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Abstract
Modules are an indispensable mechanism for providing ab-

straction to programming languages. To reduce the abstrac-

tion overhead in the usage of modules, Watanabe et al. pro-

posed a language for generating and manipulating code of

modules, and implemented it via a translation to plainMetaO-

Caml. Unfortunately, their solution has a serious problem of

code explosion if functors are repeatedly applied to modules.

Another problem in their solution is that it does not allow

nested modules.

This paper proposes a refined translation for a two-stage

typed language with module generation where nested mod-

ules are allowed. Our translation does not suffer from the

code-duplication problem. The key idea is to use the genlet

operator in latest MetaOCaml, which performs let insertion

at the code-generation time to allow sharing of code frag-

ments. To our knowledge, our work is the first to apply

genlet to code generation for modules. We conduct an exper-

iment using a microbenchmark, and the result shows that

our method is effective to reduce the size of generated code

that would have been exponentially large.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages.

Keywords Program Generation, Modules, Type Safety, Pro-

gram Transformation
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1 Introduction
Program generation breaks the trade-off between produc-

tivity and performance, and has been studied intensively

[14]. Multi-Stage Programming (MSP) languages such as

MetaML provide a way to generate programs against run-

time parameters while static safety assurance is guaranteed.

Unfortunately, it is difficult to guarantee its safety beyond

term generation, and generating a module is not allowed in

MetaOCaml, a multi-stage extension of OCaml.

A module system in ML is highly valuable for providing

high-level abstraction as well as from developing practical

applications. Large programs can be developed efficiently

using modules, as they allow us to build each software com-

ponent independently, and to compose them in a safe way to

achieve reusability and maintainability. On the practical side,

MirageOS
1
is a successful example of large-scale applica-

tions which use a number of modules. In the implementation

of MirageOS, OS components such as device drivers and

protocols are implemented as independent libraries, which

contains thousands of modules. On the research side, interest-

ing extensions using modules have been proposed: modular

implicits [18], extensible language-integrated query [15] and

tagless-final embedding [2].

Inoue et al. [7] were the first to propose a language exten-

sion for generating code of a module in the MSP style. They

investigated the abstraction overhead in ML-style modules,

and pointed out that the problem may be solved in a hypo-

thetical extension with module generation. Watanabe et al.

[17] proposed a language λ<M>
for generating the code of a

module, and implemented the language. They have also con-

ducted an experiment to show that the abstraction overhead

in modules can be reduced. Unfortunately, their approach

has another problem; code generated by their method can

become so large that it may not compile.

In this paper, we proposed a language and its implemen-

tation that solve the problems left open by Watanabe et al.

First, we introduce a new translation from λ<M>
to MetaO-

Caml to solve the code-explosion problem in Watanabe et

al.’s approach. Our key idea is to use the genlet primitive

in MetaOCaml for let-insertion, to avoid code duplication.

Second, we show that our language allows nested modules in

code generation. Third, we briefly mention the type system

1
https://mirage.io
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of our language. Furthermore, we discuss several interesting

topics on modules such as the code of a functor.

The rest of this paper is organized as follows: §2 shows the

benefits of modular programming and describes the previous

work for module generation and its problems. We introduce

our solution in §3. §4 defines our source language that allows

module generation. §5 defines the translation from the source

language to MetaOCaml and mentions the type system. The

experiments on microbenchmark and their results are shown

in §6. We discuss our translation in §7 and describe the

related work in §8. §9 give conclusion and future work.

2 Motivating Example
This section introduces the motivating example and illus-

trates the benefits of modular programming. It also explains

a summary of previous studies on module generation and

their problems.

2.1 Modular Approach
The module system allows us to build clean, maintainable

and large-scale applications. Our motivating example is a

simple implementation of an echo server:

module Main (Log:LOG) (Tcp:TCP) = struct
module Server = MakeServer (Tcp)

let echo msg =
Log.info ("[echo] Received: "^msg);
Log.info ("[echo] Send: "^msg);
msg

let start =
let tcp = Tcp.create "localhost" 7777 in
Server.start tcp echo

end

This program creates a new network service which accepts

a connection on the TCP port 7777, receives a message, and

echoes the message back to the client and outputs logs. We

briefly explain an ML module. A module (structure) con-
sists of components that are declarations of values, types,

and nested modules, and a parameterized module is called a

f unctor . The type of a module is called a siдnature , which
is an interface to the module. In the above functor Main,
the implementations of modules Log and Tcp are abstracted

by signatures LOG and TCP respectively. The functor Main
makes the nested module Server which is a server library

on the given module Tcp, and passes the component (func-

tion) echo to the function Server.start as a callback. To

run the echo server, we apply the functor to two modules

that implement the signatures, create a new module M, and
call its start function:

let module M = Main (PrintLogger) (Tcp) in
M.start ;;

There are several reasons to use modules and functors

to build applications in this way. First, it helps us to write

reusable, testable and maintainable programs. The functor

provides a common implementation. The signature supports

a loosely coupled implementation which is independent of

the module implementation. Therefore, we can easily swap

the implementation. For example, to change the destination

of logs from the standard output to a file, we create a new

module FileLogger that implements the signature LOG, and
apply the Main. Also, a mockup version of the module Tcp
that does not actually communicate is useful for unit testing.

Second, large-scale applications may be built easily with

modules and functors. By dividing a large program into

smaller modules, we can ask an expert to develop each mod-

ule independently of the others. To assemble these modules,

nested modules are essential. In the real world, the website

of MirageOS is built with up to 10 functor applications, and

the Mirage repository hosts hundreds of libraries which use

modules [13].

2.2 Module Generation
Modular programs sometimes suffer from performance pen-

alty; modules obtained by functor applications may have

runtime overhead due to indirection. In the above example,

the function Log.info is called via an indirect access. Also,

the function Server.start is called with repeated indirec-

tions because the functor MakeServer refers to the module

Tcp. In general, programs including many repeated functor

applications possibly have serious performance penalty.

Watanabe et al. [17] gave the language λ<M>
, an extension

of MetaOCaml, that allows generation of code of a module.

They used first-class modules for generating and manipu-

lating code of a module, that can be passed to and returned

from functions.

Figure 1 shows the functor Main written in λ<M>
. For the

sake of explanation, the functor Main is simplified and has

the function echo only.

Let us explain MetaOCaml very briefly. MetaOCaml pro-

vides three multi-stage operators ⟨⟩, ∼, and run . Brackets

⟨e⟩ generate code of the expression e and escape ∼ e ex-

empts the expression e from the brackets. When the type

of e is τ , the type of ⟨e⟩ is τ code. The expression run e
compiles the code e and executes it. In Figure 1, the main
functor (function) receives code of a module and returns a

new code of a module. $ is a new operator added to λ<M>
,

which extracts code of a component from code of a module.

$log.infomeans that extract the code of the function info
from the code of the module log. Thus, the ∼($log.info)
part is replaced with the code of the function log.info, and
the abstraction overhead is eliminated.

Watanabe et al. implemented λ<M>
by a translation to

MetaOCaml. Its main role is to eliminate a module within

brackets, which is not allowed in MetaOCaml. Their idea

is to turn the code of a module into a module containing

code. Figure 2 shows the functor Main translated from Figure

1. The type of the function echo is translated from string
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module type MAIN = sig
val echo : string -> string

end
let main = fun (log: (module LOG) code) ->

<(module struct
let echo = fun msg ->

~($log.info)("[echo] Received: "^msg);
~($log.info)("[echo] Send: "^msg);
msg

end : MAIN)>

Figure 1. Main functor written in λ<M>

module type MAIN ' = sig
val echo : (string -> string) code

end
let main = fun (log: (module LOG)) ->

(module struct
module Log = (val log)
let echo = <fun msg ->

~(log.info) ("[echo] Received: "^msg);
~(log.info) ("[echo] Send: "^msg);
msg >

end : MAIN ')

Figure 2. A MetaOCaml program translated from Figure 1

-> string to (string -> string) code, and the return

type of the function main is translated from (module MAIN)
code to (module MAIN’). The operators added to λ<M>

are

eliminated by the translation, and we can run the resulting

code in Figure 2.

2.3 Code Explosion Problem
Unfortunately, Watanabe et al.’s translation has a serious

problem in that the size of generated code may increase expo-

nentially. An illustrative example is themodule printLogger
which implements the signature LOG. The code of the module

printLogger written in λ<M>
is shown below.

module type LOG = sig
val warn : string -> unit
val info : string -> unit

end
let printLogger = <(module struct

let print = fun level -> fun msg ->
let t = Unix.localtime (Unix.time ()) in

Printf.printf "[%s] %d:%d:%d\n%s\n"
level t.tm_hour t.tm_min t.tm_sec msg

let warn = fun msg -> print "WARN" msg
let info = fun msg -> print "INFO" msg

end : LOG)>

The module printLogger exposes two functions, warn and

info, resp. to display the log level and the timestamp, resp.

The function print is an auxiliary function for formatting

the log. The above program is translated to the following

one:

module type LOG = sig
val warn : (string -> unit) code
val info : (string -> unit) code

end
let printLogger = (module struct

let print = <fun level -> fun msg ->
let t = Unix.localtime (Unix.time ()) in

Printf.printf "[%s] %d:%d:%d\n%s\n"
level t.tm_hour t.tm_min t.tm_sec msg >

let warn = <fun msg ->
let print = fun level -> ... in
print "WARN" msg >

let info = <fun msg ->
let print = fun level -> ... in
let warn = print "WARN" msg in
print "INFO" msg >

end : LOG)

The problem here is that the function warn is defined in

the function info even though it is not used. To avoid free

references in the result, Watanabe et al.’s translation inserts

all let-binding up to the i-th function into the i+1-th binding.
Hence, it inserts a total of n · (n − 1)/2 let-bindings where
n is the value of components. The program of the function

Main.echo is shown below, which is created by applying the

functor main to the module printLogger.
# let module Main = (val main printLogger) in Main.echo;;
- : (string -> string) code = .<
(* echo *)
fun msg_23 ->

(* info *)
(fun msg_16 ->

let print_20 level_17 msg_18 =
let t_19 = Unix.localtime (Unix.time ()) in
Stdlib.Printf.printf "[%s] %d:%d:%d\n%s\n"
level_17 t_19.Unix.tm_hour t_19.Unix.tm_min t_19.

Unix.tm_sec msg_18 in
let warn_22 msg_21 = (print_20 "WARN") msg_21 in
(print_20 "INFO") msg_16)

("[echo] Received: "^msg_23);
(* info *)
(fun msg_16 ->

let print_20 level_17 msg_18 =
let t_19 = Unix.localtime (Unix.time ()) in
Stdlib.Printf.printf "[%s] %d:%d:%d\n%s\n"
level_17 t_19.Unix.tm_hour t_19.Unix.tm_min t_19.

Unix.tm_sec msg_18 in
let warn_22 msg_21 = (print_20 "WARN") msg_21 in
(print_20 "INFO") msg_16)

("[echo] Send: "^msg_23);
msg_23 >.

The problem in this code is that the function info is defined

twice in the function echo. An ideal code would define a

let-binding for the function info locally and dereference the
let-bound variable twice.

In the worst case, the code size increases exponentially

in the number of functor applications.
2
In the previous

example, as a function is used via a module twice, the size of

the generated code is (approximately) doubled. If the function

is used twice in another functor, the size of the code would

be (approximately) four times as large as the original one.

2
Since Watanabe et al. used first-class modules to represent modules as

expressions, functors are represented by normal functions over first-class

modules.
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We want to eliminate the overhead from large applications

which use many functor applications, as the code-explosion

problem becomes more serious. Generating such a huge code

takes a lot of time and space, and may cause compilation

failures. Compiler optimization is not useful, since the code

is generated before compilation. The problems above are

summarized as follows.

• The size of the translated code is proportional to the

square of the number of components.

• Code duplication occurs when the same component is

referenced multiple times from outside of the module.

• The size of the generated code is proportional to the

exponential in the number of functor applications.

2.4 Other Problems
We found a few other problems in Watanabe et al.’s study.

First, their source language was too liberal to be translated

to plain MetaOCaml which does not allow code of modules.

Consider the following example:

<let x = 10 + 20 in
(module struct let y = 1 end : S)> ;;

where S is an appropriate signature. It is translated to:

let x = 10 + 20 in
(module struct let y = <1> end : S') ;;

The subexpression 10+20 is executed at the future stage in

the first expression, while it is executed at the present stage

in the second expression, violating the distinction of stages.

Second, their language did not allow nested modules as

follows:

module M = struct
module N = struct x = 10 end
let y = N.x + N.x

end

where themodule N is a nestedmodulewhichmay be referred

to in the components of M. Nested modules are useful in

expressing a certain class of programs, as described above.

3 Our Proposal
We introduce a refined translation for the language with

module generation to solve the code-explosion problem de-

scribed in the previous sections. Our translation performs

dynamic let-insertion, which allows code fragments to be

shared among different components of modules. In this sec-

tion, we explain how the translation works using examples.

The formal definition of our language and translation will

be given in the next section.

Let-insertion is a well-known technique for code sharing

in program transformation (partial evaluation, in particular)

[3]. It can be implemented in various ways, and here we

review two most relevant approaches for let-insertion.

3.1 Static let-Insertion by shift and reset
The first approach uses the delimited-control operators shift

and reset [4], which are available in Scheme/Racket, SML,

OCaml, Scala, and other modern programming languages. In

OCaml andMetaOCaml, they are implemented as an external

library [9]. In this approach, a let expression is packaged

with shift, and the destination for let-insertion is marked by

reset. The let expression is inserted at run time. Note that

the destination of let-insertion is determined statically in

this approach.

The let-insertion technique via shift and reset has been

studied in program generation [8]. Unfortunately, the tech-

nique is insufficient to solve the problem in Watanabe et al.’s

translation. Since the translator does not know (before code

generation) how many times a functor is applied to modules,

it is hard to find the optimal destination for let-insertion

statically.

Let us investigate why a static let-insertion does not solve

the code-duplication problem. Consider the following pro-

gram with a first-class module:

let mcod = <(module struct
let x1 = 10 + 20
let x2 = x1 + x1

end : S)> ;;

where S is a suitable signature. Watanabe et al.’s transla-

tion removes the code of modules, and the above code is

translated to:

let mcod0 = (module struct
let x1 = <10 + 20>
let x2 = <~x1 + ~x1>

end : S') ;;

But the component x2 alone does not make sense because

of free occurrences of x1, and we need to supply the value

of x1 when we use x2. Instead of naively inlining the code

for x1 to get (10+20)+(10+20), we insert a let expression
to obtain:

let mcod0 = (module struct
let x1 = <10 + 20>
let x2 = <let t = 10 + 20 in t + t>

end : S') ;;

which is a duplication-free code. So far, so good.

As the next step, we apply the following functor fnctr to

macd0 (Watanabe et al. use the first-class modules, hence, a

functor becomes a normal function):

let fnctr mcod = (module struct
let x = <~mcod.x1 + ~mcod.x2>

end : T) ;;
fnctr mcod0 ;;

For the sake of simplicity, the unpacking of module mcod is

omitted. The result of the last line is the following module:

(module struct
let x = <(10+20) + (let t = 10+20 in t+t)>

end : T)
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The final result still contains the code 10+20 twice, which

shows the static let-insertion does not completely solve the

problem. An ideal result would be the following.

(module struct
let x = <let t = 10 + 20 in t + (t + t)>

end : T)

We can expect that the last result can be obtained by let-

insertion, but the destination of let-insertion is the outer-

most position of nested functor applications. In general, we

may want to apply functors to modules multiple times, and

the ideal destination may be quite distant from the original

position of a let expression.

3.2 Dynamic let-Insertion by genlet
The second way uses the genlet primitive [11] in MetaO-

Caml
3
which performs let-insertion. Unlike let-insertion via

shift and reset, let-insertion by genlet works in code gen-

erators only. The notable point in genlet is that a program

need not specify the destination of let-insertion, which is

determined dynamically when the code is actually generated.

Let us consider the following example using genlet:

let x = genlet <10 + 20> in <~x + ~x>

The genlet primitive is a normal function, which generates a

fresh future-stage variable, a let binding that binds it to the

argument of genlet, and returns the code that refers to this

variable. The generated let binding is inserted somewhere

in the code, which is decided dynamically. An intermediate

term in this execution is the following.

<let t = 10 + 20 in
~(let x = <t> in <~x + ~x>)>

which evaluates to the code below.

<let t = 10 + 20 in t + t>

The resulting code has no duplicated occurrences of 10 +
20.

The destination of let-insertion by genlet is the outermost

location that causes no scope-extrusion problem, namely,

free variables in the argument of genlet should not go beyond

their binders. In summary, genlet is useful to avoid code

duplication in program generation.

The next question is whether genlet is useful for mod-

ule generation, and how we can solve the code-duplication

problem with modules.

Actually, our solution is very simple; for each value com-

ponent in a module, we insert the genlet primitive at the

topmost position of the right-hand side of a value compo-

nent, and that’s all. For instance, we rewrite the previous

module mcod0 to the following one:

let mcod1 = (module struct
let x1 = genlet <10 + 20>
let x2 = genlet <~x1 + ~x1>

end : S') ;;

3
Available in BER MetaOCaml version N107 and later.

where two occurrences of genlet are introduced. Other

parts of the program are kept intact.

Although simple, the reason why our solution works is

rather complicated. Let us consider the execution of mcod1
alone. The right-hand side of each value component of a

module is evaluated one by one, and the function genlet is

called twice. For the x1 component, we get <let t1 = 10
+ 20 in t1> as its value. The result of the execution of the

x2 component is rather unexpected, as it returns <let t1 =
10 + 20 in let t2 = t1 + t1 in = t2>. This is quite
different from the result of a simple-minded computation

for x2, which is <let t2 = (let t1 = 10 + 20 in t1) +
(let t1 = 10 + 20 in t1) in t2>.

The reason why we got non-duplicating code for x2 is

somewhat complicated.
4
For the x1 component, we get <let

t1 = 10 + 20 in t1> as its value, which is not surprising.

When we evaluate genlet <e>, we do not immediately get

<let t = e in ...t>; rather, it returns an internal data

structure (a triple) consisting of a set of free variables, the

body <e>, and a list of let bindings to be inserted in future.

In other words, genlet <e> is evaluated only partially and

the let-insertion is delayed, similar to lazy evaluation. When

we retrieve the value of the triple at the top level (for in-

stance, the value is printed), let bindings in this triple are

inserted at the topmost positions which do not cause the

scope-extrusion problem. Coming back to the evaluation

of the term genlet <∼x1 + ∼x1>, the value of x1 is a

triple which contains potential dynamic let-insertion. Hence,

there are two nested dynamic let-insertion, and its result has

nested let-bindings such as <let t1 = 10 + 20 in let t2
= t1 + t1 in ...>.

Our finding in this paper is the above machinery of genlet

works as well in the presence of modules and functors. To

see it, we consider the evaluation of the term fnctr mcod1,
which simulates a functor application using first-class mod-

ules. When we evaluate the term, again the dynamic let-

insertion triggered by genlet in mcod1 is delayed until the

result of the whole term is printed. When we print it, dy-

namic let-insertion by two genlet is actually performed, and

we get the following ideal code as nested let bindings:

(module struct
let x = <let t1 = 10 + 20 in

let t2 = t1 + t1 in t1 + t2>
end : T)

Since let bindings for t1 and t2 are nested, it is clear that let
insertion was performed after the evaluation of mcod1.

This feature of genlet has been considered useful in code

generation, but as far as we know, it has not been studied

whether genlet can work beyond module boundaries, until

the work presented in this paper.

4
Our explanation here is essentially due to Kiselyov’s explanation for genlet,

available from the BER MetaOCaml repository on GitHub.
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4 Source Language
Our source language is a two-stage programming language

which is an extension of core MetaOCaml. It includes stan-

dard lambda-calculus with primitive operators, let expres-

sion, and multi-stage operators for code generation. In this

work, we confine ourselves to a minimal language to express

our results. We assume that no name collision occurs among

the components of modules and signatures. Extending our

language to a more realistic one is left for future work.

Figure 3 defines the syntax of terms where the index i is
either 0 (present stage) or 1 (future stage). We use metavari-

ablesmi
for stage-i modules (structures), si for sequences of

stage-i components, ci for stage-i components of modules,

e for expressions, ei for stage-i expressions, eim for stage-i
first-class modules, x for variables, X for module names, and

t for types. A modulemi
is either a module name X , a struc-

ture, or an unpacking expression (val eim). For convenience,
we slightly extend the unpacking operator in OCaml so that

(val eim).x is a valid syntax, but it can be easily resolved

by introducing the declaration module X = (val eim), and
relacing it to X .x for a fresh name X . We sometimes omit

the index i in ei .
The syntax for terms is mostly standard except the fol-

lowing. The termm.x is a reference to the x-component of

the modulem, and $ and run_module are new operators

introduced by Watanabe et al. If x is bound to code of a first-

class module, $x .y refers to the code of the y-component of

the module, thus the $-operator turns code of module to a

module of code. The run_module runs the code of a mod-

ule. ⟨⟩, ∼, and run are the standard multi-stage operators

in MetaOCaml, while we take a different syntax for code of

a module < (modulemi
: M) >. This distinction is intro-

duced since we do not allow ∼ (the splicing operator) to be

applied to the code of a module. In addition, because the term

e1 does not include a module, there is no other way to make

the code of a module, and our syntax rejects expressions that

cannot be translated as the example in §2.4. Our syntax is

natural because it provides two operators that make the code

and two operators that decompose the code.

Figure 4 defines the syntax of types. We use metavari-

ablesM for types of a module, S for a sequence of types of

components, C for types of components, and σ for types

of expressions. Types consist of those types in the simply-

typed lambda calculus, code types, code-of-module types,

reference to type components, and CSP (Cross-Stage Persis-

tence) for types %σ . Whereas CSP for terms in MetaOCaml

allows one to embed a present-stage value into future-stage

code, Watanabe et al. use CSP for types to embed a present-

stage type into future-stage modules. In this work we also

introduced the type (module M) mcod to distinguish the

code type for modules than that for terms (τ code) in order

to disallow code of functors.
5

5
see §7 about this choice.

mi
::= X | struct si end | (val eim)

si ::= ϵ | ci si

ci ::= type t | type t = σ | module X =mi | let x :σ = ei

e ::= e0 | e1

e0 ::= ⟨e1⟩ | run e0

| < e1m > | (run_module e0 : M) | x | X .x | e0m
| p(e0, · · · , e0) | fun x → e0 | e0 e0 | let x = e0 in e0

e1 ::= ∼ e0 | $x .x | x | X .x

| p(e1, · · · , e1) | fun x → e1 | e1 e1 | let x = e1 in e1

eim ::= (modulemi
: M)

Figure 3. Syntax for terms

M ::= sig S end
S ::= ϵ | C S

C ::= type t | type t = σ | module X : M | val x : σ

σ ::= t | X .t | $x .t | σ → σ | τ code | %σ | (moduleM)
| (moduleM)mcod

where τ is module-free

Figure 4. Syntax for types

A typing environment is a sequence of declarations

(type t)i , (type t = σ )i , (module X : M)i , and (val x : σ )i

where i is a level (stage). In this work i is either 0 or 1.
Our type system is based on Leroy’s type system for mod-

ules [12], and the classic type system λ◦ for multi-stage

language (see [5] for instance), however, we have made our

own modifications. Here we only explain the most typical

typing rules, and the complete typing rules are shown in

Appendix A.

The well-formedness rule for nested modules is:

E ⊢i M wf E,X i ⊢i S wf X i < Dom(E)
E ⊢i (module X i

: M) S wf

where E ⊢i means a typing judgment at the stage i and
wf for well-formedness. At the stage i , only the elements

annotated with i in the environment E may be dereferenced.

M wf requires that all component names ofM are mutually

distinct, or else the condition X i < Dom(E) is not satisfied.
The typing rule for code of a module is shown below:

E ⊢1 (modulem1
: M) : (moduleM)

E ⊢0 < (modulem1
: M) > : (moduleM)mcod

The rule for dereferencing a component in code of a module

is as follows:
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(val x : (module (sig S end))mcod)i ∈ E S = S1 (val y : σ ) S2

E ⊢i $x .y : σ [t ← (val x).t | t ∈ Dom(S1)] code

Since the $-operator turns code of a module to a module of

code, its y-component should have the code type. This rule
has an additional complexity in that we need to substitute a

type variable t by (val x).t in the type σ in the conclusion.

To see its reason, consider the following example: let x be

< (module struct type t = int let y : t = 10 end : S) >.
If the typing rule does not do substitution, the type of $x .y
is t , which is a free type variable. By the substitution, it will

become (val x).t , which refers to the t-component of the

first-class module bound to x (the type int in this case).

5 Our Translation
We introduce a refined translation from our source language

to plain MetaOCaml by improving Watanabe et al.’s one in

two respects. The first is to fix bugs. Indeed their source

language contains code of functors, which cannot be (easily)

translated to programs in plain MetaOCaml. We have refined

their source language and define a type-preserving transla-

tion here. The second improvement is the better performance

of translated code, which is the main subject of this paper. In

this section, we explain the key part of our translation and

the differences from Watanabe’s translation. The complete

definition of our translation is shown in Appendix B.

5.1 Definitions
We use the notation [[ · ]]i for our translation, which is pa-

rameterized by the level i (for i = 0, 1). [[ e0 ]]0 is the result
of the translation for a level-0 (present-stage) expression e0,
and similarly [[ e1 ]]1 for a level-1 (future-stage) expression
e1. [[ ⟨e1⟩ ]]0 is translated to ⟨[[ e1 ]]1⟩. We may omit the index

i in an expression ei . Our translation sometimes needs an

additional parameter d , which shall be explained shortly.

Let us explain the key rules for translation. First, we trans-

late code of a module to a module of code as follows:

[[ < (modulem : M) > ]]0 = (module [[m ]]1 : [[M ]]1)

The outermost brackets are eliminated and the components

of the module will be translated at level 1. (The translation

rules for the level 0 do not do much work, and are omitted.)

Next, we define a level-1 translation of a type declaration

in a module as follows:

[[ val x : σ ]]1 = val x : [[ σ ]]1 code

[[ type t ]]1 = type t

[[ type t = σ ]]1 = type t = [[ σ ]]1

[[module X : M ]]1 = module X : [[M ]]1

The type of a value component is translated to the code type.
A type component and a nested module are passed through

by the translation.

The level-1 translation for terms in a module is also inter-

esting and defined as follows:

[[ let x : σ = e ]]1 = let x : [[ σ ]]1code = genlet ⟨[[ e ]]1⟩

[[ type t ]]1 = type t

[[ type t = σ ]]1 = type t = [[ σ ]]1

[[module X =m ]]1 = module X = [[m ]]1

A value component is translated into code of the value and

genlet is inserted in front of it, to allow code sharing.

So far, the translation is compositional and simple, but

we need one twist here. Since the translation for code of

modules moves brackets from outside of a module to inside

a component, it must manage the change of stages for a

reference in a value component, otherwise the result will

have a dangling reference. For this purpose, we introduce

an additional parameter d in [[ · ]]id , where d is the set of

declarations that may be referenced in the translation, hence

their levels must be adjusted through the translation. For

a sequence s of components at level 1, we accumulate the

component c to the set d as follows:

[[ ϵ ]]1d = ϵ

[[ c s ]]1d =

{
[[ c ]]1d [[ s ]]

1

d (c is a type component)

[[ c ]]1d [[ s ]]
1

c ,d (otherwise)

Because variables (component names) ind have level 1 before

the translation, and level-0 expressions are bound to them,

we need to splice them. Hence, the rules for variables are:

[[ x ]]1d =

{
∼ x (x ∈ Dom(d))

x (otherwise)

[[ X .x ]]1d =

{
∼ (X .x) (X ∈ Dom(d))

X .x (otherwise)

[[ $x1.x2 ]]
1

d = (val x1).x2
where Dom(d) is the set of variable names in the domain of

d . The third rule above is the one for dereferencing x2 in
the code x1. After the translation, x1 becomes a first-class

module that consists of code of a component, thus we should

translate it to (val x1).x2 to look up the value of x2. Although
MetaOCaml does not allow such an expression, we can trans-

late it to X .x2 after declaringmodule X = (val x1).
The run_module operator is translated depending on

the type of the target module. The translation eliminates the

run_module operator and defines a new module. The new

module contains an unpacked module X where X is a fresh

name, and components of module X .

[[ (run_module e : sig S end) ]]0d
= (module struct

module X = (val [[ e ]]0d )
(X , S) ▷ •

end : sig [[ S ]]0 end)
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The rule (X , S)▷• applies a run-primitive to each value com-

ponent in module X of type S . The run_module is applied
to a nested module and the run-primitive is propagated.

(X , ϵ) ▷ • = ϵ

(X , (val x : σ ) S) ▷ • = let x : σ = run X .x

(X , S) ▷ •

(X , (type t = σ ) S) ▷ • = type t = X .t

(X , S) ▷ •

(X1, (module X2 : M) S) ▷ • = module X2 =

(val [[ (run_module (module X1.X2 : M) : M) ]]
0

ϵ )

(X1, S) ▷ •

5.2 Translation Preserves Typing
We can prove that the following form of simple type preser-

vation holds for our translation. If E ⊢0 e : σ is derivable in

our type system, then [[ E ]]0d ⊢
0 [[ e ]]0d : [[ σ ]]0d is derivable

for the empty set d . We assume here that the translation for

a typing environment E is defined similarly for the sequence

of typing componentsC , and that the target type system has

a typing rule for genlet, which is the same as the one for

the standard let. The proof is straightforward but lengthy,

so omitted in this paper.

6 Performance
We have implemented our language through the translation

in the previous section, and conducted a few experiments

against microbenchmarks. The result is quite positive for our

claims in that the code-explosion problem in the Watanabe

et al.’s study is solved, or at least, drastically reduced as long

as we have experimented.

The microbenchmarks created by Watanabe et al. express

a domain-specific optimization for arithmetic expressions

such as an expression 0 + n → n using the tagless-final

embedding [2]. Figure 5 shows the core part of the bench-

mark written in λ<M>
. The tagless-final style uses module

types to embed syntax and typing rules of the object lan-

guage. The module type S specifies a type int_t represent-
ing a numeric type in the object language, int represent-

ing a numeric literal, and the functions add, sub, mul and

div correspond to four arithmetic operations. The function

suppressAddMulZero is a program translator in such an

object language. It is given an expression of type (module
S) code and returns code of a module after performing the

optimization. By applying it repeatedly, a fully optimized

module can be obtained. In this section, the depth refers to

the number of repeated functor applications. For the com-

plete implementation, see Watanabe et al.’s paper [16].

The code-explosion problem shows up if we use Watan-

abe et al.’s translation for the above program. The function

suppressAddMulZero, given a module m, splices the compo-

nents of m into (the code of) a new module. For example, in

module type S = sig
type int_t
val int: int -> int_t
val add: int_t -> int_t -> int_t
val sub: int_t -> int_t -> int_t
val mul: int_t -> int_t -> int_t
val div: int_t -> int_t -> int_t

end

let suppressAddMulZero = fun (m: (module S)
code) ->

<(module struct
type int_t = $m.int_t * bool
let int = fun n1 ->
if n1 = 0 then (~($m.int) 0, true)

else (~($m.int) n1, false)
let add = fun n1 -> fun n2 ->

match (n1,n2) with
(n1,b1),(n2,b2) ->

if (b1 && b2) then (~($m.int) 0,
true)

else ~($m.add) n1 n2
let sub = fun n1 -> fun n2 ->

if n1 = n2 then (~($m.int) 0, true)
else ~($m.sub) n1 n2

let mul = fun n1 -> fun n2 ->
match (n1,n2) with

(n1,b1),(n2,b2) ->
if (b1 || b2) then (~($m.int) 0,

true)
else ~($m.mul) n1 n2

let div = fun n1 -> fun n2 ->
match (n1,n2) with

(n1,_),(n2,_) ->
(~($m.div) n1 n2, false)

end: S)>

let rec fix depth m =
if depth <= 0 then m
else fix (depth -1) (suppressAddMulZero m)

Figure 5. Core Part of The Benchmarks

the int component, the m.int code is spliced twice. Thus, as
the depth increases, the size of the generated code increases

exponentially.

We use the following programs for experiments.

1. AMetaOCaml program translated from the benchmark

program by our translator.

2. AMetaOCaml program translated from the benchmark

program by Watanabe et al’s translator.

3. A naive OCaml program that expresses the benchmark

without code generation.

For these programs, we measure the memory usage, the exe-

cution time of generated code and the time for code genera-

tion and compilation. The measurement result is the average

of 10 trials. We conduct these experiments on Ubuntu 18.04
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Figure 7. Execution Time

LTS, Xeon E3-1225 v6@3.3GHz, Memory 32GB, BER MetaO-

Caml N107 (OCaml 4.07.1), byte code compiler. The memory

usage is measured using the GNU time command for com-

piled executables, defined by the maximum resident set size

of the process during its lifetime.

Figure 6 shows the memory usage where the horizontal

(vertical, resp.) axis is the number of functor applications

(memory usage on a logarithmic scale, resp.). The program

translated by Watanabe et al.’s consumes the memory ex-

ponentially, and the experiment was only performed up to

depth 16. On the other hand, the memory usage of ours

is linear. The naive program without code generation uses

a recursive module to repeatedly apply a functor for nor-

malization. The recursive module contains several nested

modules, and these are captured each time the functor is

applied. Therefore, the memory usage of the naive program

is larger than ours which creates at most 100 modules.

Figure 7 shows the execution time (excluding the time for

code generation). The result shows that the generated mod-

ules run faster than the naive one. Our program is about 30%

faster than Watanabe et al.’s (Figure 8). Our non-duplicating

code reduces the number of steps in program execution and

encourages optimization by the compiler.
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Figure 9. Time for Code Generation

Figure 9 shows the time for code generation and compila-

tion where the vertical axis is a logarithmic scale. The time

of Watanabe et al.’s program increases exponentially, while

ours has a gentle slope.

In our benchmark, functors are applied to modules quite

a few times, but it is not an unrealistic experiment. Since the

implementation of MirageOS contains a number of functor

applications, a unikernel that runs web service has functor

applications of depth up to 10. At depth 10, the execution

time is 0.15 seconds for the naive program (without code

generation), while it is only 0.012 seconds for our program.

MirageOS actually contains more indirections than this, be-

cause it contains a large number of components and nested

modules. Hence, we expect that the benefit of efficient code

generation for modules will be greater.

7 Discussion
7.1 Code of Functors
This design choice was motivated by the following consid-

eration. We first point out that removing this restriction

may be possible, but needs an extra cost. Let us consider an

expression <fun m -> (module ...)> of type ((module
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A) -> (module B)) code, which is code of a functor in

our representation. Since plain MetaOCaml prohibits mod-

ules within brackets, the brackets should be translated away,

and one possible solution is to use the unstaging transla-

tion by Kiselyov [10]. There is, however, a problem with

this solution, in that the unstaging translation translates a

bracket-expression to a thunk, and it would severely degrade

the performance of generated code and also complicate the

whole translation.

We think that applications for code of functors are not

sufficiently appealing, in the way that the cost mentioned

above is justified in the context of program generation. As

is discussed in this paper, functor applications are a major

source of indirections and penalize performance, and the

purpose of making use of the code-generation technique is

to optimize (inline) functor applications. Since MetaOCaml

is generative, we cannot manipulate code inside brackets,

hence the code of functors may not be further optimized.

7.2 Remaining Duplicated Code
Although our translation eliminates most code duplication,

it still allows duplicated code to be generated at the top level.

For example, if the module printLogger is at the top level

(i.e., its code is run), the function info and warn contain

the code of the function print. Namely, each component

has no duplicated code, but duplicated may exist between

top-level components. We think that this is not a serious

problem, as such duplication appears only at the top level,

and the performance problem is solved using our solution

as is shown in the previous section.

8 Related Work
In this section, we explain several closely related work to

our work. For comparison, we pick up three previous works,

Macros, Flambda and MLton, which can eliminate module

overhead at compile time. We also mention Functoria, which

helps developers build applications that use many modules,

as well as other research on using genlet.

Macros [20] are an extension of OCaml which allows type-

safe compile-time metaprogramming. It provides construc-

tors such as quoting <<e>> and splicing $e and can manip-

ulate code fragments similar to MetaOCaml. Macros fully

support the OCaml language including the module system,

and the abstraction overhead of modules can be eliminated

in a similar way as ours. However, our approach can gener-

ate code specialized for the runtime environment, such as

the number of CPU cores and memory size.

Flambda [6] is an optimizer of the OCaml compiler which

inlines a program whenever possible. Since functor appli-

cation is the target of inlining for Flambda, an indirection

discussed in this paper might be eliminated by Flambda, too.

Also, MLton [1] is an optimizing compiler for the Standard

ML, which aggressively inlines functors. While both of these

two studies are fully automated, our approach has its own

merit in that one is given full control as to how and what

code is generated.

Functoria [13] is a domain-specific language mainly used

in MirageOS, which can manipulate modules and functors

to build modular applications. Its main purpose is to scrap

the boilerplate associated with programs which use modules.

Functoria generates an OCaml program from a configuration

that describes how to combine modules. Since MetaOCaml

does not allow code of modules to be generated as values,

Functoria currently uses an ad hoc approach to generate

code of modules as strings. We hope that our work improves

the implementation of Functoria in the future.

In this study, we have extensively used the genlet primitive

in MetaOCaml, which is not yet used in many applications,

but has huge potential in realizing code sharing in various

forms. As another application of using genlet, a recent study

by Yallop and Kiselyov [19] makes use of genlet for generat-

ing mutually-recursive definitions.

9 Conclusion
In this paper, we have proposed a refined translation for an

extension of core MetaOCaml that can generate and manip-

ulate code of modules. We have conducted experiments for

micro-benchmarks and shown that our translation gives an

space- and time- efficient code for applications which need

repeated applications of functors to modules. Our approach

provides a way to explicitly perform the domain-specific

optimizations, in the programmer’s responsibility, without

relying on a compiler. We think that MirageOS is one of such

applications where approximately 10-times nested functor

applications are used in practice.

Our contributions in this paper are summarized as fol-

lows. First, we experimentally confirmed that dynamic let

insertion by genlet can go across the boundaries of modules

and functors, and can be used to avoid the code duplica-

tion problem in a relatively large codebase. Second, we have

solved the code-explosion problem in the previous study by

Watanabe et al., and opened a way to generate code using

high-level programming which makes heavy use of module

abstraction. Third, we have extended λ<M>
to allow code

generation of submodules, gave a complete formulation in-

cluding run_module , and studied its type system.

In future work, we plan to extend our source language to

a more realistic one, such as side effects and polymorphism,

mutually-recursive modules, and also develop practical appli-

cations using our language for generation of code of modules.

Investigating theoretical foundation of genlet is also an in-

teresting future work.
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A Typing Rules

E ⊢i M wf

E ⊢i S wf
(WF-Sig)

E ⊢i sig S end wf

E ⊢i S wf

(WF-Empty)

E ⊢i ϵ wf

E ⊢i σ wf E , x i ⊢i S wf x i < Dom(E)
(WF-Val)

E ⊢i (val x i : σ ) S wf

E , type t ⊢i S wf t i < Dom(E)
(WF-TypeAbs)

E ⊢i (type t ) S wf

E ⊢i σ wf E , type t = σ ⊢i S wf t i < Dom(E)
(WF-Type)

E ⊢i (type t = σ ) S wf

E ⊢i M wf E , X i ⊢i S wf X i < Dom(E)
(WF-Mod)

E ⊢i (module X i
: M ) S wf

E ⊢i σ wf

(type t = σ ) ∈ E
(T-Var)

E ⊢i t wf

(module X : sig S end)i ∈ E (type t = τ ) ∈ S
(T-Dot)

E ⊢i X .t wf

(val x : (module sig S end)mcod)0 ∈E (type t = τ ) ∈S
(T-DotCode)

E⊢i $x .t wf

E ⊢i σ1 wf E ⊢i σ2 wf
(T-Arr)

E ⊢i σ1 → σ2 wf

E ⊢1 τ wf
(T-Code)

E ⊢0 τ code wf

E ⊢0 σ wf
(T-Csp)

E ⊢1 % σ wf

E ⊢i M wf
(T-Mod)

E ⊢i (module M ) wf

E ⊢1 (module M ) wf
(T-ModCode)

E ⊢0 (module M )mcod wf

Figure 10. Typing rules for types

E ⊢i m : M
(module X : M )i ∈ E

(M-Var)

E ⊢i X : M

E ⊢i s : S
(M-Str)

E ⊢i struct s end : sig S end

E ⊢i em : (module M )
(M-Val)

E ⊢i (val em ) : M

E ⊢i s : S
(S-Empty)

E ⊢i ϵ : ϵ

E⊢i e : M E⊢i σ wf E , (val x :σ )i ⊢i s : S x i<Dom(E)
(S-Let)

E⊢i (let x :σ = e) s : (val x :σ ) S

E , (type t )i ⊢i s : S t i < Dom(E)
(S-TypeAbs)

E ⊢i (type t ) s : (type t ) S

E ⊢i σ wf E , (type t = σ )i ⊢i s : S t i < Dom(E)
(S-Type)

E ⊢i (type t = σ ) s : (type t = σ ) S

E⊢i m : M E⊢i M wf E , (module X :M )i ⊢i s : S X i<Dom(E)
(S-Mod)

E⊢i (module X=m) s : (module X :M ) S

E ⊢i e : σ
(val x : σ ) ∈ E

(E-Var)

E ⊢i x : σ

(module X : sig S end)i ∈ E S = S1 (val x : σ ) S2
(E-Dot)

E ⊢i X .x : σ [t ← X .t | t ∈ Dom(S1)]

(val x : (module (sig S end))mcod)i ∈E S=S1 (val y :σ ) S2
(E-DotCode)

E⊢i $x .y : σ [t←(val x ).t |t ∈Dom(S1)] code

E ⊢i σ1 wf E , (val x : σ1)i ⊢i e : σ2
(E-Fun)

E ⊢i fun x → e : σ1 → σ2

E ⊢i e1 : σ1 → σ2 E ⊢i e2 : σ1
(E-App)

E ⊢i e1 e2 : σ2

E ⊢i e1 : σ1 E , (val x : σ1)i ⊢i e2 : σ2
(E-Let)

E ⊢i let x = e1 in e2 : σ2

E ⊢i M wf E ⊢i m : M
(E-Mod)

E ⊢i (modulem : M ) : (module M )

E ⊢1 e : τ
(E-Bra)

E ⊢0 ⟨e ⟩ : τ code

E ⊢0 e : σ code
(E-Esc)

E ⊢1 ∼ e : σ

E ⊢0 e : σ code
(E-Run)

E ⊢0 run e : σ

E ⊢1 em : (module M )
(E-BraMod)

E ⊢0 < em > : (module M )mcod

E ⊢0 em : (module M )mcod
(E-Runmod)

E ⊢0 (run_module em : M ) : (module M )

Figure 11. Typing rules for terms
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B Translation

[[m ]]id

[[ X ]]id = X

[[ struct s end ]]id = struct [[ s ]]id end

[[ (val e) ]]id = (val [[ e ]]
i
d )

[[ s ]]id

[[ ϵ ]]id = ϵ

[[ c s ]]0d = [[ c ]]
0

d [[ s ]]
0

d

[[ c s ]]1d =

{
[[ c ]]1d [[ s ]]

1

d (c is a type component)

[[ c ]]1d [[ s ]]
1

c ,d (otherwise)

[[ c ]]id

[[ type t ]]id = type t

[[ type t = σ ]]id = type t = [[ σ ]]i

[[module X =m ]]id = module X = [[m ]]id
[[ let x : σ = e ]]0d = let x : [[ σ ]]0 = [[ e ]]0d

[[ let x : σ = e ]]1d = let x : [[ σ ]]1 code = genlet ⟨[[ e ]]1d ⟩

[[ e ]]id

[[ x ]]0d = x

[[ x ]]1d =

{
∼ x (x ∈ Dom(d))

x (otherwise)

[[ X .x ]]0d = X .x

[[ X .x ]]1d =

{
∼ (X .x) (X ∈ Dom(d))

X .x (otherwise)

[[ fun x → e ]]id = fun (x : [[ σ ]]i ) → [[ e ]]id

[[ e1 e2 ]]
i
d = [[ e1 ]]

i
d [[ e2 ]]

i
d

[[ let x = e1 in e2 ]]
i
d = let x = [[ e1 ]]id in [[ e2 ]]id

[[ ⟨e⟩ ]]0d = ⟨[[ e ]]
1

d ⟩

[[ ∼ e ]]1d =∼ [[ e ]]
0

d

[[ run e ]]0d = run [[ e ]]0d
[[ $x1.x2 ]]

i
d = (val x1).x2

[[ (modulem : M) ]]id = (module [[m ]]id : [[M ]]i )

[[ < (modulem : M) > ]]0d = (module [[m ]]1d : [[M ]]1)

[[ (run_module e : sig S end) ]]0d = (module struct

module X = (val [[ e ]]0d )
(X , S) ▷ •

end : sig [[ S ]]0 end)

Figure 12. Translation for terms

(X , S) ▷ •

(X , ϵ) ▷ • = ϵ

(X , (val x : σ ) S) ▷ • = let x : σ = run X .x

(X , S) ▷ •

(X , (type t = σ ) S) ▷ • = type t = X .t

(X , S) ▷ •

(X1, (module X2 : M) S) ▷ • = module X2 =

(val [[ (run_module (module X1.X2 : M) : M) ]]
0

ϵ )

(X1, S) ▷ •

Figure 13. Translation related to run_module

[[M ]]i

[[ sig S end ]]i = sig [[ S ]]i end

[[ S ]]i

[[ ϵ ]]i = ϵ

[[ C S ]]i = [[ C ]]i [[ S ]]i

[[ C ]]i

[[ type t ]]i = type t

[[ type t = σ ]]i = type t = [[ σ ]]i

[[module X : M ]]i = module X : [[M ]]i

[[ val x : σ ]]0 = val x : [[ σ ]]0

[[ val x : σ ]]1 = val x : [[ σ ]]1 code

[[ σ ]]i

[[ t ]]i = t

[[ X .t ]]i = X .t

[[ $x .t ]]i = (val x).t

[[ σ1 → σ2 ]]
i = [[ σ1 ]]

i → [[ σ2 ]]
i

[[ σ code ]]0 = [[ σ ]]0 code if σ ismodule-free

[[ %σ ]]1 = σ

[[ (moduleM) ]]i = (module [[M ]]i )

[[ (moduleM)mcod ]]0 = (module [[M ]]1)

Figure 14. Translation for types
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