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Abstract. The notion of delimited continuations has been proved useful in various
areas of computer programming such as partial evaluation, mobile computing, and
web transaction. In our previous work, we proposed polymorphic calculi with control
operators for delimited continuations. This paper presents a proof of strong normal-
ization (SN) of these calculi based on a refined (i.e. administrative redex-free) CPS
translation.
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1 Introduction

Control operators in functional languages allow the explicit manipulation of control flow of
programs, and thus give more flexibility and expressiveness than those programs without
them. Scheme has the control operator “call/cc” for continuations, which has been intensively
studied from theory to implementation and practical applications. Type-theoretic studies on
“call/cc” have revealed that it corresponds to classical logic [10].

Delimited continuation is a similar notion to (unlimited) continuation, but it represents
part of the rest of the computation rather than whole rest of the computation. Since Danvy
and Filinski have proposed the control operators “shift” and “reset” for delimited contin-
uations [6], they have been proved useful in various applications such as backtracking [6],
A-normalization in direct style [2], let-insertion in partial evaluation [17], type-safe “printf”
[3], and web transaction [15].

This paper investigates the type structure of “shift” and “reset”, and in particular, proves
strong normalization of a polymorphic calculus for them. In our previous work [4], we have
introduced a polymorphic type system for “shift” and “reset”, and proved a number of prop-
erties such as type soundness (subject reduction and progress). The strong normalization
property, however, was only mentioned as a theorem without a proof, which is the subject
of the present paper.

Strong normalization (SN) is the property that no reduction sequence can be infinite,
and is considered as one of the most fundamental properties of many typed lambda calculi
which correspond to logical systems under the Curry-Howard isomorphism. For instance,
strong normalization of Girard’s System F [9] implies its (logical) consistency.

On the other hand, strong normalization of computational calculi with control operators
is a subtle issue as shown by the following list:



v ::= c | x | λx.e value

e ::= v | e1e2 | Sk.e | 〈e〉 | let x = e1 in e2

| if e1 then e2 else e3 expression

Fig. 1. Syntax of λ
s/r
let .

– A typed calculus with “call/cc” is strongly normalizing, while that with exception in
Standard ML is not strongly normalizing (see, for instance, [11]).

– The calculus with “shift” and “reset” under Filinski’s typing3 is not normalizing, while,
under Danvy and Filinski’s type system, it is strongly normalizing [1].

– A typed calculus with “control” and “prompt”, the other control operators for delim-
ited continuations, is not normalizing [13]. Similarly, a typed calculus with the control
operator cupto is not normalizing [14].

Hence, we can say SN for the calculi with control operators is a non-trivial issue. This
paper solves the problem for the case of “shift” and “reset” under the polymorphic type
system.

The rest of this paper is organized as follows: Section 2 gives the syntax and semantics
of the polymorphic calculus for shift and reset in [4], and Section 3 reviews the definitional
CPS translation for this calculus. In Section 4 we introduce a refined CPS translation and
study its properties. In Section 5, we prove strong normalization of our calculus by making
use of the refined CPS translation. Section 6 gives conclusion.

2 A Polymorphic Calculus with Shift/Reset

In this section we introduce the polymorphic typed calculi λ
s/r
let for shift and reset in [4].

Following the literature, we distinguish two versions of polymorphism: predicative polymor-
phism (or let-polymorphism) found in ML families and impredicative polymorphism which
is based on the second order lambda calculus (Girard’s System F [9]). In this paper, we
concentrate on the predicative version.

2.1 Syntax and Operational Semantics

We assume that the sets of constants (denoted by c), variables (denoted by x, y, k, f), type
variables (denoted by t), and basic types (denoted by b) are mutually disjoint, and that each
constant is associated with a basic type. We assume bool is a basic type which has constants
true and false.

The syntax of λ
s/r
let is given in Figure 1. A value is either a constant, a variable or a lambda

abstraction. An expression is either a value, an application, a shift expression (denoted by
Sk.e), a reset expression (denoted by 〈e〉), a let expression, or a conditional. Note that we
omit the fixpoint operator from the calculus in [4].
3 Filinski did not give a type system explicitly, but his well-known implementation of “shift” and

“reset” [8] specifies a certain type system.
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(λx.e)v Ã e[v/x]

〈v〉 Ã v

〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉
let x = v in e Ã e[v/x]

if true then e1 else e2 Ã e1

if false then e1 else e2 Ã e2

Fig. 2. Reduction rules for λ
s/r
let

α, β, γ, δ ::= t | b | (α/γ → β/δ) monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 3. Types of λ
s/r
let .

Variables are bound by lambda or shift (k is bound in the expression Sk.e), and are free
otherwise. FV(e) denotes the set of free variables in e.

We give call-by-value operational semantics for λ
s/r
let . Contexts, pure evaluation contexts

(abbreviated as pure e-contexts), and redexes are defined as follows:

C ::= [ ] | λx.C | eC | Ce | Sk.C | 〈C〉 | let x = C in e | let x = e in C

| if C then e else e | if e then C else e | if e then e else C context
F ::= [ ] | vF | Fe | if F then e else e pure e-context
R ::= (λx.e)v | 〈v〉 | 〈F [Sk.e]〉 | let x = v in e

| if true then e1 else e2 | if false then e1 else e2 redex

A pure e-context F is an evaluation context such that no reset encloses the hole. Therefore,
in the redex 〈F [Sk.e]〉, the outermost reset is guaranteed to be the one corresponding to
this shift, i.e., no reset exists inbetween.

The notion of one-step reduction Ã is defined by C[R] Ã C[e] where C is an arbitrary
context 4 and R Ã e is an instance of reductions in Figure 2. In this figure, e[v/x] denotes the
ordinary capture-avoiding substitution. As usual, Ã∗ (and Ã+, resp.) denotes the reflexive-
transitive (transitive, resp.) closure of Ã.

2.2 Type System

The type system of λ
s/r
let is an extension of Danvy and Filinski’s monomorphic type system

for shift and reset [5].
Types are defined by Figure 3, which are similar to those in core ML except that the

function type is annotated with two answer types as (α/γ → β/δ) where γ (and δ, resp.)
4 Note that we have slightly extended the notion of one-step reduction from our previous paper [4]

where the context enclosing a redex must be an evaluation context, not a general context. Hence
the SN property in this paper is slightly stronger than the one in [4].
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(x : A ∈ Γ and τ ≤ A)

Γ `p x : τ
var

(c is a constant of basic type b)

Γ `p c : b
const

Γ, x : σ; α ` e : τ ; β

Γ `p λx.e : (σ/α → τ/β)
fun

Γ ; γ ` e1 : (σ/α → τ/β); δ Γ ; β ` e2 : σ; γ

Γ ; α ` e1e2 : τ ; δ
app

Γ `p e : τ

Γ ; α ` e : τ ; α
exp

Γ, k : ∀t.(τ/t → α/t); σ ` e : σ; β

Γ ; α ` Sk.e : τ ; β
shift

Γ ; σ ` e : σ; τ

Γ `p 〈e〉 : τ
reset

Γ `p e1 : σ Γ, x : Gen(σ; Γ ); α ` e2 : τ ; β

Γ ; α ` let x = e1 in e2 : τ ; β
let

Γ ; σ ` e1 : bool; β Γ ; α ` e2 : τ ; σ Γ ; α ` e3 : τ ; σ

Γ ; α ` if e1 then e2 else e3 : τ ; β
if

Fig. 4. Type Inference Rules of λ
s/r
let .

denotes the answer type before (after, resp.) the execution of the function body. See Asai
and Kameyama [4] for details. A type variable is bound by the universal quantifier ∀ as
usual, and FTV(α) denotes the set of free type variables in α.

A type context (denoted by Γ ) is a finite list of the form x1 : A1, · · · , xn : An where the
variables x1, · · · , xn are mutually distinct, and A1, · · · , An are (polymorphic) types.

Judgments are either one of the following forms:

Γ `p e : τ judgment for pure expression
Γ ; α ` e : τ ; β judgment for general expression

The first form of the judgment signifies the expression e is a pure expression (free from control
effects), and the second is for an arbitrary expression. We distinguish pure expressions from
other expressions in order to present the restriction of let-polymorphism: polymorphism can
be introduced only for pure expressions, as we can see it from the type inference rule for let
below.

Figure 4 lists the type inference rules of λ
s/r
let where τ ≤ A in the rule (var) means

the instantiation of type variables by monomorphic types. Namely, if A ≡ ∀t1. · · · ∀tn.ρ
for some monomorphic type ρ, then τ ≡ ρ[σ1, · · · , σn/t1, · · · , tn] for some monomorphic
types σ1, · · · , σn. The type Gen(σ; Γ ) in the rule (let) is defined by ∀t1. · · · ∀tn.σ where
{t1, · · · , tn} = FTV(σ) − FTV(Γ ).

The type inference rules are a natural extension of the monomorphic type system by
Danvy and Filinski [5]. Pure expressions are defined by one of the rules (var), (const), (fun)
or (reset). They can be freely turned into general expressions by the rule (exp). Pure ex-
pressions can be used polymorphically through the rule (let). It generalizes the standard
let-polymorphism found in ML where the so called value restriction is adopted.5 Finally, the
rule (shift) is extended to cope with the answer type polymorphism of captured continua-
tions: k is given a polymorphic type ∀t.(τ/t → α/t).

5 Note that all values are pure, but pure expressions are not necessarily values.
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2.3 Properties

In our previous paper [4], we claimed that our calculus provides a good foundation for
studying the interaction between polymorphism and delimited continuations. To support
this claim, we have presented the proofs of the following properties: Strong Type Soundness,
Existence of Principal Types, and Preservation of types and equality through CPS trans-
lation. We have also stated Confluence and Strong Normalization for the calculus, but did
not present the proofs.

In this subsection, we quickly review the properties which were proved in [4].6

Theorem 1 (Subject Reduction). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2, then
Γ ; α ` e2 : τ ; β is derivable. Similarly, if Γ `p e1 : τ is derivable and e1 Ã∗ e2, then
Γ `p e2 : τ is derivable.

Theorem 2 (Progress). If `p 〈e〉 : τ is derivable, then 〈e〉 can be reduced.

By Theorems 1 and 2, we can conclude that our type system is sound (strong type
soundness in the sense of [18]).

Theorem 3 (Principal Type and Type Inference). In λ
s/r
let , principal type exists, and

we can construct a sound and complete type inference algorithm as an extension of Hindley-
Milner’s algorithm.

3 Definitional CPS Translation

A CPS translation is a translation from one calculus (typically with control operators) to a
simpler calculus (typically without control operators). It allows us to investigate the semantic
structure of the source calculus. The merit of shift and reset over other control operators for
delimited continuations comes from the fact that there exists a simple, compositional CPS
translation. Danvy and Filinski gave the precise semantics of shift and reset in terms of a
CPS translation [6, 7], and based on their translation, various theoretical results as well as
applications using shift and reset have been proposed (see, for instance, [12]).

In this section, we present an extension of Danvy and Filinski’s CPS translation, namely,
a CPS translation from λ

s/r
let to a pure polymorphic lambda calculus λlet. We call this CPS

translation as “definitional” one, since it defines the semantics of λ
s/r
let .

In the following, we first define the target calculus λlet, and then present the definitional
CPS translation.

3.1 Target Calculus λlet

The syntax of values and expressions in λlet are the same as those in λ
s/r
let except that λlet

does not have control operators shift and reset. Types of λlet are standard and given by:

α, β ::= t | b | α → β monomorphic type
A ::= α | ∀t.A polymorphic type

6 Strictly speaking, these theorems are extended versions of the corresponding theorems in [4],
since the notion of reduction in this paper is slightly extended.
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(x : A ∈ Γ and τ ≤ A)

Γ ` x : τ
var

(c is a constant of basic type b)

Γ ` c : b
const

Γ, x : α ` e : β

Γ ` λx.e : α → β
fun

Γ ` e1 : α → β Γ ` e2 : α

Γ ` e1e2 : β
app

Γ ` e1 : σ Γ, x : Gen(σ; Γ ) ` e2 : β

Γ ` let x = e1 in e2 : β
let

Γ ` e1 : bool Γ ` e2 : β Γ ` e3 : β

Γ ` if e1 then e2 else e3 : β
if

Fig. 5. Type Inference Rules of λlet

b∗ = b for a basic type b

t∗ = t for a type variable t

((α/γ → β/δ))∗ = α∗ → (β∗ → γ∗) → δ∗

(∀t.A)∗ = ∀t.A∗

(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 6. CPS translation for types and type contexts.

Figure 5 defines the type inference rules of λlet. Note that, in the type inference rule
for (let), there is no side condition on the expression e1. Hence, for instance, an expression
let x = yz in x is not typable in λ

s/r
let , but is typable in λlet.

The reduction rules for λlet are the same as those for λ
s/r
let restricted to the expressions

in λlet, and are omitted.

3.2 Definitional CPS Translation from λ
s/r
let to λlet

Figures 6 and 7 define the definitional CPS translation for λ
s/r
let where the variables κ, κ′, m

and n are fresh. The type (α/γ → β/δ) is translated to the type of a function which, given
a parameter of type α∗ and a continuation of type β∗ → γ∗, returns a value of type δ∗.

In [4], we proved that the CPS translation preserves types and equality.

Theorem 4 (Preservation of Types). If Γ ; α ` e : τ ; β is derivable in λ
s/r
let , then

Γ ∗ ` [[e]] : (τ∗ → α∗) → β∗ is derivable in λlet.
If Γ `p e : τ is derivable in λ

s/r
let , then Γ ∗ ` [[e]] : (τ∗ → γ) → γ is derivable for an

arbitrary type γ in λlet.

Theorem 5 (Preservation of Equality). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2

in λ
s/r
let , then [[e1]] = [[e2]] in λlet where = is the least congruence relation containing Ã in

λlet.

Note that Theorem 5 only guarantees that the equality is preserved through the CPS
translation. In fact, we cannot show that e1 Ã e2 implies [[e1]] Ã∗ [[e2]].
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c∗ = c

x∗ = x

(λx.e)∗ = λx.[[e]]

[[v]] = λκ.κv∗

[[e1e2]] = λκ.[[e1]](λm.[[e2]](λn.mnκ))

[[Sk.e]] = λκ.let k = λnκ′.κ′(κn) in [[e]](λm.m)

[[〈e〉]] = λκ.κ([[e]](λm.m))

[[let x = e1 in e2]] = λκ.let x = [[e1]](λm.m) in [[e2]]κ

[[if e1 then e2 else e3]] = λκ.[[e1]](λm.if m then [[e2]]κ else [[e3]]κ)

Fig. 7. CPS translation for values and expressions.

e ::= c | x | λx.e | λx.e | e1@e2 | e1@e2

| let x = e1 in e2 | if e1 then e2 else e3 expression

α, β ::= t | b | α→β | α→β monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 8. Syntax of Two-Level Polymorphic Lambda Calculus.

4 Refined CPS Translation

The definitional CPS translation is useful in the semantic study of shift and reset. However,
it does not preserve reductions, and hence cannot be used to prove SN. The failure of
preservation of reduction is due to the fact that the CPS translation introduces a lot of
administrative redexes through the translation.

To overcome this difficulty, we refine the definitional CPS translation so that it may
produce fewer administrative redexes. There are several ways to define such optimized CPS
translations since Plotkin proposed Colon Translation [16]. Here we use an extended version
of two-level lambda calculus [7] as the target calculus of the translation, and define a refined
CPS translation from λ

s/r
let to it.

4.1 Two-Level Version of Polymorphic Lambda Calculus

In this subsection we introduce λ2L
let, a two-level version of polymorphic typed lambda cal-

culus (without control operators). In this calculus, function spaces are classified into two -
static one and dynamic one. Accordingly, each occurrence of λ and application (explicitly
denoted by “@”) is annotated by overlines (static) as λ and @, or underlines (dynamic) as λ
and @. In their original article, Danvy and Filinski classified every construct into two, but
here we only classify lambda’s and applications, and we assume that the other constructs
are implicitly classified as dynamic ones.

Figure 8 gives the syntax of λ2L
let, which is an annotated variant of λlet.

Figure 9 gives the type system of λ2L
let, where the type inference rules for (var), (const),

(let), and (if) are the same as those in λlet, and are omitted.
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Γ, x : α ` e : β

Γ ` λx.e : α→β
static fun, x ∈ FV(e) Γ, x : α ` e : β

Γ ` λx.e : α→β
dynamic fun

Γ ` e1 : α→β Γ ` e2 : α

Γ ` e1@e2 : β
static app

Γ ` e1 : α→β Γ ` e2 : α

Γ ` e1@e2 : β
dynamic app

Fig. 9. Type Inference Rules of Two Level Polymorphic Calculus.

The crucial difference of the type system of λ2L
let from that of λlet (besides the annotations)

is the side condition x ∈ FV(e) in the static function:

Γ, x : α ` e : β

Γ ` λx.e : α→β
static fun, x ∈ FV(e)

The condition imposes that the abstracted variable x must occur freely in e.
We put this side condition by the following reason: we will use the static lambda ab-

straction to constitute an administrative redex (a redex which does not exist in the source
expression, and is created by the CPS translation). When we prove that the CPS translation
preserves reductions, it is important to guarantee that reducing an administrative redex does
not discard any subexpressions, hence we put the side condition.

Note that the static lambda expression is not necessarily linear, namely, x may appear
more than once in e, since CPS translating conditional expressions (if-then-else) may du-
plicate the arguments of continuations. Note also that the side condition is not applied to
dynamic lambda abstraction which corresponds to lambda abstraction in the source expres-
sion. In other words, the actual continuations in λ

s/r
let may discard their arguments.

The operational semantics of λ2L
let is given as regarding the only redex as the static β-

redex. Namely, the following single rule constitutes the notion of reduction in λ2L
let:

(λx.e1)@e2 Ã e1[e2/x]

Note that this is full β-reduction, rather than the call-by-value variant.
For this notion of reduction, we have subject reduction, strong normalization and con-

fluence as follows.

Theorem 6 (Subject Reduction). If Γ ` e : α is derivable in λ2L
let, and e Ã e′ by

reducing static β-redexes only, then Γ ` e′ : α is derivable in λ2L
let.

Note that this theorem is not trivial, as we have a side condition in the typing rule for
static lambda abstractions.

Proof. Since all static lambda abstractions λx.e satisfy the side condition x ∈ FV(e), all free
variables in (λx.e)@e′ occur in e[e′/x] freely, so the result of static β-reduction also satisfies
the side condition, too.

Theorem 7. Static reduction Ã in λ2L
let is confluent and strongly normalizing.

Proof. Since we can embed λ2L
let into the second order lambda calculus (where we only

consider static reductions in λ2L
let), strong normalization is apparent. We can easily prove

that static reduction is Church-Rosser, since dynamic constructs are not reduced through
the reduction.
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b∗ = b for a basic type b

t∗ = t for a type variable t

(α/γ → β/δ)∗ = α∗→(β∗→γ∗)→δ∗

(∀t.A)∗ = ∀t.A∗

(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 10. Refined CPS translation for types.

By this theorem, for each expression e in λ2L
let, its normal form uniquely exists (the

normality is defined with respect to the static β-reduction). The normal form of e is denoted
by NF(e).

4.2 Refined CPS Translation

The refined CPS translation is a syntax-directed translation from λ
s/r
let to λ2L

let where we use
static constructs (λ and @) for administrative redexes, and dynamic constructs (λ, @ and
all other constructs) for source redexes.

Given an expression e in λ
s/r
let and an expression K in λ2L

let, we define an expression [[e, K]]
in λ2L

let as the CPS translation for e with respect to the continuation K. We first define the
translation for types in Figure 10.

x∗ = x

c∗ = c

(λx.e)∗ = λx.λκ.[[e, λm. κ@m]]

[[v, K]] = K@v∗

[[e1 e2, K]] = [[e1, λm1.[[e2, λm2.(m1@m2)@(λn. K@n)]]]]

[[〈e〉, K]] = K@[[e, λm.m]]

[[Sk.e, K]] = let m1 = true in

let k = λn.λκ′.κ′@(K@n) in [[e, λm.m]]

[[let x = e1 in e2, K]] = let x = [[e1, λm.m]] in [[e2, K]]

[[if e1 then e2 else e3, K]] = [[e1, λm.if m then [[e2, K]] else [[e3, K]]]]

Fig. 11. Refined CPS translation for expressions and values.

Figure 11 gives the CPS translation for expressions and values where m, m1, m2, n,
κ, and κ′ are fresh variables. In the definition for shift, we have added a redundant redex
let m1 = true in · · · for the purpose of SN proof.

The complete CPS transform of an expression e may be defined by C[[e]] ≡ λκ.[[e, λx.κ@x]],
though we do not need this definition in the proof of strong normalization.
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Theorem 8 (Preservation of Types).

1. Suppose Γ ; α ` e : τ ; β is derivable in λ
s/r
let , ∆ ` K : τ∗→α∗ is derivable in λ2L

let, and
Γ ∗,∆ is a valid type context in λ2L

let. Then Γ ∗, ∆ ` [[e,K]] : β∗ is derivable in λ2L
let.

2. Suppose Γ `p e : τ is derivable in λ
s/r
let and ∆ ` K : τ∗→γ is derivable in λ2L

let, and
Γ ∗,∆ is a valid type context in λ2L

let. Then Γ ∗, ∆ ` [[e,K]] : γ is derivable in λ2L
let.

Proof. We can prove this theorem by induction on the derivation of Γ ; α ` e : τ ; β and
Γ `p e : τ . Here, we give proofs for a few cases.

(Case e = e1e2) We assume that Γ ; α ` e1e2 : τ ; β is derivable in λ
s/r
let and ∆ ` K :

τ∗→α∗ is derivable in λ2L
let.

By inversion, we have

Γ ; γ ` e1 : (σ/α → τ/β); δ in λ
s/r
let

Γ ; β ` e2 : σ; γ in λ
s/r
let

Then by induction hypothesis on e2, we have:

Γ ∗,∆ ` [[e2, λm2.(m1@m2)@(λn. K@n)]] : γ∗ in λ2L
let

and by induction hypothesis on e1, we have:

Γ ∗,∆ ` [[e1, λm1.[[e2, λm2.(m1@m2)@(λn. K@n)]]]] : δ∗ in λ2L
let

Hence we are done.
(Case Γ ; α ` Sk.e : τ ; β) By inversion, we have

Γ, k : ∀t.(τ/t → α/t); σ ` e : σ; β in λ
s/r
let

By induction hypothesis on e, we have:

Γ ∗, k : ∀t.(τ∗→(α∗→t)→t), ∆ ` [[e, λm.m]] : β∗ in λ2L
let

and then it is easy to derive:

Γ ∗,∆ ` let m1 = true in let k = λn.λκ′.κ′@(K@n) in [[e, λm.m]] : β∗ in λ2L
let

hence we are done.

4.3 Summary of this Section

We can summarize the results in this section as the properties on the following translations:

λ
s/r
let =⇒ λ2L

let =⇒ λlet

In the first step, the refined CPS translation maps an expression in λ
s/r
let to an expression

in λ2L
let. Theorem 8 guarantees that this step preserves the type.
In the second step, an expression in λ2L

let is normalized to its unique normal form, which
can be viewed as an expression in λlet by removing all the overlines and underlines.7 Theorem
6 guarantees that this step preserves the type.

We know that the calculus λlet is strongly normalizing, since it can be embedded in,
for instance, the second order lambda calculus [9]. Hence, in order to prove the strong
normalizability of λ

s/r
let , it only remains to show that the composed translation from λ

s/r
let to

λlet preserves reductions, which will be proved in the next section.
7 Note that static constructs may remain in the normal forms.
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5 Strong Normalization

In this section, we prove that reductions in λ
s/r
let are preserved by the composed translation

of the refined CPS translation and the static reduction in λ2L
let.

Theorem 9 (Preservation of Reduction). Suppose Γ ; α ` e1 : τ ; β is derivable in
λ

s/r
let , and ∆ ` K : τ∗→α∗ is derivable in λ2L

let. Then we have:

1. If e1 Ã e2 by a reduction rule other than the reset-value reduction (〈v〉 Ã v), then
NF([[e1,K]]) Ã+ NF([[e2, K]]) in λlet.

2. If e1 Ã e2 by the reset-value reduction (〈v〉 Ã v), then NF([[e1, K]]) ≡ NF([[e2,K]]) in λlet.

In the theorem above, we regard expressions in λ2L
let as those in λlet by erasing all overlines

and underlines.

Proof. The first part of this theorem is proved by the case analysis of reduction rules used
in e1 Ã e2.

– If the reduction is the call-by-value β reduction (the first reduction in Figure 2), or
reductions for let, or conditional, then the theorem can be proved easily.

– For the reduction 〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉, we first prove that NF([[F [e],K]]) ≡
NF([[e, λm.[[F [m],K]]]]). This property can be easily proved by induction on F . Note that
this property holds for typable expressions only.
Then we can prove:

NF([[〈F [Sk.e]〉,K]])

≡ NF(K@[[F [Sk.e], λm.m]])

≡ NF(K@[[Sk.e, λm′.[[F [m′], λm.m]]]])

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@((λm′.[[F [m′], λm.m]])@n) in [[e, λm.m]]))

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]]))

Ã+ NF(K@(let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]]))

In the last step above, since K does not discard its argument by the side condition of
the static lambda expression, the reduction let m1 = true in e1 Ã e1 is preserved,
and at least one step reduction occurs during this sequence. (Recall that we have added
a dummy redex in the refined CPS translation of the shift expression.) We also have:

NF([[〈let k = λx.〈F [x]〉 in e〉,K]])

≡ NF(K@let k = λx.λκ.κ@[[F [x], λm.m]] in [[e, λm.m]])

and therefore the resulting expressions are the same up to α-equivalence, hence we have:

NF([[〈F [Sk.e]〉,K]]) Ã+ NF([[〈let k = λx.〈F [x]〉 in e〉,K]])

The second part of this theorem is proved by a simple calculation, hence we are done.

We now give the strong normalization property for λ
s/r
let as a theorem.
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Theorem 10 (Strong Normalization). If Γ ; α ` e : τ ; β is derivable in λ
s/r
let , then there

is no infinite reduction sequence starting from e.

Proof. Suppose there is an infinite reduction sequence e1 Ã e2 Ã · · · in λ
s/r
let . Since the

reset-value reduction (〈v〉 Ã v) cannot be applied to an expression infinitely many times,
the reduction sequence must contain infinitely many reductions which are not the reset-value
reduction. Then by Theorem 9, we have an infinite sequence NF(C[[e1]]) Ã+ NF(C[[e2]]) Ã+ · · · .
But, since the target calculus λlet is a strongly normalizing calculus, we get contradiction.

Hence, λ
s/r
let does not have an infinite reduction sequence.

As a corollary of strong normalization, we obtain confluence of λ
s/r
let , though it can be

proved directly.

Theorem 11 (Confluence). The notion of reduction in λ
s/r
let is confluent.

Proof. Since the reductions in λ
s/r
let are not overlapping, they are weakly Church-Rosser

(WCR). Church-Rosser property is subsumed by WCR and SN.

6 Conclusion

In this paper, we have presented a proof of strong normalization of the polymorphic calculus
for shift and reset introduced by our previous work. The calculus allows let-polymorphism
with a less restricted condition than the value restriction in ML families.

Let us emphasize that our proof is simple and easy to understand compared with the
SN proofs for the calculi with call/cc and λµ, for which one needs more involved proof. The
simplicity of our proof partly comes from the modularity of the proof, but mainly from the
design of the control operators shift and reset and the naturality of the type system [4].

For future work, we plan to extend this result to the calculi with impredicative poly-
morphism given in [4]. Finding a better perspective of strong normalizability of calculi with
various control operators is also left for future work.
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