
Program Generation for ML Modules (Short Paper)
Takahisa Watanabe

Department of Computer Science
University of Tsukuba

Tsukuba, Japan
takahisa@logic.cs.tsukuba.ac.jp

Yukiyoshi Kameyama
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

kameyama@acm.org

Abstract
Program generation has been successful in various domains
which need high performance and high productivity. Yet,
programming-language supports for program generation
need further improvement. An important omission is the
functionality of generating modules in a type safe way. Inoue
et al. have addressed this issue in 2016, but investigated only
a few examples. We propose a language as an extension of
(a small subset of) MetaOCaml in which one can manipu-
late and generate code of a module, and implement it based
on a simple translation to MetaOCaml. We show that our
language solves the performance problem in functor appli-
cations pointed out by Inoue et al., and that it provides a
suitable basis for writing code generators for modules.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; •Theory of computation
→ Type theory;

Keywords Program Generation, Modules, Type Safety, Pro-
gram Transformation
ACM Reference Format:
Takahisa Watanabe and Yukiyoshi Kameyama. 2018. Program Gen-
eration for ML Modules (Short Paper). In Proceedings of ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM’18). ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3162072

1 Introduction
Multi-stage programming (MSP) is an attractive way to gen-
erate efficient code tailored to specific hardware, environ-
ment, or run-time parameters. After a number of studies for
developing languages and systems for multi-stage program-
ming (Scheme’s quasi quotation, hygienic macro, Template
Haskell etc.), research on type systems for MSP has lead to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PEPM’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5587-2/18/01. . . $15.00
https://doi.org/10.1145/3162072

full-blown programming languages for MSP: MetaOCaml
[5, 12] and Scala Lightweight Modular Staging (LMS) [10]. In
these languages, type safety of code generators has stronger
implication than one would have expected: it subsumes the
type safety of all generated code regardless of run-time pa-
rameters.1 Thus, these languages provide a solid basis for
writing safe (or relatively safer) code generators. Recent suc-
cessful examples include query engines [7], stream fusion
[6] and generic programming [15].

Sticking to type safety sometimes leads to rather restricted
expressivity of the language. One might want to generate not
only code of expressions, but also code of types, declarations,
and other syntactic objects such as modules, all of which
have been considered difficult under statically typed MSP
languages. In particular, guaranteeing type safety of gener-
ated code against types which do not exist at compile time
would be difficult. Modules in ML-like languages involve dec-
laration of types and values, hence, type safety for programs
which generate (code of) a module is also challenging.

Inoue et al. [4] proposed the shift of MSP research from
term generation to module generation. They have investi-
gated the efficiency problem of indirect accesses in ML-style
modules, and shown that the problem may be solved in a
hypothetical extension with module generation. They also
showed that their solution can be converted to a program
written in the existing MetaOCaml, and at the end of the
paper, they have questioned whether there exist compelling
examples which really need such an extension.
In this paper, we investigate the same problem as theirs,

and give a solution from a different angle. Specifically, we
propose a lightweight extension of (a subset of) MetaOCaml
where we can naturally and smoothly express manipulation
of the code of a module, including splicing module com-
ponents in another expression. This extension is arguably
useful to express solutions for several inefficiency problems
caused by module abstractions. Our extension is lightweight
in the sense that we can translate away the extended func-
tionality into the existing MetaOCaml.

The rest of this paper is organized as follows: §2 introduces
the motivating example and the problem to be addressed in
this paper, and the earlier work on the same problem. We
show our solution to the motivating example in §3 and then

1Strictly speaking, type safety in these languages is guaranteed only for
a certain sublanguage of these languages, typically a language without
computational effects.

60

https://doi.org/10.1145/3162072
https://doi.org/10.1145/3162072
https://doi.org/10.1145/3162072

PEPM’18, January 8–9, 2018, Los Angeles, CA, USA Takahisa Watanabe and Yukiyoshi Kameyama

module type EQ = sig
type t
val eq: t → t → bool

end
module type SET = sig

type elt
type set
val member: elt → set → bool

end
module MakeSet (Eq: EQ)
: SET with type t = Eq.t =

struct
type elt = Eq.t
type set = Eq.t list
let rec member elt = function
| [] → false
| elt ' :: set' →

Eq.eq elt elt '
|| member elt set '

end
module IntSet = MakeSet (struct

type t = int
let eq = (=)

end)

Figure 1. MakeSet Functor (no code generation)

introduce our language which allows module generation in
§4. §5 shows an implementation of our language through
a translation to MetaOCaml, and the result of performance
measurement is shown in §6. §7 gives concluding remark
and future work.

2 Motivating Example
The module system in ML-like languages provides a pow-
erful abstraction to structure a large program. It has been
an active target of scientific research, and has found many
interesting extensions with compelling applications such as
first-class modules, modular implicits [14], and tagless final
embedding [1]. On the practical side, the MirageOS2 is one
of the most successful library operating systems which uses
OCaml modules to implement operating system drivers.

A big problem ofmodule abstraction is performance penalty
in functor3 applications. Inoue et al. addressed this problem
and gave a solution for a few examples, using program gen-
eration techniques. We shall illustrate the problem and their
solutions below using the same example as theirs.

Inoue et al.’s leading example is a module which represents
a set, shown in Fig. 1. In the code, the first nine lines define
types formodules4. Amodule of type EQ consists of a concrete
type for t and an implementation of eq whose type is t → t

→ bool. A module of type SET consists of two types elt (for
elements) and set (for the set of elements), and a function
2https://mirage.io
3In ML, a functor is a function from modules to a module.
4In ML, the type of modules is called a signature.

module type EQ_CODE = sig
type code t
val eq: t code → t code → bool code

end
module type SET = (* the same as before *)
module MakeSetGen (Eq: EQ_CODE)
: (SET with type t = Eq.t) code =
<struct

type elt = ~(Eq.t)
type set = elt list
let rec member elt = function
| [] → false
| elt' :: set' →

~(Eq.eq <elt> <elt '>) || member elt
set'

end>
module IntSet = MakeSetGen (struct

type code t = <int>
let eq (x : int code) y = <(~x) = (~y)>

end)

Figure 2. Inoue et al.’s solution (slightly modified)

member (for the membership function). MakeSet is a functor
which is given a module of type EQ (which specifies the type
of elements of the set) and returns a module of type SET.
What MakeSet actually does is to implement the finite set as
a list, and provides an implementation of the membership
function. The last four lines apply the functor MakeSet to a
module of type EQ, which has int and the equality function5
over int as its components. By this application we obtain a
concrete module of type SET whose element is of type int.

Although the above usage of modules provides an elegant,
modular framework for introducing sets, it has a serious
performance penalty compared with a monolithic implemen-
tation of the module IntSet which does not use functors.
The problem of the code in Fig. 1 lies in the phrase Eq.eq

elt elt' where Eq.eq is a reference to the function (=) (an
indirect access to the compiled code of the function). Every
time this phrase is evaluated, the actual content of Eq.eq is
dereferenced, and this overhead is not negligible if the mod-
ule component is dereferenced repeatedly. Inoue et al. have
observed that the abstraction overhead can be eliminated by
MetaML-style program generation for modules.

Fig. 2 shows their solution for the above problemwritten in
a hypothetical extension of MetaOCaml. Since this code uses
MetaOCaml, an extension of OCaml with the functionality
of quasi-quotation for terms, we explain its basic operators
first. <e> is the code for the term e, for instance <3 + 5> is
a code for the term 3 + 5. The term ~e is used for splicing.
for instance, the code <2 + ~x * 4> will evaluate to <2 + (3

+ 5) * 4> if the value of x is <3 + 5>. The type of <3 + 5>

is int code, not int. Although not included in our example,
5 In OCaml the notation (=) represents the prefix version of the function =,
thus (=) x y is equivalent to x = y.

61

Program Generation for ML Modules (Short Paper) PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

the term run e is used for compiling and running code. For
instance, the code run <3 + 5> will evaluate to 6. The type
of run <3 + 5> is int.

The program in Fig. 2 uses these annotations in two ways.
The first, traditional way is the usage in let eq (x : int

code) y = <(~x) = (~y)> where the annotations are used
for terms. For instance, the term eq <2+3> <3+1> evaluates to
the code value <(2+3) = (3+1)>. The second, untraditional
way is the usage in module MakeSetGen (Eq: EQ_CODE) = <

struct ... end> where a concrete module appears inside
brackets, namely we use code of a module. Since the current
implementation of MetaOCaml does not allow code of a mod-
ule, the above program can only be written in a hypothetical
extension. If there were such an extended language, the pro-
gram in Fig. 2 can solve the problem of indirect access; the
functor MakeSetGen receives an argument of type EQ_CODE,
which is intuitively a code value of a module of type EQ, and
returns a code value of a module where the actual equality
function (provided by the argument) is spliced at the place
of Eq.eq in the code ~(Eq.eq <elt> <elt'>). This splicing is
done at program-generation time, and the result of program
generation is a code value of a module. By running it, we
obtain a module that does not suffer from the performance
problem.
Inoue et al.’s paper left us the following two questions:

(1) They found another solution obtained by translating the
above program to a program in the standard MetaOCaml.
They then asked if their hypothetical extension is really
needed in realistic (and compelling) applications. (2) The
program in Fig.2 has a typing problem which is not fully
settled in their paper. Is there any type-sound language to
support module generation? The present paper tries to an-
swer these two questions.

3 Our Solution
We propose an extension of (core) MetaOCaml which al-
lows generation and manipulation of code of a module. Our
extension is intentionally very small so that MetaOCaml pro-
grammers can easily understand it. Fig. 3 shows a solution
to the leading example in the previous section written in our
language, which we shall explain below.

The solution uses first-class modules (standard in OCaml
and MetaOCaml) plus three new operators $, % and
run_module for manipulating code of a module. First-class
modules are standard since OCaml 3.12, which allow manip-
ulation of modules as first-class values that can be passed
to and returned from functions. A modulem is turned to an
expression by (module m : M) whereM is the type ofm, and
the expression e is turned back to a module by (val e). As
modules are turned to expressions, the functor MakeSet in
Fig. 1 can be represented by the function makeSet.
The $ operator converts code of a module to a module

of code. Consider the program phrase $eq.t. Since eq has

let makeSet (type a)
(eq: (module EQ with type t = a) code) =
<(module struct

type elt = %($eq.t)
type set = %($eq.t) list
let rec member elt = function
| [] → false
| elt ' :: set ' →

~($eq.eq) elt elt '
|| member elt set '

end : SET with type elt = a) >
module IntSet = run_module
(val makeSet <(module struct

type t = int
let eq = (=)

end: EQ with type t = int) >)

Figure 3. Our Solution for MakeSet

type (module EQ) code,6 it refers to code of a module of type
EQ. It is not possible to extract its components such as the
type t and the value eq, since MetaOCaml does not allow
destruction of code values in any way. Hence we need the
new operator $ to covert eq to a module of code, namely, a
module whose value component is code. Then we can extract
each component by simply applying the dot notation to $eq,
and $eq.eq refers to the eq component. (Note that $eq.eq is
parsed to ($eq).eq.)
We think that the existence of the $ operator in our lan-

guage is harmless by the following reasons. First, we have
concrete semantics for our language, via the translation to
core MetaOCaml. Second, the $ operator already exists in
our intended semantics. Let us assume that our target lan-
guage does not have any computational effects (which is in
fact true in our current setting), and we interpret the type
A code as unit → A, which should be one possible interpre-
tation. Then the type (A * B) code is isomorphic to the type
(A code) * (B code), and similarly the type {x : A; y : B}

code is isomorphic to the type {x : A code; y : B code}.
Since modules in MetaOCaml are internally represented as
records7, it is natural to expect that the type for code of
a module is isomorphic to the type for a module of code,
namely, a module whose components have code types.8 The
$ operator is a syntactic operator for one direction of this
“isomorphism”. Admittedly, this naïve argument is insuffi-
cient as a mathematical justification, and we think that it is
sufficient as an intuitive guidance for our language design.

The % operator is the typed version of Cross-Stage Persis-
tence (CSP). MetaOCaml allows a present-stage value such
as fun x → x * x to be embedded in code (a future-stage
6We ignore the sharing constraint "with type t = a” in this discussion, since
it is not quite relevant.
7This holds if we ignore dependency between components of modules.
8 Similarly we can consider “isomorphism” between code of X and X of
code for X=tuple, list, and other similar data structures.

62

PEPM’18, January 8–9, 2018, Los Angeles, CA, USA Takahisa Watanabe and Yukiyoshi Kameyama

(module (sig module (sig
type t = int type t = int
val v1: t val v1: t code
val v2: t → t val v2: (t → t) code

end)) code end)

Figure 4. Types for code of a module and a module of code
values

value), by which the value goes across the stage boundary.
(Note the difference from splicing which allows us to embed
code such as <fun x → x * x> in another code.) Taha and
Nielesen [13] used the notation %e for CSPing the value of
e, and we borrow it to denote CSP for types.9 The phrase
type set = %($eq.t) list in Fig. 3 means that, if $eq.t eval-
uates to int * bool, then the type set is (int * bool) list.
If the % operator is omitted, then the phrase $eq.t is not
evaluated since it appears inside brackets. The % operator
lets the phrase be evaluated and then replaced by the result
of evaluation. The novelty of our % operator is to allow CSP
for types. Note that we have no other operators that manipu-
late types, in particular, we do not allow code of types in our
language. This is crucial in our design which differentiate
our language from Inoue et al.’s.
The run_module operator runs code of a module and it

is similar to the run primitive in MetaOCaml, which works
for code of a term.

We claim that the program in Fig. 3 is natural and easy to
write and understand. First it perfectly fits the MetaML-style
program generation framework. In this framework, given an
ordinary program, one only has to add annotations such as
<...> and ~(...) to appropriate places in the program, based
on binding-time analysis (the process is called staging). In
our language, one need to add % and $ in addition to these
annotations, but still the resulting program after staging is
quite similar to the original program.
Besides the basics of MetaOCaml and ML-style modules,

all we need to understand our language are the first-class
modules and the new operators $, % and run_module. but
as the program in Fig. 3 shows, they are really lightweight.
The first one simply converts code of a module to a module
of code, and the second embeds the type dereferenced by a
type component of a module and it is similar to the implicit
CSP for values in MetaOCaml. The last one is similar to the
run primitive.

4 Our Language
Our language is an extension of core MetaOCaml which
does not include computational effects such as references

9 We could have designed our language to elide the operator % in the source
code just like MetaOCaml, but we made it an explicit operation to make the
point clear.

m ::= struct c; c · · · ; c end | val д
c ::= val x : σ = e | type t = σ

e ::= x | p(e, · · · , e) | x .x | $x .x | fun (x : σ) → e

| let x = e in e | e @ e | <e> | ! e | ~e
д ::= e | fun (x : τ) → д | let x = д in д | д @ д

| (modulem : M) | <д> | run_module д

Figure 5. Syntax for terms

and exceptions, but includes first-class modules. We omit the
explanation of the standard part; see Harper and Lillibridge
[3] and Leroy [8] for module calculi.
Fig. 5 defines the syntax of modules (m), module compo-

nents (c), simple expressions (e), and general expressions (д).
We distinguish simple expressions from general expressions
to avoid nested modules (a module which contains another
module as its component) for simplicity. Simple expressions
are standard lambda expressions such as variables and prim-
itive operations p(e, · · · , e), selection for module component
x .x , expressions for staging (<e>, !e and ~e), or the new ex-
pression $x .x introduced in this work. A general expression
may contain a module expression and related expressions.
The expression (modulem : M) is an expression converted
from a modulem where the type of module M is made ex-
plicit. The expression <д> may be code of a module. We also
have an expression run_module д for running a module.
The example in Fig. 3 can be written as a general expression
in this syntax.

The type system of our language is based onDavies’ λ⃝[2]
which allows manipulation of open code and no stage errors
may happen for typeable terms. Although λ⃝ does not pre-
vent open code from being executed (the scope extrusion
problem [9, 13]), the situation is not worse than the current
MetaOCaml and Scala LMS. It is left for future work to make
our language to be scope safe.
For simplicity we restrict the number of stages to two

where the stage 0 is the present stage and the stage 1 is the
next (future) stage. Each typing judgment is associated with
its stage such as E ⊢i e : σ for i = 0, 1. Due to lack of space we
cannot list the typing rules. Instead, we show a few examples
of typing rules and a typing derivation. Let the types of Fig. 4
beM1 (left) andM2 (right). ThenM1 is the type for code of
a module and M2 is the type for a module consisting of a
type and code values. Then, the $ operator has the following
typing rule where the superscript 0 indicates the stage:

(x : M1)
0 ∈ E

E ⊢0 $x : M2

Namely, the $ operator merely converts a variable10 of type
M1 to an expression of type M2. Using the above rule, we
10We have restricted the syntax so that the argument of $must be a variable.

63

Program Generation for ML Modules (Short Paper) PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

can derive the type for each component of the module, for
instance, the type of the component v2 is derived as follows:

E ⊢0 $x : M2

E ⊢0 $x .v2 : ($x .t → $x .t) code

The typing rule of our % operator is similar to the one for
CSP in MetaOCaml:

E ⊢0 σ :: ⋆
E ⊢1 % σ :: ⋆

where⋆ is the (unique) kind, namely, σ :: ⋆means σ is a well-
formed type. Using this rule, we can derive well-formedness
of a type component as follows:

E ⊢0 $x : M2

E ⊢0 $x .t :: ⋆
E ⊢1 %($x .t) :: ⋆

E ⊢1 (type t = %($x .t)) wf

Since the last judgment of the above derivation has the
stage 1, type t = %($x .t) is used in the future stage (as
a type component of code of a module). The type component
type elt = %($eq.t) in Fig. 3 can be typed similarly.
The typing rule for the run_module operator is similar

to the run primitive in MetaOCaml:

E ⊢0 д : (module M) code
E ⊢0 run_module д : module M

Intuitively, it receives a code value of a module, and returns
a compiled code of the module.

In summary, our type system assigns types to terms based
on the (intuitive) isomorphism given in Fig. 4. The rest of
the rules in our type system is standard and omitted.

5 Implementation by Translation
We have implemented our language by translating the added
functionality away, namelywe translate a program in our lan-
guage to a MetaOCaml program. Its main role is to eliminate
code of a module <(module m : M)> , which is not allowed
in MetaOCaml.
The translation is parameterized by stages, namely, we

have the present-stage translation ⟦·⟧0 and the future-stage
one ⟦·⟧1. The former is homomorphic over constructors ex-
cept ⟦<e>⟧0 := ⟦e⟧1. The future-stage translation ⟦·⟧1 is used
for translating expressions inside brackets. A module and its
component are translated at the stage 1 as follows:

⟦(modulem : M)⟧1 := (module ⟦m⟧1 : ⟦M⟧1)
⟦type t :: ⋆ = σ⟧1 := type t :: ⋆ = ⟦σ⟧1
⟦val x : σ = e⟧1 := val x : ⟦σ⟧1code = <⟦e⟧1>

A value component (third line) is converted to a code value,
while a type component (second line) is kept intact. The new
primitives $ and % are simply dropped by the translation:

module type EQ_CODE = sig
type t
val eq: (t → t → bool) code

end
module type SET_CODE = sig

type elt
type set
val member: (elt → set → bool) code

end
let makeSet (type a)

(eq: (module EQ_CODE with type t = a)) =
(module struct

module Eq = (val eq)
type elt = Eq.t
type set = Eq.t list
let member = <

let rec member elt ' = function
| [] → false
| (elt :: set) → ~(Eq.eq) elt' elt

|| member elt ' set
in member >

end : SET_CODE with type elt = a)

Figure 6. Result of the translation of MakeSet in Fig. 3

⟦$x1.x2⟧1 := x1.x2 and ⟦% σ⟧1 := ⟦σ⟧1. Fig. 6 shows the
result of translating the example of MakeSet in Fig. 3.

Translating the run_module operator away is not straight-
forward, since we need to “propagate” the run-primitive to
each module component. Nevertheless we can handle this
case by making the translation dependent on the type of the
source term. We explain it by an example. Suppose g has the
following type.

(module (sig
type t
val v1 : σ1
val v2 : σ2

end)) code

Then we translate (run_module g) as follows:

⟦run_module g⟧0 = (module struct
module G = (val ⟦g⟧0)
type t = G.t
let v1 = run G.v1
let v2 = run G.v2

end)

where run is a primitive for executing code in MetaOCaml,
and val for turning an expression to a module. We use a
nested module (a module which has a module component) to
make the result of the translation be a single module. Note
that each value component of the outer module has the run
primitive. Clearly, the above translation cannot be defined
unless we use the type information of g.

64

PEPM’18, January 8–9, 2018, Los Angeles, CA, USA Takahisa Watanabe and Yukiyoshi Kameyama

The translation is not quite correct for modules whose
components have dependency. Consider the following code
snippet:

let m = <(module struct
let v1 = 10 + 20 + 30
let v2 = v1 + v1

end)>

By translating this program, we would get:

let m = (module struct
let v1 = <10 + 20 + 30>
let v2 = <v1 + v1>

end)

but then v2 has a free reference to v1 at the stage 1. To
solve the problem, we refine the translation by inserting let
expressions in the following way:

let m = (module struct
let v1 = <10 + 20 + 30>
let v2 = <let v1 = ~(v1) in

v1 + v1>
end)

Now v2 has no free references and can be used in other
code by splicing. Thus, we have resolved dependency via
let-insertion. The above strategy fixes the problem of the
naïve translation, yet it has a problem; generated code may
become excessively large for some cases. It is our ongoing
work to improve the size of generated code, which will be
reported elsewhere.

We have implemented our language using the above trans-
lation. The performance of our implementation is shown in
the next section.

6 Experiments and Performance
We have conducted an experiment for micro benchmarks
using the implementation of our language. The case study
shown in this section was taken from Suzuki et al.’s nor-
malizer for language-integrated query (SQL-query language
integrated with a functional language) [11]. They used the
tagless-final embedding for domain-specific languages, and
expressed each normalization step as a functor, and used a
recursive functor to iterate normalization steps. Thus, func-
tor applications are repeatedly used in their normalizer and
their overhead is not negligible. We have implemented a
simplified normalizer in our language, and measured its per-
formance. Here we show its core part, and the complete code
is shown in the first author’s page11.

module type S = sig
type int_t
type obs_t
val int: int → int_t

11http://logic.cs.tsukuba.ac.jp/~takahisa/module-generation.html

val add: int_t → int_t → int_t
...

end
let suppressAddZeroPE =
fun (m: (module S with ..) code) →

<(module struct
type int_t = $m.int_t * bool
type obs_t = int
let int = fun n1 →

(~($m.int) n1, n1 = 0)
let add = fun n1 → fun n2 →

match (n1, n2) with
| (n1, b1), (n2, b2) →

if (b1 && b2) then
(~($m.int) 0, true)

else
~($m.add) n1 n2

...
end: S with type obs_t = int)>

let rec fix depth m =
if depth <= 0 then m
else fix (depth - 1)

(suppressAddZeroPE m)

The function suppressAddZeroPE realizes a program trans-
formation for the zero-suppression optimization such as x+0
to x. It is given an expression of type (module S) code (which
specifies the signature of the object language) and returns
code of a module after performing the optimization. We
apply the transformation iteratively to obtain the fully opti-
mized form, hence we use a recursive function in the code.
The number of iteration is given by the parameter depth.
Note that this kind of control is easily implemented in our
language, while it may be difficult for a fully-automatic static
analyzer which would try to infinitely inline a module (or
never inline it).
Our translator turns the above code into a MetaOCaml

program (a code generator). Then we run it in MetaOCaml
to obtain an OCaml program, and by executing it we obtain
the final result. We have measured the execution time (the
last step) of the above implementation, and that of a naïve
implementation of the same program transformation which
does not use code generation for modules. (We do not include
the time for code generation in measurement.) The result
is shown in Table 1 where the unit is second, and we run it
on MacOS X 10.11.2, Memory 8GB, BER MetaOCaml N104
(OCaml 4.04.0), byte code compiler.

Table 1. Performance Measurement

depth 2 4 6 8 10
Naïve 0.0501 0.0933 0.1284 0.1692 0.2167
Ours 0.0064 0.0108 0.0159 0.0174 0.0232

The first row shows the value of the depth parameter (the
number of iterations), and the second and the third show the
performance of the naïve one and that of our implementation,

65

Program Generation for ML Modules (Short Paper) PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

resp. The result shows that our results run seven to eight
times faster than the naïve implementation.
Clearly this is a biased example to our approach in that

functor application (or function application) occurs a huge
number of times. Also, the use of recursive functors in OCaml
may have had severe performance penalty. Nevertheless, the
result is encouraging to pursue the language for module
generation.

7 Conclusion
We have proposed an extension of (core) MetaOCaml where
one can write program generators that can manipulate and
generate code of a module in the type-safe way. We believe
that our extension naturally fits the style of MetaML-like
multi-stage programming, thus allowing one to write module
manipulation easily and naturally. We have shown that the
MakeSet example and a simplified example of Suzuki et al.’s
tagless-final program transformation are expressible in our
language, and that the performance of generated modules is
improved.

We briefly state future work. First, we put several restric-
tions to our language and eliminating these restrictions will
be an interesting research topic. For instance, we allow only
two stages, which means that we cannot write a code gen-
erator which generates yet another code generator. We also
do not allow nested modules in the source language. Sec-
ond, we sticked to the MetaML-style type-safe approach to
program generation, and did not allow run-time generation
and manipulation of code of types. Several authors includ-
ing Inoue et al.[4] have already argued that allowing it may
further improve expressivity of generators and performance
of generated code. It is left for future investigation.

Acknowledgments
The authors would like to thank the program committee and
anonymous reviewers of PEPM’18 for valuable comments
and criticism. Special thanks go to Kohei Suenaga for nu-
merous constructive comments on earlier versions of this
paper. The second author is supported in part by the JSPS
KAKENHI No. 15K12007.

References
[1] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[2] Rowan Davies. 1996. A Temporal-Logic Approach to Binding-Time
Analysis. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996.
184–195. https://doi.org/10.1109/LICS.1996.561317

[3] Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Ap-
proach to Higher-Order Modules with Sharing. In Conference Record
of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, Oregon, USA, January 17-21, 1994.
123–137. https://doi.org/10.1145/174675.176927

[4] Jun Inoue, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Stag-
ing Beyond Terms: Prospects and Challenges. In Proceedings of the
2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Ma-
nipulation (PEPM ’16). ACM, New York, NY, USA, 103–108. https:
//doi.org/10.1145/2847538.2847548

[5] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-
Caml - System Description. In Functional and Logic Programming -
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June
4-6, 2014. Proceedings (Lecture Notes in Computer Science), Michael
Codish and Eijiro Sumii (Eds.), Vol. 8475. Springer, 86–102. https:
//doi.org/10.1007/978-3-319-07151-0_6

[6] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream fusion, to completeness. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and
Andrew D. Gordon (Eds.). ACM, 285–299. http://dl.acm.org/citation.
cfm?id=3009880

[7] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi.
2014. Building Efficient Query Engines in a High-Level Language.
PVLDB 7, 10 (2014), 853–864.

[8] Xavier Leroy. 2000. A Modular Module System. J. Funct. Program. 10,
3 (May 2000), 269–303. https://doi.org/10.1017/S0956796800003683

[9] Junpei Oishi and Yukiyoshi Kameyama. 2017. Staging with control:
type-safe multi-stage programming with control operators. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2017, Vancouver, BC,
Canada, October 23-24, 2017. 29–40. https://doi.org/10.1145/3136040.
3136049

[10] Tiark Rompf. 2016. Lightweight modular staging (LMS): generate
all the things! (keynote). In Proceedings of the 2016 ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 -
November 1, 2016, Bernd Fischer and Ina Schaefer (Eds.). ACM, 1. https:
//doi.org/10.1145/2993236.2993237

[11] Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Finally,
Safely-extensible and Efficient Language-integrated Query. In Proceed-
ings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (PEPM ’16). ACM, New York, NY, USA, 37–48.
https://doi.org/10.1145/2847538.2847542

[12] Walid Taha. 2003. A Gentle Introduction to Multi-stage Programming.
InDomain-Specific ProgramGeneration, International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003, Revised Papers. 30–50. https://doi.
org/10.1007/978-3-540-25935-0_3

[13] Walid Taha and Michael Florentin Nielsen. 2003. Environment Classi-
fiers. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’03). ACM, New York, NY,
USA, 26–37. https://doi.org/10.1145/604131.604134

[14] Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular im-
plicits. In Proceedings ML Family/OCaml Users and Developers work-
shops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014. 22–63.
https://doi.org/10.4204/EPTCS.198.2

[15] Jeremy Yallop. 2017. Staged generic programming. PACMPL 1, ICFP
(2017), 29:1–29:29. https://doi.org/10.1145/3110273

66

https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/2847538.2847548
https://doi.org/10.1145/2847538.2847548
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
http://dl.acm.org/citation.cfm?id=3009880
http://dl.acm.org/citation.cfm?id=3009880
https://doi.org/10.1017/S0956796800003683
https://doi.org/10.1145/3136040.3136049
https://doi.org/10.1145/3136040.3136049
https://doi.org/10.1145/2993236.2993237
https://doi.org/10.1145/2993236.2993237
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1145/604131.604134
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1145/3110273

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Solution
	4 Our Language
	5 Implementation by Translation
	6 Experiments and Performance
	7 Conclusion
	Acknowledgments
	References

