :: E′; K〉 (App)

〈with h handle e; E; K〉 −→eff 〈h; E; (with � handle e, E) :: K〉
(PushWithHandle)

〈h; E; K〉 −→eff 〈closh (h,E) ; E; K〉
where h = handler eff (val x→ ev) ((x, k)→ eeff)

(CloseHandler)

〈 wh;
E′;

(with � handle e, E) :: K

〉
−→eff

〈 e;
E;(

(with wh handle �)eff
)

:: K

〉
where wh = closh (handler eff (val x→ ev) ((x, k)→ eeff) , E)

(Handle)

〈perform eff v; E; K〉 −→eff 〈v; E; (perform eff �) :: K〉 (PushPerform)

split (K, eff) =
(
K′, (with wh handle �)eff ,K′′

)
where wh = closh (handler eff (val x→ ev) ((y, k)→ eeff) , E′)

〈w; E; (perform eff �) :: K〉 −→eff

〈 eeff ;
(y = w) :: (k = K′ ∗ E) :: E′;

(with wh handle �)eff :: K′′

〉
(HandlePerform)

F = (with wh handle �)eff

where wh = closh (handler eff (val x→ ev) ((y, k)→ eeff) , E′)

〈w; E; F :: K〉 −→eff 〈ev; (x = w) :: E′; K〉
(HandleValue)

Fig. 12: Semantics of λeff

One-shot Algebraic Effects as Coroutines 39

FV p

(
K
−→
pat
)

=
⋃
p ∈ −→pat .FV p (p)

FV p (x) = {x}

matchable
(
K −→v ,K′ −→pat

)
= K =K K′ ∧ ∀v ∈ −→v , p ∈ −→pat .matchable (v, p)

θ1 ⊕ θ2 = ∅
[
∀x ∈ dom (θ1) .x← θ1 (x) ,
∀y ∈ dom (θ2) .y ← θ2 (y)

]

genstore
(
K −→v ,K −→pat

)
=

⊕
v∈−→v ,p∈−→pat

genstore (v, p)

genstore (v, x) = ∅ [x← v]

Fig. 13: Auxiliary functions for the semantics of λac

40 Satoru Kawahara and Yukiyoshi Kameyama

〈C[x], θ〉 −→ac 〈C[θ(x)], θ〉 (Lookup)

x /∈ dom (θ)

〈C [(λx.e) v] , θ〉 −→ac 〈C [e] , θ [x← v]〉
(App)

x /∈ dom (θ)

〈C[let x = v in e′], θ〉 −→ac 〈C[e], θ[x← v]〉
(Let)

∀z ∈
{
f,−→x ,

−−→
g,−→y

}
.z /∈ dom (θ)〈

C

let rec f −→x = ef−−−−−−−−−→
and g −→y = eg
in e

 , θ〉 −→ac

〈
C[e], θ

[
f ← λ−→x .ef ,−−−−−−−→
g ← λ−→y .eg

]〉 (LetRec)

l /∈ dom (θ)

〈C [create v] , θ〉 −→ac 〈C [l] , θ [l← v]〉
(Create)

〈C [resume l v] , θ〉 −→ac 〈C [l : θ (l) v] , θ [l← nil]〉 (Resume)

C2 does not contains labelled expressions

〈C1 [l : C2 [yield v]] , θ〉 −→ac 〈C1 [v] , θ [l← λx.C2 [x]]〉
(Yield)

〈C [l : v] , θ〉 −→ac 〈C [v] , θ〉 (LabelledReturn)

eff =eff eff ′

〈C [eff = eff ′] , θ〉 −→ac 〈C [True] , θ〉
(EqT)

eff 6=eff eff ′

〈C [eff = eff ′] , θ〉 −→ac 〈C [False] , θ〉
(EqF)

¬matchable (K −→v , pat)〈
C

match K −→v with

pat [cond]→ e;
cases

 , θ〉 −→ac 〈C [match K −→v with cases] , θ〉

(MatchNext)

∀x ∈ FV p (pat) .x /∈ dom (θ) matchable (K −→v , pat)
θ′ = θ ⊕ genstore (K −→v , pat)

〈C [match K −→v with pat → e; cases] , θ〉 −→ac 〈C[e], θ′〉
(Match)

∀x ∈ FV p (pat) .x /∈ dom (θ) matchable (K −→v , pat)
θ′ = θ ⊕ genstore (K −→v , pat)

〈
C

match K −→v with

pat when c→ e;
cases

 , θ〉 −→ac

〈
C


match c with
True → e;
False →
match K −→v with

cases

 , θ′
〉

(MatchWhen)

Fig. 14: Semantics of λac

	One-shot Algebraic Effects as Coroutines

