
Closing the Stage
From Staged Code to Typed Closures

Yukiyoshi Kameyama
University of Tsukuba
kameyama@acm.org

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Abstract
Code generation lets us write well-abstracted programs without
performance penalty. Writing a correct code generator is easier than
building a full-scale compiler but still hard. Typed multistage lan-
guages such as MetaOCaml help in two ways: they provide sim-
ple annotations to express code generation, and they assure that
the generated code is well-typed and well-scoped. Unfortunately,
the assurance only holds without side effects such as state and
control. Without effects, generators often have to be written in
a continuation-passing or monadic style that has proved inconve-
nient. It is thus a pressing open problem to combine effects with
staging in a sound type system.

This paper takes a first step towards solving the problem, by
translating the staging away. Our source language models Meta-
OCaml restricted to one future stage. It is a call-by-value language,
with a sound type system and a small-step operational semantics,
that supports building open code, running closed code, cross-stage
persistence, and non-termination effects. We translate each typing
derivation from this source language to the unstaged System F with
constants. Our translation represents future-stage code using clo-
sures, yet preserves the typing, α-equivalence (hygiene), and (we
conjecture) termination and evaluation order of the staged program.

To decouple evaluation from scope (a defining characteristic of
staging), our translation weakens the typing environment of open
code using a term coercion reminiscent of Gödel’s translation from
intuitionistic to modal logic. By converting open code to closures
with typed environments, our translation establishes a framework
in which to study staging with effects and to prototype staged
languages. It already makes scope extrusion a type error.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Control struc-
tures; polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure

General Terms Design, Languages

Keywords Multistage programming, type abstraction, parametric
polymorphism, mutable state and control effects, closures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

1. Introduction
Code generation is the most promising approach in high-perfor-
mance computing (Püschel et al. 2005) and high-assurance embed-
ded programming (Hammond and Michaelson 2003). Because a
generic program in an earlier stage can generate a specialized pro-
gram in a later stage and assure it safe, the programmer need not
trade off abstraction and assurance for efficiency in time and space.

An attractive way to express such code generation is to use a
multistage programming language such as MetaOCaml (Lengauer
and Taha 2006), in which the programmer need only annotate the
program to separate the stages (Taha 2004). Staging provides a
principled interface through which a code generator can take advan-
tage of the implementation of the language it is written in, whether
or not that implementation is a self-interpreter that can be spe-
cialized (Jones 1988). The applications of staging thus include the
usual uses of code generation, such as partial evaluation (Davies
and Pfenning 2001; Ghani et al. 1998), embedding domain-specific
languages (Czarnecki et al. 2004; Pašalić et al. 2002), and control-
ling special processors (Elliott 2004; Taha 2005).

Staging lets us symbolically manipulate pieces of open code,
which may contain free variables that will be bound to actual values
only at a future stage. Yet a staged language should ensure that α-
conversion preserves the meaning of a program, and that the code
finally generated is closed, that is, does not contain free variables
(Taha and Nielsen 2003). Staged type systems exist in the literature
that achieve these goals (Calcagno et al. 2004; Taha and Nielsen
2003), but they do not consider side effects with open code.

Side effects let us apply code-generation techniques such as
let insertion without cumbersome programming in continuation-
passing or monadic style. In particular, delimited control is useful
for partially evaluating programs using sum types (Balat et al. 2004;
Lawall and Danvy 1994) and delimited control (Asai 2002), and
mutable state and delimited control make it easy to express let
insertion (Sumii and Kobayashi 2001; Swadi et al. 2006) and to
count generated operations. Unfortunately, these effects with open
code make it possible to generate ill-scoped code—that is, to cause
scope extrusion—in all multistage type systems today.

Our motivation is to write effectful code generators in a lan-
guage like MetaOCaml without risking scope extrusion. In other
words, we want a multistage type system that is sound with effects.

Contributions To design a multistage type system that is sound
with effects, we must understand how effects interact with staging.
To this end, we translate in this paper a language λ α

1v, which models
the mature and practical multistage language MetaOCaml (§3), into
System F, which lacks staging (§4). Our translation incurs the over-
head of functional and type abstraction, but keeps the speedup of
specialization and expresses the static and (we conjecture) dynamic
semantics of λ α

1v, including the order of effects among stages (§5).
Our translation reduces both closed and open code to closures.

Because we aim to combine staging with effects (especially de-
limited control), we formalize our source language using a small-
step operational semantics with evaluation contexts (Wright and
Felleisen 1994). With staging, our redexes may be open and eval-
uation contexts may be binding (§3.2). Such a small-step seman-
tics has only been used to study call-by-need (Ariola and Felleisen
1997; Maraist et al. 1998) to our knowledge. We prove subject re-
duction, determinism, and progress for this source language (§3.3).

After describing the translation, we present three payoffs: strong
normalization for the source language without fix (§5.3), detecting
scope extrusion (§6), and counting arithmetic operations in a sound
staged language (§6).

MetaOCaml supports an unlimited number of future stages
(Glück and Jørgensen 1997), so generated code may in turn gen-
erate code. In this paper, we restrict ourselves to one future stage,
which suffices in many real-life applications (Carette and Kiselyov
2005; Lengauer and Taha 2006) and where issues such as scope
extrusion and cross-stage persistence already arise (see §2). These
issues force us to type environments more precisely yet polymor-
phically, which complicates and distinguishes our translation as
compared to typed closure conversion (Minamide et al. 1996).

2. The basics of staging and our translation
We begin by informally sketching our translation on some exam-
ples, starting with the classic power function. We use the language
formalized in §3, which is like OCaml with staging annotations
(explained below) and fix (in place of let rec). Our examples in
MetaOCaml and translations in OCaml are all available online at
http://okmij.org/ftp/Computation/staging/.

let square = λx :int.x× x
let power = (* (α)(int→ 〈int〉α → 〈int〉α) *)

(α)fix f (n : int) : 〈int〉α → 〈int〉α . λx :〈int〉α .
if n = 0 then 〈1〉α

else if n mod 2 = 0 then 〈%square ∼(f (n/2) x)〉α
else 〈∼x×∼(f (n−1) x)〉α

let power7 = (* (α)(int→ int) *)
run(α)〈λxα :int.∼(printf “power”; power[α] 7 〈xα 〉α)〉α

let res = (α)(power7 [α]2, power7 [α]3)

This code uses staging annotations: bracket 〈e〉α , escape ∼e, cross-
stage persistence %e, and rune. The superscript α is a classifier,
explained in §3. To ease the notation, we will often drop the clas-
sifier where it can be easily inferred according to the syntax of §3;
for now, classifier annotations along with the classifier introduction
(α)e and the classifier application e[α] may be disregarded. If we
ignore these annotations—that is, regard 〈e〉α , ∼e, %e, rune, (α)e,
and e[α] as just e, and xα as just x—then the code expresses a stan-
dard way to compute xn. The expression

λx:int.(printf “power”; power 7 x)

builds a closure that includes the printf operation and the power
computation. The body of the closure is of course not evaluated
until the argument x is supplied, so nothing is printed when power7
is computed. Computing res invokes power7 twice and so prints
“power” twice with the unstaged code.

With staging annotations, the picture is different. The code still
expresses the same algorithm, but the computations are performed
at different stages. The bracket 〈e〉α , like quasiquote in Lisp,
says to execute e at a future stage. If e has the type int, then 〈e〉α
has the type 〈int〉α . The escape ∼e, like unquote in Lisp, says
to evaluate e while building a future-stage computation. The result
of e at the present stage must be a future-stage computation and is
spliced into the future-stage computation being built. The construct
rune, like eval in Lisp, evaluates the computation e.

With staging annotations in the code above, “power” is printed
only once—when power7 is evaluated. Consequently, when we
compute res, nothing is printed, and the function power is not
executed because the loop over n has been already performed. The
body of power7 is λx.x× square (x× square (x×1)).

2.1 Naı̈ve non-solution
Our goal is to represent staged computations in a regular language,
namely System F (§4). The essence of staging is to quote computa-
tions, delaying their execution to some future time. In call-by-value
languages, the standard way to delay a computation is to put it into
a function or simply a thunk. We may be tempted then to repre-
sent the type 〈t〉 as ()→ t, the bracket expression 〈e〉 as λ ().e, the
escape ∼e and rune as e (), and cross-stage persistence %e as e.

If we interpret our staged power code that way, it works just
like the unstaged code: “power” is printed twice, when we com-
pute res. Thus, we got rid of staging along with its benefit. This
failure to represent staging can be understood by considering an
expression 〈∼e〉. The staged language evaluates e while building
the bracketed expression, so any side effect in e will occur then.
Our naı̈ve interpretation turns the expression into λ ().e(). Here e
becomes encapsulated into a thunk, so it will be evaluated when the
bracketed computation is run, not while it is built.

For the thunk to encapsulate only the result of an escape and not
the escape itself, we need to ‘lift’ the escape out of the thunk, that
is, interpret 〈∼e〉 as let v = e in λ ().v(). But then, the expression

〈λxα :int.∼(printf “power”; power[α] 7 〈x〉)〉

in power7 above would become

let v = printf “power”; power[α] 7 λ ().x in λ ().λx :int.v()

Now printf occurs outside the thunk, but so does the unbound
variable x. After all, we are supposed to compute v before a value
is supplied for x. Staging lets us use a variable symbolically before
it is bound to a value. Our translation must thus deal with symbolic
references to variables without values (Taha 1999; §7.2.1).

2.2 Environment passing
To translate symbolic variable references, we can model the envi-
ronment as a record whose keys are such first-class references. To
explore this idea, let us introduce an abstract data type of extensi-
ble records: R0 is some initial environment; R(′x = v) extends the
environment R by associating the key ′x to the value v; and R(′x)
looks up the value associated with the key ′x in the environment R.

We can represent a code expression 〈e〉 as λR. . . . , where the
argument R associates the free variables in e to their values. For
example, we represent 〈x〉 as λR.R(′x), a projection from the
environment. This function is first-class and can be passed around
before we have a concrete environment to apply it to. We represent
rune by applying the representation of e to R0. Likewise, we
interpret the escape 〈∼〈1〉〉 as let v = λR.1 in λR.vR. A binding
operation under bracket should extend the effective environment,
so we can translate let f y = 〈∼y+1〉 in 〈λx.∼(f 〈x〉)〉 as

let f y = λR.yR+1 in

let v = f (λR.R(′x)) in λR.λx.v(R(′x = x)).

For this translation to work, we must ensure that look-up al-
ways succeeds. We prove it does below by assigning types to en-
vironments that reflect their contents. We should also specify how
to α-rename a translated expression: it is easy to rename x to y in
〈λx.∼(f 〈x〉)〉 without affecting the meaning of the expression, but
it is more involved to perform the same renaming on our translation,
because we need to replace x with y as well as ′x with ′y. Before
addressing these issues, we use this approach to translate power.

let square = λx.x× x
let power = fix f (n). λx.

if n = 0 then λR.1
else if n mod 2 = 0

then let v = f (n/2) x in λR.square(vR)
else let v1 = x in let v2 = f (n−1) x in

λR.v1R× v2R
let power7 = let v = printf “power”; power 7 λR.R(′x) in

(λR.λx.v(R(′x = x)))R0
let res = (power7 2, power7 3)

As in the staged code, the string “power” is printed only once, when
we compute power7.

2.3 Environment polymorphism
A common practice in staged programming is to splice a piece
of open code into a scope with additional bindings. Translating
this practice requires polymorphism, as we explain with a simple
example. The example is a function ef from the code type 〈int〉α to
the code type 〈int→ int〉α . It splices the argument into code with
an extra binding. Below we define ef and use it in two examples.

let ef = (α)λ z:〈int〉α .〈λxα :int.∼z+ xα 〉α
let ef 1 = (α)ef [α]〈1〉α
let ef 2 = (α)〈λxα .λyα .∼(ef [α]〈xα × yα 〉α)〉α

The term ef 1 evaluates to (α)〈λx.1 + x〉 whereas ef 2 evaluates to
(α)〈λx.λy.λx′.x× y + x′〉. In the latter result, we need to distin-
guish two later-stage variables named x. To maintain hygiene and
α-equivalence, we must lexically link each use of a variable to its
binding occurrence and rename variables if their names clash.

Applying the informal translation of the previous section to this
example shows several problems.

let ef = λ z.λR.λx.z(R(′x = x))+ x
let ef 1 = ef (λR.1)
let ef 2 = let v = ef (λR.R(′x)×R(′y)) in

λR.λx.λy.v(R(′x = x)(′y = y))

The first problem is that ef needs a polymorphic type. To type-
check the multiplication R(′x)×R(′y), the type of R should as-
sociate the keys ′x and ′y with the type int, but R in ef 1 may not
contain a mapping for ′y. In general, we may invoke ef in the scope
of any number of later-stage variables, so we seem to need so-called
ρ-polymorphism for our environment records. The use of ef should
be typed in ef 1 as

∀ρ.({ρ}→ int)→ ({ρ}→ int→ int)

but in ef 2 as

∀ρ.({′x : int ,′ y : int ,ρ}→ int)→ ({′x : int ,′ y : int ,ρ}→ int→ int).

The α-renaming problem noted above also rears its head. To
maintain hygiene, the translation needs to detect potential name
clashes among variables and avert them by renaming variables
along with fields in R. The translated example above does not work
because the extensions R(′x = x) on the first and last lines clash.
To prevent such a clash, our type for R seems to require not only ρ-
polymorphism but also negative side conditions that state the names
that must not occur in any instantiation of the polymorphic type.
Such conditions complicate type checking, especially with multiple
staging levels, yet still leave the problem of preserving the meaning
of programs in the face of α-conversion (Taha and Nielsen 2003;
§1.4). Taha and Nielsen avoid these difficulties by ingeniously
introducing classifiers, which track just enough information about
the structure of environments to ensure type safety in a staged
language without effects. Alas, we need more precision to maintain
hygiene in a language with effects or without staging support.

2.4 Maintaining hygiene
We maintain α-equivalence and avoid name clashes by represent-
ing R not as a record keyed by names but as a tuple keyed by
indices. The typing environment of the staged code is an ordered
sequence of bindings, so we can use that ordering to index into R
at run time. This idea is reminiscent of de Bruijn indices, but we
index only later-stage variables and pass the indices around during
the earlier stage as first-class code values.

The translation of a code expression thus depends on the later-
stage variables in scope. For example, the code expression 〈1〉
translates to λ ().1 in the empty typing environment. The expres-
sion 〈x〉 translates to λx.x if x is the only later-stage variable in
the typing environment, but to λ (x,y).x if the typing environment
contains the later-stage variables x and y, in that order. To splice
in a code value is to apply it to the current later-stage environment
reified as a tuple, so the translation of 〈λx.λy.∼〈x× x〉+ y× y〉 is
essentially λ ().λx.λy.(λ (x,y).x× x)(x,y)+ y× y.

A code value may be created in one typing environment then
used in many others, as in

let z = 〈1〉 in 〈λxα :int.∼z+ xα 〉. (1)

The code value z is created in an environment with no later-stage
variable, then used in an environment with one later-stage vari-
able x. In general, the environment of use must extend the environ-
ment of creation; it is no accident that this crucial invariant holds in
the absence of effects. Having translated 〈1〉 to λ ().1 in the empty
environment, we would commit a type error were we to translate
∼z in (1) by applying λ ().1 to (x). Instead, we need to coerce the
code value to accommodate the extended environment. Given the
environment of use and of creation, it is easy to see that we should
apply the coercion λ f .λ (x). f () to λ ().1. We thus translate (1) to

let z = λ ().1 in λ ().λx.(λ f .λ (x). f ()) z (x)+ x. (2)

(Actually, our formal translation produces some additional β -value
redexes. The gory details are shown in §5.2.)

A second sort of polymorphism arises when a function takes a
code value as argument, as ef above does. The translation of the
code argument is a function from environments, but we do not
know those environments’ type when translating the function be-
cause the code argument may use any number of later-stage vari-
ables. Therefore the function must translate to a polymorphic func-
tion whose type is of the form ∀π.(π → ···)→ ··· . For example,
we translate ef to a function of type ∀π.(π → int)→ (π → int→
int). As the examples using ef in §2.3 show, each application of ef
may instantiate the type variable π to a different environment type.
In particular, we translate ef 1 and ef 2 there as follows.

let ef 1 = ef [()](λ ().1)
let ef 2 = let v = ef [(int , int)](λ (x,y).x× y) in λ ().λx.λy.v(x,y)

It remains to translate ef itself, or equivalently, to translate its
body 〈λxα :int.∼z+ xα 〉α in the environment z : 〈int〉α . Again be-
cause the code value z may use any number of later-stage variables,
the translated type of z is π → int where π is a Λ-bound type vari-
able. The code value returned by the translation of ef should have
the type π → int→ int. Guided by these types and using the tech-
niques described above, we obtain the translation

let ef = Λπ. λ z:π→ int.λ r :π.λx:int.(λ f .λ (r,x). f r)z(r,x)+ x.

2.5 A higher-order example
A more complex example to translate is staged η-expansion, a
higher-order function on code values that is useful in staged pro-
gramming and difficult for staged type systems (Taha and Nielsen
2003; §1.4). Below we define eta and give an example of its use.

Classifiers α,β Types t ::= int | t→ t | (α)t | 〈u〉α

Named levels A,B ::= 0 | α Flat types u ::= int | u→ u

Variables xA,yA,zA, f A Environments Γ ::= [] | Γ,α | Γ,x : t | Γ,xα : u

Expressions e0 ::= i0 | x0 | λx0 :t.e0 | fix f 0(x0 : t) : t. e0 | e0 + e0 | e0e0 | (α)e0 | e0[α] | rune0 | 〈eα 〉α

eα ::= iα | xα | λxα :u.eα | fix f α (xα : u) : u. eα | eα + eα | eα eα | ∼e0 | %e0

Values v0 ::= i0 | x0 | λx0 :t.e0 | fix f 0(x0 : t) : t. e0 | (α)v0 | 〈vα 〉α

vα ::= iα | xα | λxα :u.vα | fix f α (xα : u) : u. vα | vα + vα | vα vα | %e0

Contexts C0[] ::= [] | C0[[]+ e0] | C0[v0 +[]] | C0[[]e0] | C0[v0[]] | C0[(α)[]] | C0[[][α]] | C0[run []] | Cα [∼[]]

Cα [] ::= Cα [[]+ eα] | Cα [vα +[]] | Cα [[]eα] | Cα [vα []] | Cα [λxα :u. []] | Cα [fix f α (xα : u) : u. []] | C0[〈[]〉α]]

Figure 1. Syntax of λ α
1v

let eta = (α)λ f :〈int〉α→〈bool〉α .〈λxα :int.∼(f 〈xα 〉α)〉α
let eta1 = (α)〈λyα .λuα .∼(eta[α](λ z.〈∼z < yα ×uα 〉α))〉α

The term eta1 evaluates to (α)〈λyα .λuα .λxα .xα < yα ×uα 〉α .
The function f passed to eta maps the open code 〈xα 〉 to code

that may contain free variables other than xα . In eta1, for example,
f splices 〈xα 〉 into the open code 〈xα < yα × uα 〉, which uses the
additional free variables yα and uα . Because f and eta introduce
their free variables separately, they are each polymorphic in the
part of the later-stage environment extended by the other (O’Hearn
and Tennent 1995). That is, the translation of eta uses a type vari-
able π to represent whatever free variables f introduces (namely
yα and uα in eta1), and the translation of f uses a type variable π ′

to represent whatever free variable eta introduces (namely xα). The
translation of eta thus has the polymorphic function type

∀π.(∀π ′.((π,π ′)→ int)→ ((π,π ′)→ bool))
→ (π → int→ bool), (3)

in which π is to be instantiated by the caller and π ′ by the callee.
In particular, the caller eta1 instantiates π to the tuple type

(int , int) corresponding to yα and uα . Our formal translation per-
forms this instantiation as part of coercing eta from its environment
of creation, which is empty, to its environment of use in eta1, which
binds yα and uα . As formalized in §5.1, this coercion

λg.λ f .g[(int , int)]
(Λπ ′. λ z. let z′ = f [π ′](λ (y,u,r).z((y,u),r)) in

λ ((y,u),r).z′(y,u,r))

is a function from the type (3) to the type

(∀π ′.((int , int ,π ′)→ int)→ ((int , int ,π ′)→ bool))
→ ((int , int)→ int→ bool). (4)

Our translation of eta1 is then essentially

let v = eta[(int , int)](Λπ ′. λ z.λ ((y,u),r).z((y,u),r) < y×u) in
λ ().λy.λu.v(y,u).

Meanwhile, it is easier to translate eta to the type (3), as follows.

let eta = Λπ. λ f . let v = f [int](λ (r,x).x) in λ r.λx.v(r,x)

3. The source language λ α
1v

Figure 1 presents the syntax of our source language λ α
1v, a simply-

typed call-by-value λ -calculus with fix and staging annotations.
This calculus is closely based on Taha and Nielsen’s λ α (2003) but
limited to only one future stage. Modulo this limitation, the two
calculi are equally expressive, as detailed in §3.4.

As our metavariable notation indicates, we superscript each ex-
pression eA, value vA, variable xA, and context CA[] with a named

level A, to be explained shortly. Literal constants, variables, ab-
stractions, applications, and additions are standard. We define just
one base type, int, but our examples use bool analogously. Be-
cause our language is call-by-value, we write an η-expanded fix-
point fix f A(xA : t1) : t2. e for a recursive function with the argument
type t1 and return type t2, whose body e may refer to the function f
as well as the argument x. The bound variables are annotated with
their types, although we will often omit the types when they can be
inferred. The form let x = e1 in e2 abbreviates (λx.e2)e1 as usual.

The language also contains brackets 〈e〉α , escapes ∼e, and
rune. There is also an explicit form %x for cross-stage persistence
(CSP), left implicit in MetaOCaml. Bracket expressions 〈e〉α and
code types 〈t〉α are labeled by an environment classifier α (Taha
and Nielsen 2003). Classifiers are distinct identifiers that associate
code expressions with the environments in which they are typed. A
classifier α is bound by a so-called α-closed type expression (α)t,
which is akin to ∀α. t universally quantifying over a phantom type
(Launchbury and Peyton Jones 1995) or a nonce name (Miller and
Tiu 2003). An α-closed type is introduced by a classifier general-
ization expression (α)e and eliminated by a classifier instantiation
expression e[α]. A classifier generalization expression (α)e asserts
that the classifier α is used exclusively in e; that is, it introduces a
fresh new classifier α to label code in e, akin to Λα.e generalizing
over a type variable α . Dually, a classifier instantiation expression
e[α] is akin to type application; it instantiates an α-closed expres-
sion with a particular classifier. The type system uses classifiers to
prevent running open code.

Named levels A (or levels for short) generalize numbered levels
in staged calculi (Glück and Jørgensen 1997; Nielson and Nielson
1996). A level is a sequence of classifiers that qualifies a term, a
variable, or an evaluation context. The sequence corresponds to
the nesting of code expressions and the ordering of stages. Our
language λ α

1v restricts levels to at most one classifier:

• The empty level, written 0, corresponds to the present stage, in
which the top-level program expression is run.

• A level consisting of one classifier α , written α by a slight
abuse of notation, corresponds to a future stage, in which code
values of the form 〈. . .〉α are run (Taha and Nielsen 2003).

We have no nested future stages (see Definition 3.2 below), so we
can express code generators but no generators of code generators.
Even with this restriction, it may still be useful to keep track of
several classifiers at once, to write code such as

(α)〈λx.∼(f (run(β)〈1〉β)[α])〉α (5)

but not
(α)〈λx.∼(f (run(β)〈x〉β)[α])〉α . (6)

Named levels can allow (5) yet prevent the attempt to run open code
in (6), whereas merely numbered levels cannot.

Γ ` i0 : int

α ∈ Γ

Γ ` iα : int

(x0 : t) ∈ Γ

Γ ` x0 : t

(xα : u) ∈ Γ α ∈ Γ

Γ ` xα : u

Γ, xA : t1 ` eA : t2

Γ ` (λxA :t1.eA) : t1→ t2

Γ, f A : t1→ t2, xA : t1 ` eA : t2

Γ ` (fix f A(xA : t1) : t2. eA) : t1→ t2

Γ ` eA
1 : int Γ ` eA

2 : int

Γ ` eA
1 + eA

2 : int

Γ ` eA
1 : t1→ t2 Γ ` eA

2 : t1

Γ ` eA
1 eA

2 : t2

Γ,α ` e0 : t

Γ ` (α)e0 : (α)t

Γ ` e0 : (α)t β ∈ Γ

Γ ` e0[β] : t [α :=β]

Γ ` e0 : (α)〈u〉α

Γ ` rune0 : (α)u

Γ ` eα : u

Γ ` 〈eα 〉α : 〈u〉α
Γ ` e0 : 〈u〉α α ∈ Γ

Γ ` (∼e0)α : u

Γ ` e0 : u

Γ, α, Γ
′ ` (%e0)α : u

Figure 2. Type system of λ α
1v. We assume that the names of all

variables and classifiers are unique.

To unclutter the notation, we often drop classifiers where they
are easy to infer. For example, we will write (α)〈∼〈1〉α 〉α as
merely (α)〈∼〈1〉〉. The syntax of λ α

1v disallows escape and CSP
expressions at level 0, and the only way for a level-0 expression to
contain a non-level-0 expression is to contain a bracket expression,
so escape and CSP can only occur inside brackets in a program.

The classification of expressions into values depends on the
level of the expression. At level 0, the only values are literals,
functions, classifier generalization over values, and brackets that do
not escape back to level 0. For example, 〈∼〈1〉α 〉α is not a value
but 〈1〉α and 〈(λx.x)1〉α both are. Notably, 〈%e0〉α is a value for
an arbitrary expression e0; see §3.4.

3.1 Type system
Figure 2 shows the type system of λ α

1v. A type environment Γ is an
ordered sequence of variable and classifier bindings. We sometimes
omit the empty environment [], from which all environments are
built. We adopt the convention that all classifier names, like variable
names, are unique. Thus, any environment of the form Γ,α,Γ′

requires α /∈ Γ, but α can be used to label bindings in Γ′.
Just to simplify our presentation, we assume that every type uses

at most one level, in the following sense.

Definition 3.1 (Used levels) The set Used(t) of classifiers used in
a λ α

1v-type t is defined as follows.

Used(int) = {} Used(t1→ t2) = Used(t1)∪Used(t2) (7)

Used(〈u〉α) = {α} Used((α)t) = Used(t)\{α} (8)

For example, Used(〈int〉α → 〈int〉α) is {α}.
Definition 3.2 (Restriction to one level) Wherever a λ α

1v-type t
appears (in a term, type, binding, or judgment), we restrict Used(t)
to be either empty or a singleton {α}.
To rule out nested future stages, it is not enough to syntactically
exclude terms with nested brackets, because of CSP. For example,
the term let f = λx.〈∼x+1〉 in 〈λx.% f x〉 has no nested brackets,
but it is equivalent to 〈λx.〈∼x + 1〉〉, which has nested brackets.
Therefore, our restriction to one level must be stated using types.

The most important typing rules for us are those for bracket 〈e〉,
escape ∼e, and CSP %e, because they are the main way to move
between levels and to interact with variable and classifier bindings.
The typing derivation in Fig. 3 illustrates these rules. The leftmost
branch of the proof derives the eta example in §2.5, except chang-
ing the type int to bool so as to apply eta to the identity function.

The typing rule for CSP %e rejects terms such as 〈λx.%〈x〉〉,
which cannot be run even though it type-checks in MetaOCaml.
In exchange for not generating such un-runnable code, we gain a
much simpler operational semantics, which we now turn to.

3.2 Operational semantics
Figure 4 gives the small-step operational semantics of λ α

1v, using
the definition of contexts in Fig. 1. A context CA[] can be plugged
with an expression eA to give a level-0 expression. All redexes
are level-0 expressions except in the second-to-last transition. Of
course, evaluation can get stuck, as on the programs 1[β] and 1(2).

The last transition, of the redex run(α)〈vα 〉α , demotes vα as
defined in the second half of the figure. Demotion homomorphi-
cally maps values vα to level-0 expressions e0, by replacing the
level α by 0 in expression annotations and converting %e0 into e0.
(We could have simplified the run transition, inherited from λ α , to
just C0[run(α)〈vα 〉α] C0[vα↓].)

Staging complicates our operational semantics by making our
redexes possibly open and our evaluation contexts possibly bind-
ing. For example, the program (α)〈λxα :int.∼((λy.y)〈xα 〉α)〉α
decomposes into the open redex (λy.y)〈xα 〉α and the context
(α)〈λxα :int.∼[]〉α . The context binds the classifier α and then
the later-stage variable xα , whose level depends on α .

3.3 Properties
Proposition 3.3 (Subject reduction) If Γ ` e : t and e e′ then
Γ ` e′ : t.
Proof In particular, demotion preserves types: if Γ, α ` vα : u
then Γ ` vα↓ : u. The latter is obvious from the rules of Fig. 2. Our
typing rule for CSP makes type-preservation of demotion trivial, in
stark contrast to Taha and Nielsen’s (2003). �

Proposition 3.4 (Determinism) If e e1 and e e2 then e1 = e2.

Proposition 3.5 (Progress) If ` e :t then either e is a value or there
exists e′ such that e e′.

3.4 Comparison with λ α

Our λ α
1v is essentially Taha and Nielsen’s λ α (2003) with the

restriction to one level, except:

• Our language is call-by-value, to better match languages in
actual use such as MetaOCaml.

• We add fix, to model an effect, namely nontermination. We
make this addition to show that our translation preserves the
stage at which effects happen, by showing that it preserves
whether a program terminates. As the first example in §2
demonstrates, it is important to evaluate an escape expression
and incur its effects when the enclosing bracket is built, not run.

• We give our dynamic semantics by small-step transition rules
using evaluation contexts, rather than big-step reduction rules
that apply anywhere in the program. This choice is because we
want to add state and control effects eventually, which is easier
when transitions represent evaluation contexts explicitly and do
not impose the nesting of subexpressions on their evaluation.

• Our typing rule for CSP greatly simplifies the operational se-
mantics, at the cost of excluding some un-runnable terms (§3.1).

• Since our language is call-by-value, we do not evaluate a per-
sisted level-0 expression. That is, %e is always a value; for ex-
ample, %(1+1) is a value and does not reduce to %2. Thus, if Ω

is an infinite loop such as (fix f (x : int). f x)0, then 〈%Ω〉α halts,
as does run(α)〈λxα :int.%Ω〉α , but not run(α)〈%Ω〉α .

The last difference makes the calculus more orthogonal (a redex in-
side brackets is always in an escape) but no less expressive: to eval-

α, f : 〈int〉α → 〈int〉α , xα : int ` f : 〈int〉α → 〈int〉α
. . . , xα : int ` xα : int

. . . , xα : int ` 〈xα 〉α : 〈int〉α

α, f : 〈int〉α → 〈int〉α , xα : int ` f 〈xα 〉α : 〈int〉α

α, f : 〈int〉α → 〈int〉α , xα : int `∼(f 〈xα 〉α) : int

α, f : 〈int〉α → 〈int〉α ` λxα :int.∼(f 〈xα 〉α) : int→ int

α, f : 〈int〉α → 〈int〉α ` 〈λxα :int.∼(f 〈xα 〉α)〉α : 〈int→ int〉α

α ` λ f :〈int〉α→〈int〉α .〈λxα :int.∼(f 〈xα 〉α)〉α : (〈int〉α → 〈int〉α)→ 〈int→ int〉α

`(α)λ f :〈int〉α→〈int〉α .〈λxα :int.∼(f 〈xα 〉α)〉α :(α)((〈int〉α→〈int〉α)→〈int→ int〉α)

eta : . . . , β , y : 〈int〉β ` y : 〈int〉β

eta : . . . , β ` λy:〈int〉β .y : (〈int〉β → 〈int〉β)

eta:...`(β)λy:〈int〉β .y:(β)(〈int〉β→〈int〉β)
...

` let eta = (α)λ f :〈int〉α→〈int〉α .〈λxα :int.∼(f 〈xα 〉α)〉α in let id = (β)λy:〈int〉β .y in (α)(eta[α](id[α])) : (α)〈int→ int〉α

Figure 3. An example typing derivation in λ α
1v

C0[i1 + i2] C0[i1+̇i2]

C0[(λx :t.e)v] C0[e [x := v]]

C0[(fix f (x : t1) : t2. e)v] C0[e [f :=fix f (x : t1) : t2. e] [x := v]]

C0[((α)e)[β]] C0[e [α :=β]]

Cα [∼〈vα 〉α] Cα [vα]

C0[run(α)〈vα 〉α] C0[(α)(vα↓)]

iα↓= i0 (eα
1 + eα

2)↓= eα
1 ↓+ eα

2 ↓

xA↓= xA (eα
1 eα

2)↓= eα
1 ↓e

α
2 ↓

(%e0)α↓= e0 (λxα :u.eα)↓= λx0 :u.(eα↓
[
xα := x0])

(fix f α (xα : u1) : u2. eα)↓
= fix f 0(x0 : u1) : u2. (eα↓

[
f α := f 0][xα := x0])

Figure 4. Operational semantics: small-step transitions e e′ and
demotions vα↓. The latter is an inductively defined map from val-
ues vα to expressions e0.

Variables x,y,z,r, f ,q
Type variables π

Types τ ::= π | int | τ1→ τ2 | ∀π.τ | (~τ)
Environments γ ::= [] | γ, π | γ, x : τ

Named environments ρ ::= [] | ρ, π | ρ, xA : τ

Expressions ε ::= i | x | λx:τ.ε | fix f [~π](x : τ1) : τ2. ε

| ε + ε | εε | Λπ. ε | ε[τ] | (~ε) | ε.i

Figure 5. Syntax of F2

uate the persisted term, we can write %e as ∼(let x = e in 〈%x〉).
Conversely, if we had made CSP evaluate the persisted term, then
to avoid that evaluation, we could write %e as (%(λx :int.e))0.

Calcagno et al. (2004) designed a few successors to λ α , with
Hindley-Milner polymorphism, inference, principal types and typ-
ings. Modulo the treatment of polymorphism, those calculi are de-
signed to simplify λ α so that terms do not mention classifiers. Nei-
ther variable bindings nor brackets are labeled in those calculi; their
levels are all inferred. A classifier is treated like a type variable,
and an α-closed type is introduced and eliminated like a type poly-
morphic in α . Although this approach is attractive in the practical

setting of a Hindley-Milner language such as MetaOCaml, we keep
the classifiers explicit here to guide our translation. We do not con-
cern ourselves with polymorphism and inference in this paper. We
consider our calculus λ α

1v as a desugared programming language,
with all classifiers made explicit and with all polymorphism elimi-
nated by monomorphization (inlining and type instantiation).

4. The target language F2

Our target language is System F, also known as F2, with products
(tuples) and the fixpoint. Figure 5 reviews the syntax we use. We
write ~a for a1, . . .an, the sequence of zero or more objects ai. As
particular cases of tuples, a tuple with one object is that object itself
and the tuple with 0 objects is unit. We also sometimes use pattern
matching as syntactic sugar for selecting parts of a tuple; for exam-
ple, λ (x,y):(int,bool).(y,x) is short for λ z:(int,bool).(z.2,z.1).

We omit our static and dynamic semantics for F2, which are
standard and call-by-value. (It does not matter whether the dynamic
semantics evaluates under a type abstraction, because we only per-
form type abstraction immediately around a term abstraction and
always apply the result of a type application to a term argument.)

At the term level, this target language adds polymorphism (in-
cluding polymorphic recursion) and tuples to λ α

1v and removes stag-
ing and classifiers. A type environment γ is an ordered sequence of
type- and term-variable bindings.

The output of our translation uses tuples just to represent later-
stage environments, for which we introduce some syntactic sugar.

Definition 4.1 (Environments as tuples) Let γ = ~x :~τ be an F2
environment that binds no type variable. We write the environment
abstraction term λγ.ε to mean λ (~x):(~τ).ε , where γ binds into ε .
We also write γ for the tuple term ~x and the tuple type ~τ . Thus,
γ → τ ′ means the type (~τ)→ τ ′, and if ε has the type γ → τ ′ then
εγ means the application term ε(~x).

For example, if γ is r : π, f : π → int, then the abstraction λγ. f r is
the term λ (r, f):(π,π→ int). f r, of type (π,π → int)→ int. As a
special case, if γ is empty, then λγ.ε is λy:().ε and εγ is ε().

Our translation uses classifiers in an auxiliary data structure,
named environments ρ . As defined in Fig. 5, a named environment
decorates every term-variable binding with a level. Of course, clas-
sifiers do not appear in the output of the translation.

Definition 4.2 (Restriction) Suppose ρ is a named environment
and A is a named level. The full restriction ρ ‖A of ρ to A is the
F2-environment consisting of the type variables in ρ and the term
variables in ρ that are decorated with A. The incremental restriction

ρ|A of ρ to A is the F2-environment consisting only of the term
variables in ρ that are decorated with A.

Definition 4.3 (Extension) An environment, named environment,
or named level extends another if the latter is a prefix of the former.

5. The formal translation
We define our translation from λ α

1vto F2 by induction: first on types
and environments, then on typing derivations.

5.1 Translating types and environments
Definition 5.1 (Extension by used classifiers) Given a λ α

1v-type t
and a named environment ρ , the result of extending ρ by the
classifiers used in t is the named environment

ρ,~π(t) =

{
ρ, π, rα : π if Used(t) = {α}
ρ if Used(t) = {}

(9)

where the type variable π and the term variable r are fresh in F2.
We write ~π for a sequence of zero or one type variables; a longer
sequence is ruled out by the one-level restriction (Definition 3.2).

Definition 5.2 (Translating types) In a named environment ρ , a
λ α

1v-type t translates to an F2-type ρ ; t as follows.

ρ ; int = int (10)

ρ ; (t1→ t2) = ∀~π.(ρ ′ ; t1)→ (ρ ′ ; t2) where ρ
′ = ρ,~π(t1) (11)

ρ ; (〈u〉α) = (ρ|α)→ u (12)
ρ ; ((α)t) = ρ ; t where α is fresh (13)

In particular, if t1 uses no classifier, then ρ ; (t1→ t2) = (ρ ; t1)→
(ρ ; t2) homomorphically. For a flat type u, we have ρ ; u = u.

The ∀~π in (11) is reminiscent of Gödel’s translation from in-
tuitionistic logic to S4 (1933). For example, in the empty named
environment, the λ α

1v-type

(α)(〈int〉α → 〈bool〉α)→ 〈int→ bool〉α (14)

translates to the F2-type (cf. §2.5)

∀π.(∀π ′.((π,π ′)→ int)→ ((π,π ′)→ bool))→ (π→ int→ bool)
(15)

because Used(〈int〉α → 〈bool〉α) = Used(〈int〉α) = {α}.
Given the type translation in (11) and (13), the environment

translation below is not surprising, as in the deduction theorem.

Definition 5.3 (Translating environments) A λ α
1v-environment Γ

translates to a named environment bΓc as follows.

b[]c= [] bΓ, x : tc= bΓc, ~π(t), x : (bΓc,~π(t) ; t) (16)

bΓ, αc= bΓc bΓ, xα : uc= bΓc, xα : u (17)

Thus bΓ2c extends bΓ1c whenever Γ2 extends Γ1.

The rest of this section defines the coercions motivated with
escapes in §2.4. The coercion function ρ1 ↪→ ρ2 ; t is a certain in-
jection in F2 from ρ1 ; t to ρ2 ; t. The precise definition of coercions
is less important than their availability, summarized below.

Proposition 5.4 (Coercions are total and compositional) Given
any λ α

1v-type t, as long as the named environment ρ2 extends ρ1,
the coercion ρ1 ↪→ ρ2 ; t is a total function from ρ1 ; t to ρ2 ; t. If ρ3
further extends ρ2, then the coercion ρ1 ↪→ ρ3 ; t is equivalent to the
composition (ρ2 ↪→ ρ3 ; t)◦ (ρ1 ↪→ ρ2 ; t).

Put differently, coercions constructively show that extension among
named environments induces injection among translated types.

First we show how isomorphism among named environments
induces isomorphism among translated types. If ρ1|α = ρ2|α for

every classifier α used by t, then ρ1 ;t = ρ2 ;t. More generally, if we
can convert between ρ1|α and ρ2|α for every classifier α used by t,
then we can convert between ρ1 ; t and ρ2 ; t. If t uses no classifier,
then it is trivial to convert between ρ1 ; t and ρ2 ; t because they are
equal. If t uses a classifier, then the conversion is barely nontrivial.

Definition 5.5 (Conversion) Let t be a λ α
1v-type and α be a level.

Let ρ1 and ρ2 be two named environments with the same type-
variable bindings, such that ρ1|β = ρ2|β for every level β used
by t except possibly α . Suppose ε and ε̄ are two F2-terms such that

ρ1 ‖α ` ε : (ρ2|α), ρ2 ‖α ` ε̄ : (ρ1|α). (18)

In words, ε has the tuple type (ρ2|α) in the environment ρ1 ‖α ,
and ε̄ has the tuple type (ρ1|α) in the environment ρ2 ‖α . Then we
define a pair of conversion functions in F2

µt : (ρ1 ; t)→ (ρ2 ; t), µ̄t : (ρ2 ; t)→ (ρ1 ; t) (19)

simultaneously by the following induction on the structure of t. We
omit the definition of µ̄t by symmetry with µt.

µ int = λx:int.x (20)

µ(t1→ t2) = λ f .Λ~π. λx.µt2(f [~π](µ̄t1(x)))
where the length of ~π is #Used(t1) (21)

µ(〈u〉α) = λ f .λ (ρ2|α). f (ε̄) (22)
µ((α)t) = µt where α is fresh (23)

We notate the conversion µ as Conv(ρ1,ρ2,α,ε, ε̄).

For example, if

ρ1 = π, xα : π, yα : int, ρ2 = π, f : int→ π, zα : (int ,π) (24)

and we let µ be Conv(ρ1,ρ2,α,(y,x),(z.2,z.1)), then

µ(〈bool〉α) = λ f :(π,int)→bool.λ z:(int,π). f (z.2,z.1), (25)

µ̄(〈bool〉α) = λ f :(int,π)→bool.λ (x,y):(π,int). f (y,x). (26)

Definition 5.6 (Coercion) Suppose ρ1 and ρ2 are named environ-
ments and ρ2 extends ρ1. For every λ α

1v-type t, we define a coercion
function in F2 from ρ1 ;t to ρ2 ;t, that is, a term of type ρ1 ;t→ ρ2 ;t
in the environment ρ2 ‖A. We notate this coercion as ρ1 ↪→ ρ2 ; t.

By induction on the difference between ρ1 and ρ2, we consider
two cases then compose the coercions. First, if ρ2 is ρ1 or ρ1,π or
ρ1, y :τ , then the coercion is the identity. Second, if ρ2 = ρ1, yβ :τ ,
then we define the coercion by the following induction on t.

ρ1 ↪→ ρ2 ; int = λx:int.x (27)
ρ1 ↪→ ρ2 ; (t1→ t2) = see below (28)

ρ1 ↪→ ρ2 ; (〈u〉α) = λ f .λ (ρ2|α). f (ρ1|α) (29)
ρ1 ↪→ ρ2 ; ((α)t) = ρ1 ↪→ ρ2 ; t where α is fresh (30)

In (28), we define the coercion ρ1 ↪→ ρ2 ; (t1→ t2) by considering
two cases. On one hand, if β is not used in t1 and so (ρ1,~π(t1)) ;t1 =
(ρ2,~π(t1)) ; t1, then the coercion is

λ f .Λ~π. λx.(ρ1,~π(t1) ↪→ ρ1,~π(t1), yβ : τ ; t2)(f [~π](x)). (31)

On the other hand, if Used(t1) = {β}, then let

ρ
′
1 = ρ1,~π(t1) = ρ1, π, rβ : π , (32)

ρ
′
2 = ρ2,~π(t1) = ρ1, yβ : τ, π, rβ : π , (33)

following Definition 5.1. Then by Definition 5.2,

ρ1 ; (t1→ t2) = ∀π.(ρ ′1 ; t1→ ρ
′
1 ; t2), (34)

ρ2 ; (t1→ t2) = ∀π.(ρ ′2 ; t1→ ρ
′
2 ; t2). (35)

Define the named environment ρ ′′1 = ρ1, π, r′β : (τ,π) and let µ be
the conversion Conv(ρ ′′1 ,ρ ′2,β ,(ρ1|β ,r′.1,r′.2),(ρ1|β ,(y,r))). We

then define the coercion from the type (34) to the type (35) to be

λ f .Λπ. λx.µt2(f [(τ,π)](µ̄t1(x))). (36)

Examples A simple example of a coercion is bαc ↪→bα, xα : intc ;
〈bool〉α , where bαc is [] and bα, xα : intc is xα : int by Defini-
tion 5.3. The coercion is an F2-function from the type [] ;〈bool〉α =
() → bool to the type xα : int ; 〈bool〉α = int → bool, namely
λ f .λx. f () by (29) and (the bool analogue of) (27).

A more involved example of a coercion is

(bαc, π, rα : π) ↪→ bα, f : 〈int〉α → 〈bool〉α , xα : intc;
(〈int〉α → 〈bool〉α). (37)

This coercion occurs in the translation of the eta function in §2.5.
Here bαc is [] and bα, f : 〈int〉α → 〈bool〉α , xα : intc is

π, rα :π, f :∀π ′.((π,π ′)→ int)→ ((π,π ′)→ bool), xα : int (38)

by Definition 5.3. The coercion (37) is a function in F2 from
∀π ′.((π,π ′) → int) → ((π,π ′) → bool) to ∀π ′.((π, int ,π ′) →
int)→ ((π, int ,π ′)→ bool). It is equivalent to the F2-term

λ f .Λπ ′. λ f1. let f2 = f [(int ,π ′)](λ (x,(y,z)). f1(x,y,z)) in
λ (x,y,z). f2(x,(y,z)).

5.2 Translating terms and derivations
Our translation of terms and derivations is guided by our trans-
lation of types and environments, so this section should be read
in conjunction with the previous one. We want to translate a λ α

1v-
judgment Γ ` e0 : t to an F2-judgment bΓc ‖ 0 ` ε : (bΓc ; t). How-
ever, to handle code with escaping and cross-stage persistence in-
ductively, we also translate a λ α

1v-judgment Γ ` eα :u to a judgment
bΓc‖α, q1 : τ1, . . . ,qn : τn ` ε : u along with an ordered sequence of
n auxiliary judgments bΓc ‖0 ` εi : τi. As detailed in the following
definition and illustrated in the following example, the translation
of brackets combines—that is, flattens—these judgments into let.

Definition 5.7 (Translating terms, judgments, and derivations)
The translation of the source derivation is defined inductively over
the source derivation, or, equivalently, on the source term eA. We
mark some applications ε1ε2 as administrative by writing them as
ε1 @ε2. All elimination forms in conversions and coercions are also
administrative. See also the translation of bracket.

Literal constant: Translate the judgment Γ ` iA : int to the judg-
ment bΓc‖A ` i : int, with no auxiliary judgment if A is not empty.

Variable: Translate Γ ` xα :u to bΓc‖α ` x :u, with no auxiliary
judgment. Translate the judgment Γ` x0 :t, where Γ = Γ1, x0 :t, Γ2,
to the judgment bΓc‖0 ` (bΓ1c, ~π(t) ↪→ bΓc ; t)@ x : (bΓc ; t).

Abstraction: Let Γ be Γ1, xA : t1 and t be t1 → t2. Suppose the
judgment Γ ` eA : t2 translates to bΓc ‖A, ~q :~τ ` ε : τ , with some
auxiliary judgments if A is not empty. If A is not empty, then τ = t2
and bΓ1c ‖ 0 = bΓc ‖ 0, so just translate Γ1 ` (λxA :t1.eA) : t to
bΓ1c‖A, ~q :~τ ` (λx:t1.ε) : t, with the same auxiliary judgments. If
A is empty, then τ = bΓ1c,~π(t1) ; t2, so translate Γ1 ` (λx :t1.e) : t
to bΓ1c‖0 ` (Λ~π(t1). λx :(bΓ1c,~π(t1);t1).ε) : (bΓ1c ; t).

Fixpoint: Let Γ be Γ1, f A : t, xA : t1 where t is t1→ t2. Suppose
Γ ` eA : t2 translates to bΓc ‖A, ~q :~τ ` ε : τ , with some auxiliary
judgments if A is not empty. If A is not empty, then τ = t2 and
bΓ1c ‖ 0 = bΓc ‖ 0, so just translate Γ1 ` (fix f A(xA : t1) : t2. eA) : t
to bΓ1c ‖A, ~q :~τ ` (fix f (x : t1) : t2. ε) : t, with the same auxiliary
judgments. If A is empty, then Γ1, f : t, x : t1 ` e : t2 translates to

bΓ1c‖0, ~π, f : (bΓ1c,~π(t) ; t), ~π ′, x : (ρ ; t1) ` ε : (ρ ; t2), (39)

where ρ = bΓ1c,~π(t),~π ′(t1). The one-level restriction (Defini-
tion 3.2) leaves three possibilities for Used(t1) and Used(t2).
First, if Used(t) = Used(t1) = Used(t2) = {}, then just translate

Γ1 ` (fix f (x). e) : t to bΓ1c ‖ 0 ` fix f (x). ε : (bΓ1c ; t). Second, if
Used(t) = Used(t1) = {α}⊇Used(t2), then ρ = bΓ1c, π, rα :π, π ′,
r′α : π ′. Define the named environment ρ1 = bΓ1c, π, rα : π and let
µ be the conversion Conv(ρ1,(ρ1, r′α : ()),α,(ρ1|α,()),(ρ1|α)).
Then translate Γ1 ` (fix f (x). e) : t to

bΓ1c‖0 ` (fix f [π](x′ : ρ1 ; t1) : (ρ1 ; t2).

µ̄t2 @ (ε [π ′ :=()] [x := µt1 @ x′])) : (bΓ1c ; t). (40)

Third, if Used(t) = Used(t2) = {α} but Used(t1) = {}, then ρ =
bΓ1c, π, rα :π . Define the named environment ρ ′= bΓ1c, rα :() and
let µ be the conversion Conv(bΓ1c,ρ ′,α,(bΓ1c|α,()),(bΓ1c|α)).
Then translate Γ1 ` (fix f (x). e) : t to

bΓ1c‖0 ` (fix f ′(x′ : bΓ1c ; t1) : (bΓ1c ; t2).

µ̄t2 @ (ε [π :=()] [f := µt @ f ′] [x := µt1 @ x′])) : (bΓ1c ; t). (41)

Addition: If eA
1 : int translates to ε1 : int and eA

2 : int translates
to ε2 : int (both with some auxiliary judgments if A is not empty),
then translate eA

1 + eA
2 : int to ε1 + ε2 : int (concatenating the two

sequences of auxiliary judgments if A is not empty).
Application: Suppose that Γ ` eA

1 : t1→ t2 translates to bΓc ‖A,

~q1 :~τ1 ` ε1 : τ1 and Γ ` eA
2 : t1 translates to bΓc ‖A, ~q2 :~τ2 ` ε2 : τ2,

both with some auxiliary judgments if A is not empty. If A is not
empty, then just translate e1e2 to ε1ε2, concatenating the two se-
quences of auxiliary judgments. If A is empty, then Used(t1) is
either {} or {α} by the one-level restriction (Definition 3.2). If
Used(t1) is empty, then just translate e1e2 to ε1ε2. If Used(t1)
is {α}, then define the named environment ρ = bΓc, rα : () and let
µ be the conversion Conv(bΓc,ρ,α,(bΓc|α,()),(bΓc|α)). Trans-
late e1e2 to let (f ,x) = (ε1,ε2) in (µ̄(t1→ t2)@ (f [()]))x.

Classifier introduction: If e translates to ε , then (α)e also trans-
lates to ε , where α is fresh.

Classifier instantiation: Suppose that Γ ` e : (α)t translates to
bΓc ‖ 0 ` ε : (bΓc ; t), where α is fresh, and β is a classifier in Γ.
Let x1

β : τ1, . . . ,xm
β : τm be all the term-variable bindings in bΓc

that are decorated with β . Define the named environment ρ = bΓc,
x1

α :τ1, . . . ,xm
α :τm. Then ρ|α = bΓc|β , so ρ ;t = bΓc ;(t [α :=β]).

Translate e[β] to (bΓc ↪→ ρ ; t)@ ε .
Run: If Γ ` e : (α)〈u〉α (where α is fresh) translates to bΓc‖0 `

ε : ()→ u, then translate Γ ` rune : (α)u to bΓc‖0 ` ε() : u.
Bracket: If Γ ` eα : u translates to bΓc ‖α, q1 : τ1, . . . ,qn : τn `

ε : u with n auxiliary judgments bΓc ‖ 0 ` εi : τi, then translate the
quotation Γ ` 〈eα 〉α : 〈u〉α to

bΓc‖0` let q1 = ε1 in . . . let qn = εn in λ (bΓc|α).ε :(bΓc|α)→ u.
(42)

Mark as administrative: (a) let qi = εi for auxiliary judgments from
translating CSP; (b) environment tuple projections (bΓc|α).i.

Escape: If Γ ` e : 〈u〉α translates to bΓc‖0 ` ε :bΓc|α→ u, then
make the latter judgment the sole auxiliary judgment in translating
Γ `∼e : u to bΓc‖α, q : (bΓc|α → u) ` q @ (bΓc|α) : u.

Cross-stage persistence: If Γ ` e : u translates to bΓc ‖ 0 ` ε : u,
then make bΓ,α,Γ′c‖0` λ ().ε :()→ u the sole auxiliary judgment
in translating Γ,α,Γ′ `%e :u to bΓ,α,Γ′c‖α, q :()→ u ` q@() :u.

Examples We return to the ef 2 example in §2.3 and §2.4. The
source term is the application of the function

λef 0 :(β)(〈int〉β→〈int→ int〉β).
(α)〈λxα .λyα .∼(ef [α]〈xα × yα 〉α)〉α (43)

to the argument

(α)λ z:〈int〉α .〈λxα :int.∼z+ xα 〉α . (44)

Because the type of the argument (44) uses no level, this applica-
tion translates to the application of the translations of (43) and (44)
in the empty environment. We can thus translate (43) and (44) sep-
arately (thanks to compositionality in the large, Proposition 5.14).

Translating ef We translate the derivation

1
α, z0 : 〈int〉α , xα : int ` z0 : 〈int〉α

2
α, z0 : 〈int〉α , xα : int `∼z : int

3
. . . , xα : int ` xα : int

4
α, z0 : 〈int〉α , xα : int `∼z+ xα : int

5
α, z0 : 〈int〉α ` λxα :int.∼z+ xα : int→ int

6
α, z0 : 〈int〉α ` 〈λxα :int.∼z+ xα 〉α : 〈int→ int〉α

7
α ` λ z0 :〈int〉α .〈λxα :int.∼z+ xα 〉α : 〈int〉α → 〈int→ int〉α

8
`(α)λ z0:〈int〉α .〈λxα :int.∼z+xα 〉α :(α)(〈int〉α→〈int→int〉α)

from top to bottom. The top λ α
1v-environment α, z0 : 〈int〉α , xα : int

translates to the named environment π, rα : π, z0 : π → int, xα : int.

1. π, z : π → int ` (λ f .λ (r,x) :(π,int). f r)@ z : (π, int)→ int

2. π, r : π, x : int, q : (π, int)→ int ` q @ (r,x) : int
with the auxiliary judgment
π, z : π → int ` (λ f .λ (r,x) :(π,int). f r)@ z : (π, int)→ int

3. π, r : π, x : int ` x : int

4. π, r : π, x : int, q : (π, int)→ int ` q @ (r,x)+ x : int
with the same auxiliary judgment as in 3

5. π, r : π, q : (π, int)→ int ` λx :int.q @ (r,x)+ x : int→ int
with the same auxiliary judgment as in 3

6. π, z : π → int ` let q = (λ f .λ (r,x) :(π,int). f r)@ z in
λ r.λx :int.q @ (r,x)+ x : π → int→ int

7. ` Λπ. λ z :π→ int. let q = (λ f .λ (r,x) :(π,int). f r)@ z in
λ r.λx :int.q @ (r,x)+ x :∀π.(π → int)→ (π → int→ int)

8. Same as 7

The result is the same as at the end of §2.4, modulo a β -value redex.

Translating ef 2 proper In the typing derivation of (43), we focus
on the application

··· 2

Γ ` ef [α] : 〈int〉α → 〈int→ int〉α

··· 1

Γ ` 〈xα × yα 〉α : 〈int〉α
3

Γ ` ef [α]〈xα × yα 〉α : 〈int→ int〉α .

Here the λ α
1v-environment Γ is defined by

Γ = ef 0 : (β)(〈int〉β → 〈int→ int〉β), α, xα : int, yα : int (45)

and translates to the named environment

bΓc= ef 0 :∀π.(π → int)→ (π → int→ int), xα : int, yα : int.
(46)

The bracket 1 above translates easily to the judgment

ef :∀π.(π → int)→ (π → int→ int)
` λ (x,y).x× y : (int , int)→ int . (47)

To translate the classifier instantiation 2, we apply the coercion

bΓc ↪→ (bΓc, xβ : int, yβ : int) ; 〈int〉β → 〈int→ int〉β (48)

to ef , to turn it from the type

∀π.(π → int)→ (π → int→ int) (49)

to the type

∀π.((int , int ,π)→ int)→ ((int , int ,π)→ int→ int). (50)

The result of the coercion is essentially Λπ. λ r.ef [(int , int ,π)]r.
Finally, to translate the application 3, we instantiate this type vari-
able π to () and apply the conversion

Conv(bΓc,(bΓc,rα : ()),α,(x,y,()),(x,y))(〈int〉α →〈int→ int〉α)
(51)

to get a function of type

((int , int)→ int)→ ((int , int)→ int→ int). (52)

We then apply this function to (47).

5.3 Properties
Proposition 5.8 (Type preservation) If Γ ` e0 : t in λ α

1v, and it
translates to bΓc‖0 ` ε : (bΓc ; t), then bΓc‖0 ` ε : (bΓc ; t) in F2.

Proof Definition 5.7 amounts to a constructive proof. �

Because the type system of F2 is sound, type preservation ensures
that our translation does not go wrong. In particular, the translated
term never looks up free variables, thus preventing scope extrusion.

We turn to the dynamic properties of our term translation.

Definition 5.9 An administrative reduction is a β -value reduction
in F2 (anywhere in a term, even under λ) of an elimination form
marked as administrative in Definition 5.7.

Administrative reduction is terminating (since each step reduces
the number of administrative redexes) and confluent (since there is
no critical pair), so it brings every term ε to a normal form ANF(ε).

This normal form ANF(ε) is observationally equivalent to ε since
all β -value reductions preserve observational equivalence in F2.

Our translation preserves values in the following sense. We
conjecture that it also preserves reductions and hence observations.

Proposition 5.10 (Value preservation) If Γ ` v0 : t and v trans-
lates to ε , then ANF(ε) is a value.

Conjecture 5.11 (Reduction preservation) Suppose Γ ` e0
1 :t and

e1 e2. If e1 and e2 translate to ε1 and ε2, then there exists ε so
that ANF(ε) = ANF(ε2) and ANF(ε1) + ε in call-by-value F2.

Corollary 5.12 (Observation preservation) If [] ` e0 :t translates
to [] ` ε : ([] ; t), then e terminates if and only if ε terminates.

The two conjectures above entail that our translation preserves
evaluation order. Because F2 without fix is strongly normalizing,
they also entail that λ α

1v without fix is strongly normalizing.
Although our translation is defined to operate on an entire λ α

1v
program at once, it is in fact compositional enough for parts of an
expression or a modular program to be translated separately.

Proposition 5.13 (Compositionality in the small) Let e be a well-
typed λ α

1v-term with n subterms e1, . . . ,en, and e′ be the well-typed
result of replacing e1, . . . ,en by e′1, . . . ,e

′
n. If the subterms e1, . . . ,en

and e′1, . . . ,e
′
n, in their environments in λ α

1v, translate to the same
(or equivalent) F2-judgments, then e and e′, in their environments
in λ α

1v, also translate to the same (or equivalent) F2-judgments.

Proposition 5.14 (Compositionality in the large) Let Γ1 and Γ2
be two λ α

1v-environments that differ only in their variable bindings
at level 0 whose types use no classifier. If Γ1 ` e0 : t and Γ2 ` e0 : t,
then the translation of e0 is the same in Γ1 as in Γ2.

Proof Observe that bΓ1c‖α = bΓ2c‖α for all α . �

Proposition 5.13 means that the translation of a term can proceed
with translating its parts in parallel. Proposition 5.14 means that
top-level definitions that do not share a classifier can be translated
separately. For example, the program in Fig. 3 defines the code
generators eta and id at the top level. These definitions and the
body that uses them can be translated separately from each other.

6. Scope extrusion
We turn in this section from our formal translation to how it helps
us combine staging with effects soundly in our ongoing work.

To continue the power example from §2, suppose that we want
to count the multiplication operations as we generate them. For ex-
ample, power7 should produce the count 5 along with the function
λx.x×square (x×square (x×1)). In λ α

1v and in MetaOCaml with-
out effects, this count is hard to pass out of the scope of the later-
stage variable x, because the binder λx must apply to later-stage
code, not an earlier-stage count.

If we add ML-style mutable references to λ α
1v, then the counting

becomes easy: we change the definition of power as follows.

let count = ref 0
let power = (α)fix f (n : int) : 〈int〉α → 〈int〉α . λx :〈int〉α .

if n = 0 then 〈1〉α else count← !count+1;
if n mod 2 = 0 . . .

After evaluating power7, the number of multiplications generated
can be retrieved by !count.

Unfortunately, adding state so naı̈vely to a staged language
results in scope extrusion. For example, the following program
generates a piece of open code then runs it.

run(α)(let x = ref〈1〉α in 〈λy.∼(x← 〈y〉α ;〈()〉α)〉α ; !x) (53)

The let expression above evaluates to 〈y〉α with no binder for y
in sight, so the program gets stuck at (α)y. In MetaOCaml, this
example causes a type-checking error at run time.

Adding state breaks soundness because the environment where
a code value is created may no longer be a prefix of the environment
where it is used. In terms of our translation, we would need to
coerce the type ρ1 ; t to the type ρ2 ; t when ρ2 does not extend ρ1.
Such a coercion does not exist in general. If we translate (53)
informally without such a reverse coercion, we get

(let x = ref(λ ().1) in let v = x← (λ (y).y);λ (y).() in
(λ ().λy.v(y)); !x)(),

which does not type-check in F2, even without any value restriction.
These examples suggest that, to prevent scope extrusion in

staged programs with effects, we can try to translate the staging
away and see if we can come up with the coercions needed to keep
the translation well-typed (that is, to maintain Proposition 5.8). For
example, the effectful use of count in the power example above
is sound, because mutation at the flat type int uses no classifiers
and so needs no coercion (as discussed above Definition 5.5). Of
course, other uses of effects in staging, such as for let insertion,
may require more coercions or different tests for scope extrusion.

In MetaOCaml without effects, we have implemented another
solution to the counting problem in a sound staged language: Take
the changed definition of power above. Apply our translation, then
a state-passing transformation to eliminate the use of references.
Finally, add staging annotations to the program so that it produces
not a function of type int→ int but a cogen of type 〈int〉 → 〈int〉.

7. Related work
Our work is inspired by the expressive staged calculus λ α and its
sound type system (Taha and Nielsen 2003). We aim to make the

calculus model MetaOCaml more closely, by moving towards call-
by-value and accounting for effects. We compare our language λ α

1v
with λ α and its later development (Calcagno et al. 2004) in §3.4.

Taha (1999) poses the challenge of encoding staging using λ -
abstraction in §7.2.1, ‘Why lambda-abstraction is not enough for
multi-stage programming’. Besides the pragmatic need to print
generated code, his main reason is that escapes are hard to en-
code because they permit ‘evaluation under lambda’. He suggests
one encoding scheme, using reference cells and exceptions, which
make it hard to check that the target calculus is sound. This paper
answers this challenge by showing how System F with constants
suffices for two-stage programming. We discuss the challenges of
the encoding and our solution in §2.2–§2.4.

The safety problem of staged languages with effects has a long
history. Calcagno et al. (2000) show that reference cells may safely
store values of closed types (in our terminology, types that use
no levels). Our discussion in §6 not only confirms this result, in
a calculus with a small-step rather than big-step semantics, but
further suggests ways to safely store open code as well. Calcagno
et al. relate safe staging with effects to binding-time analyses for
imperative languages. Indeed, our use of coercions is a sort of
binding-time analysis that relies on the type environment in a term’s
derivation to describe the binding environment of the term.

Nanevski et al.’s contextual modality (2007) includes the names
of free variables in the types of open code. Discussing such inclu-
sion, Taha and Nielsen (2003; §1.4) warn of the difficulty in main-
taining α-equivalence and of the need for ρ-polymorphism and
negative side conditions. We avoid these nominal problems using
tuple indices based on the ordering of bindings in the type environ-
ment. In contrast, Kim et al.’s staging extension to ML (2006) in-
cludes variable-capturing substitution but sacrifices α-equivalence.

Taha (2000) recounts how hard it is to develop a reduction se-
mantics and equational theory for even an untyped staged language.
He presents a confluent big-step call-by-name semantics that pre-
serves observational equivalence for a staged language λ -U. Al-
though that semantics has become popular (for instance used by
Taha and Nielsen (2003)), we give a small-step call-by-value se-
mantics. This choice makes formalization challenging, as our re-
dexes may be open and our evaluation contexts may be binding, but
it resolves the thorny problems described by Taha. For example, the
term (λx.〈%x〉)(λy.(λ z.z)5) threatens confluence under call-by-
name (Taha 2000; §3.4), but our reductions are deterministic and
hence trivially confluent. This term satisfies our one-level restric-
tion and translates to (λx. let q = λ ().x in λ ().q())(λy.(λ z.z)5),
with no substitution conflicts or level adjustments. We encode CSP
simply by enclosing an earlier-stage computation in a thunk.

Yuse and Igarashi (2006) design a staged calculus that can
manipulate open code, run closed code, and persist values across
stages. Their paper is rare in that it gives a call-by-value small-
step semantics of a typed staged language. However, despite the
clear correspondence between their calculus and linear-time tem-
poral logic, the commuting conversions via which their ‘open’ and
‘closed’ modalities interact seem to distance their calculus from
the practice of languages like MetaOCaml and thus our work with
classifiers. Towards implementing their language, the authors sug-
gest that ‘designing a suitable abstract machine with environments
would be a first step.’ Our translation may be viewed as such a step.

8. Conclusions
Our derivation-directed translation from a staged language to an un-
staged language represents future-stage code using λ -abstractions,
yet preserves the evaluation order, typing, and α-equivalence (hy-
giene) of the staged program. This translation exposes the problem
of scope extrusion as a lack of type coercion. This work prepares us

to develop safe staged languages that permit combining open code
fragments using state and control effects, and executing the result.

Overcoming the challenge of decoupling evaluation from scope,
we have shown that call-by-value System F can encode staging,
under a restriction to one future level that includes much published
staged code. Lifting this restriction is the subject of the current
work and may require a target language with kind polymorphism.

We have shown small-step call-by-value semantics to be a vi-
able model of expressive staged languages such as MetaOCaml.
In exchange for dealing with open redexes and binding evaluation
contexts, we gain deterministic reductions and a better framework
in which to account for effects, especially control.

Our translation produces much administrative overhead as it
builds and uses coercion functions and environment tuples. We can
either postprocess the overhead away or avoid it in the first place us-
ing a genuine staging language (like a one-pass CPS transformer).

We rely on the order of bindings in type environments to index
free variables and construct coercions. For example, weakening is
explicit in our translation. This reliance is reminiscent of substruc-
tural logics. Following Yuse and Igarashi (2006), it would be inter-
esting to explicate the Curry-Howard correspondence in this regard.

Acknowledgments
We thank Olivier Danvy for the counting example in §6, Walid
Taha for helpful conversations and explanations of his work, and
the anonymous reviewers for helpful suggestions.

References
Ariola, Zena M., and Matthias Felleisen. 1997. The call-by-need

lambda calculus. Journal of Functional Programming 7(3):265–
301.

Asai, Kenichi. 2002. Online partial evaluation for shift and reset.
In PEPM, 19–30.

Balat, Vincent, Roberto Di Cosmo, and Marcelo P. Fiore. 2004.
Extensional normalisation and type-directed partial evaluation
for typed lambda calculus with sums. In POPL, 64–76.

Calcagno, Cristiano, Eugenio Moggi, and Walid Taha. 2000.
Closed types as a simple approach to safe imperative multi-stage
programming. In ICALP, 25–36. LNCS 1853.

———. 2004. ML-like inference for classifiers. In ESOP, 79–93.
LNCS 2986.

Carette, Jacques, and Oleg Kiselyov. 2005. Multi-stage program-
ming with functors and monads: Eliminating abstraction over-
head from generic code. In GPCE, 256–274. LNCS 3676.

Czarnecki, Krzysztof, John T. O’Donnell, Jörg Striegnitz, and
Walid Taha. 2004. DSL implementation in MetaOCaml, Tem-
plate Haskell, and C++. In DSPG 2003, 51–72. LNCS 3016.

Davies, Rowan, and Frank Pfenning. 2001. A modal analysis of
staged computation. Journal of the ACM 48(3):555–604.

Elliott, Conal. 2004. Programming graphics processors function-
ally. In Haskell workshop, 45–56.

Ghani, Neil, Valeria de Paiva, and Eike Ritter. 1998. Explicit
substitutions for constructive necessity. In ICALP, 743–754.
LNCS 1443.

Glück, Robert, and Jesper Jørgensen. 1997. An automatic program
generator for multi-level specialization. Lisp and Symbolic Com-
putation 10(2):113–158.

Gödel, Kurt. 1933. Eine Interpretation des intuitionistischen Aus-
sagenkalküls. Ergebnisse eines Mathematischen Kolloquiums 4:
39–40.

Hammond, Kevin, and Greg Michaelson. 2003. Hume: A domain-
specific language for real-time embedded systems. In GPCE,
37–56. LNCS 2830.

Jones, Neil D. 1988. Challenging problems in partial evaluation
and mixed computation. New Generation Computing 6(2–3):
291–302.

Kim, Ik-Soon, Kwangkeun Yi, and Cristiano Calcagno. 2006. A
polymorphic modal type system for Lisp-like multi-staged lan-
guages. In POPL, 257–268.

Launchbury, John, and Simon L. Peyton Jones. 1995. State in
Haskell. Lisp and Symbolic Computation 8(4):293–341.

Lawall, Julia L., and Olivier Danvy. 1994. Continuation-based
partial evaluation. In Lisp & functional programming, 227–238.

Lengauer, Christian, and Walid Taha, eds. 2006. Special issue on
the 1st MetaOCaml workshop (2004), vol. 62(1) of Science of
Computer Programming. Elsevier.

Maraist, John, Martin Odersky, and Philip Wadler. 1998. The call-
by-need lambda calculus. Journal of Functional Programming
8(3):275–317.

Miller, Dale A., and Alwen Tiu. 2003. A proof theory for generic
judgments: An extended abstract. In LICS, 118–127.

Minamide, Yasuhiko, J. Gregory Morrisett, and Robert Harper.
1996. Typed closure conversion. In POPL, 271–283.

Nanevski, Aleksandar, Frank Pfenning, and Brigitte Pientka. 2007.
Contextual modal type theory. Transactions on Computational
Logic. In press.

Nielson, Flemming, and Hanne Riis Nielson. 1996. Multi-level
lambda-calculi. In Partial evaluation, 338–354. LNCS 1110.

O’Hearn, Peter W., and Robert D. Tennent. 1995. Parametricity
and local variables. Journal of the ACM 42(3):658–709.

Pašalić, Emir, Walid Taha, and Tim Sheard. 2002. Tagless staged
interpreters for typed languages. In ICFP, 157–166.

Püschel, Markus, José M. F. Moura, Jeremy Johnson, David
Padua, Manuela Veloso, Bryan W. Singer, Jianxin Xiong,
Franz Franchetti, Aca Gačić, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nick Rizzolo. 2005. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE spe-
cial issue on program generation, optimization, and adaptation
93(2):232–275.

Sumii, Eijiro, and Naoki Kobayashi. 2001. A hybrid approach to
online and offline partial evaluation. Higher-Order and Symbolic
Computation 14(2–3):101–142.

Swadi, Kedar, Walid Taha, Oleg Kiselyov, and Emir Pasalic. 2006.
A monadic approach for avoiding code duplication when staging
memoized functions. In PEPM, 160–169.

Taha, Walid. 1999. Multi-stage programming: Its theory and appli-
cations. Ph.D. thesis, Oregon Graduate Institute of Science and
Technology.

———. 2000. A sound reduction semantics for untyped CBN
multi-stage computation. In PEPM.

———. 2004. A gentle introduction to multi-stage programming.
In DSPG 2003, 30–50. LNCS 3016.

———. 2005. Resource-aware programming. In ICESS, 38–43.
LNCS 3605.

Taha, Walid, and Michael Florentin Nielsen. 2003. Environment
classifiers. In POPL, 26–37.

Wright, Andrew K., and Matthias Felleisen. 1994. A syntactic
approach to type soundness. Information and Computation
115(1):38–94.

Yuse, Yosihiro, and Atsushi Igarashi. 2006. A modal type system
for multi-level generating extensions with persistent code. In
PPDP, 201–212.

