
Staging Beyond Terms: Prospects and Challenges

Jun Inoue
National Institute of Advanced Industrial

Science and Technology, Japan
jun.inoue@aist.go.jp

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Yukiyoshi Kameyama
University of Tsukuba, Japan

kameyama@acm.org

Abstract
Staging is a program generation paradigm with a clean, well-
investigated semantics which statically ensures that the generated
code is always well-typed and well-scoped. Staging is often used
for specializing programs to the known properties or parts of data
to improve efficiency, but so far it has been limited to generating
terms. This short paper describes our ongoing work on extending
staging, with its strong safety guarantees, to generation of non-
terms, focusing on ML-style modules. The purpose is to map out
the promises and challenges, then to pose a question to solicit the
community’s expertise in evaluating how essential our extensions
are for the purpose of applying staging beyond the realm of terms.

We demonstrate our extensions’ use in specializing functor ap-
plications to eliminate its (currently large) overhead in OCaml. We
explain the challenges that those extensions bring in and identify a
promising line of attack. Unexpectedly, however, it turns out that
we can avoid module generation altogether by representing mod-
ules, possibly containing abstract types, as polymorphic records.
With the help of first-class modules, module specialization reduces
to ordinary term specialization, which can be done with conven-
tional staging. The extent to which this hack generalizes is unclear.
Thus we have a question to the community: is there a compelling
use case for module generation? With these insights and questions,
we offer a starting point for a long-term program in the next stage
of staging research.

1. Introduction and Motivation
Program generation has been successful in performance-critical ar-
eas such as high-performance computing [11, 20] and hardware
circuit design [6]. Its main benefit is “abstraction without guilt”,
where a program written at a high level of abstraction generates
low-level, efficient code, eliminating the cost of abstraction. Stag-
ing is an especially well-developed program generation framework,
which gives programmers complete control over which computa-
tions happen statically (during the program-generation phase) and
which happen dynamically (during the execution phase of the gen-
erated code). Staging has well-behaved semantics [4] with hygiene
(i.e. generated code obeys lexical scoping) and well-studied type
safety properties [5, 18]. These properties make staging ideal both

[Copyright notice will appear here once ’preprint’ option is removed.]

as a tool for writing generators and as a theoretical foundation for
other code generation systems. For instance, staging has been used
as a basis for modular, type-safe macros [3, 17] and compiler opti-
mization passes [12].

However, these firm foundations of staging have so far extended
only to term-level staging, which manipulates only terms. In prac-
tice, most languages come with non-term constructs, such as types,
type declarations, modules, and other forms of declarations. Gener-
ation of such non-term constructs are widespread, and it currently
suffers from a lack of strong foundations. For example, the Mirage
configuration tool [7] generates modules by concatenating strings,
which is extremely error-prone. Generating class definitions is per-
vasive in C++ template programming, while a number of Haskell
libraries like the popular lens package use TemplateHaskell [16]
to generate type class instance declarations. In all of these uses,
type checking (or in some of them, even syntax checking) is de-
ferred until generation is complete, leading to latent discovery of
bugs and difficulties tracing errors back to the parts of the source
code that caused them.

Thus, the problem of giving clean, type-safe semantics to pro-
gram generation that goes beyond term generation deserves atten-
tion as the next stage of staging research. As a first step toward
this goal, we are studying the type-safety of module generation for
MetaOCaml. Derived from OCaml, MetaOCaml is an implemen-
tation of staging that is among the most faithful to the theory. As
modules contain type declarations and more or less all of the con-
structs not covered by conventional staging, studying the safety and
semantics of these extensions amounts to studying all sorts of gen-
eration that are currently missing in staging.

Generating modules can significantly extend the reach of pro-
gram generation. A prominent example is guilt-free parametriza-
tion of data types equipped with operations, such as the set type
equipped with a membership predicate. First-class ML-style mod-
ules and functors allow unrestricted parametrization and composi-
tion of such types, but they have runtime overhead. Staging with
modules can eliminate this cost of functors, just as traditional stag-
ing removes the overhead of term-level functions under the slogan
“abstraction without guilt” by specializing and inlining them. In
effect, module generation enables type generation.

As is customary for short papers, this article is aimed at pro-
voking discussions and posing questions. The specific purpose of
this paper is twofold. Firstly, we explain the preliminary design of
the extensions, mapping out the challenges in making it work and
identifying a plausible line of attack for ensuring its type safety.
Secondly, we pose questions about its potential applications to type
specialization.

More precisely, after reviewing staging as it currently works in
MetaOCaml (section 2), we demonstrate the proposed extensions
in a guilt-free specialization of the MakeSet functor (section 3).
We summarize the safety challenges arising from the extension
and describe how Rossberg’s F-ing translation technique [14] could

1 2015/11/24

guide us to a solution (section 4). At first glance, the extensions we
propose seem to be essential for type generation, but surprisingly,
we find that concrete type specialization use cases turn out not to
need the extension. Thus we arrive at the question: Does module
generation add anything new for the purpose of type specialization?
(Section 5)

2. Background: MetaOCaml Primer
In this section, we briefly review staging as it currently works in
MetaOCaml, along with safety properties that we’d like to preserve
in its extension to modules. We assume the reader is familiar with
OCaml, including its first-class module system.

MetaOCaml adds three primitive constructs, called staging an-
notations, to OCaml:

Construct Syntax Typing
Brackets 〈e〉 〈e : τ〉 : τ code
Escape ∼e (∼ (e : τ code)) : τ
Run ! e ! (e : τ code) : τ

Brackets 〈e〉 generate a code value, i.e. the syntax tree of the
expression e. Escape ∼e must occur inside brackets and exempts
the expression e from the brackets. This emust return a code value,
a value of the form 〈e′〉, which is spliced into the surrounding code,
i.e. e′ replaces ∼e. Run, written like ! e, is a library function that
compiles and executes the code value produced by evaluating e.

The following example exercises all three constructs.
let rec power : int→ int→ int=
fun n x →
if n = 1 then x
else x ∗ power (n−1) x

let rec power gen : int→ intcode → intcode =
fun n x →
if n = 1 then x
else 〈∼x ∗ ∼ (power gen (n−1) x)〉

let power st : int→ int→ int=
fun n →
! 〈fun x → ∼ (power gen n 〈x〉)〉

let pow3 = power st 3 (∗ gives (fun x → x∗x∗x) ∗)
The power function computes xn. It works for all (positive) values
of n, but it wastes time on a function call and a branch before
every multiplication. The power gen function generates code with
these overheads removed, producing straight-line code of the form
〈x∗x∗x∗...∗ x〉 given an n and an 〈x〉. The power st function takes
only an n and then generates and compiles a function whose body
is the straight-line multiplication generated by power gen.

MetaOCaml is hygienic, i.e. the generated code obeys lexical
scoping. For example, consider

let f x = 〈let y = 0 in ∼x〉 in 〈let y = 1 in ∼ (f 〈y〉)〉
The 〈y〉 in the invocation f 〈y〉 refers to the binding y = 1, but
when f is called, the code 〈y〉 is substituted into the scope of
another binding for the name y, namely y = 0. MetaOCaml re-
names the y’s so as not to confuse these two bindings. That is, the
〈y〉 keeps referring to y = 1, the lexically enclosing binding. The
resulting code in this case is 〈let y1 = 1 in let y0 = 0 in y1〉
rather than 〈let y = 1 in let y = 0 in y〉.

Currently, MetaOCaml’s staging constructs are limited to term-
level expressions that avoid interacting with modules. The expres-
sion enclosed in brackets must not contain a module expression or
bind a local module. Consequently, escapes cannot occur within
such expressions. Thanks to these restrictions, the effects-free sub-
set of MetaOCaml enjoys static type safety and hygiene [18]. Static
type safety means that the generated code is always well-typed if
the generator type checks. By contrast, for example, C++ templates
do not report type errors until templates are instantiated and com-
piled, often leading to latent discovery of bugs.

Type safety and hygiene are indispensable for safe, modular
program generation. Type safety eliminates a large class of bugs,
while hygiene makes open terms like 〈y〉 safe to carry around in
different contexts without worrying about name clashes. It is thus
of utmost importance to maintain these advantages as we extend
staging to cover module generation.

3. Module Specialization
In this section, we show a natural generalization of staging that
extends the paradigm “abstraction without guilt” to functor appli-
cations. The motivating example is a simple implementation of the
MakeSet functor (figure 1). We show only the bare minimum API
needed to make our point.

module type EQ = sig
type t
val eq : t → t → bool

end
module type SET = sig
type set (∗ the type of the set ∗)
type elt (∗ the type of its elements ∗)
val member : elt → set → bool

end
module MakeSet(Elt:EQ) : (SET with type elt =
Elt.t) =
struct
type elt = Elt. t
type set = elt list
let rec member : elt → set → bool = fun x →
function
| [] → false
| h:: t → Elt . eq x h | | member x t

end
module IntSet =
MakeSet(struct type t = intlet eq = (=) end)

Figure 1. Set functor example.

The module type SET is a signature for sets equipped with a
membership predicate member. The functor MakeSet creates a
SET module, and is an example of a parametrized data type that
takes type parameters carrying operations. In this example, the
element type must come equipped with a comparison operation,
which is implemented as a module with the signature EQ. The
module IntSet is an instance of SET, with element type being int
and the comparison operation the equality on int.

This natural implementation of IntSet has a performance prob-
lem. In IntSet , the repeated calls to the comparison operation
eq involve indirections through the runtime representation of Elt ,
which forces (=) to be called through a computed jump (in fact,
through the FFI). This indirection is quite a waste. In principle, a
single integer comparison instruction should suffice.

To eliminate this overhead and make the set abstraction guilt-
free, we’d like to leverage staging to inline Elt . However, Set is
quite unlike the power function in that we want to specialize not
just the term Elt . eq but also the type Elt . t – in other words,
we want to inline a type application. This is the critical reason
why MetaOCaml has so far stayed clear of module generation: the
safety implications of manipulating code values containing types
are unclear. Though System F extended by a richer type system
and staging has been studied [2], the fact that Elt . t is declared
within the inlined structure takes the challenge to a new level. We
will examine the challenges in section 4, but let us first argue that
expending the effort to meet those challenges is worthwhile.

Let us hypothesize that MetaOCaml has been extended to allow
the code in figure 2. The staged functor MakeSetGen takes a mod-

2 2015/11/24

module type EQ’ = sig
type code t
val eq : t code → t code → bool code

end
module MakeSetGen(Elt:EQ’) :

(SET with type elt = Elt. t) code =
〈struct

type elt = ∼(Elt . t)
type set = elt list
let rec member : elt → set → bool = fun x →
function
| [] → false
| h:: t → ∼ (Elt . eq 〈x〉 〈h〉) | | member x t end〉

module IntSet = ! MakeSetGen(
struct type code t = 〈int〉

let eq x y = 〈(∼x: int) = (∼y:int)〉 end)

Figure 2. Staged set functor.

ule Elt : EQ’ that carries a type code, a new construct introduced
by the keyword type code. Conceptually, this is code of a type
expression. The MakeSetGen functor splices the type code and the
accompanying operation eq into a code of module, then runs the re-
sult to get a compiled module object. The type code Elt . t is spliced
(or inlined) into the returned module, while the comparison func-
tion Elt . eq is modified to map code values to code values, just as
power from section 2 was modified into power gen. The staged
functor is then invoked and the result is run to create a compiled
module IntSet , which looks like:

struct
type elt = int
type set = elt list
let rec member : elt → set → bool = fun x → function
| [] → false
| h:: t → (x: int) = (h:int) ||member x t end

end

The overhead of calling into a separate module has been eliminated,
and the comparison now takes a single machine instruction.

Two things are different from conventional staging in figure 2.
Firstly, modules appear under brackets and the code type, and the
resulting code can be compiled via the ! function. Secondly, a plain
(i.e. non-code) module can contain a type code field, in this case
Elt . t , which is spliced into code contexts where a type expression
is expected. A type code serves as the runtime representation of
the type, which is necessary to splice them at runtime. As we
will examine in more detail in the next section, attempts to avoid
introducing this new type code concept lead to dead ends.

These extensions harbor difficult questions for semantics, hy-
giene, and type safety. However, these problems deserve to be tack-
led, as a good balance between expressivity and avoidance of indi-
rection is something compiler writers have traditionally struggled
to provide. OCaml calls eq indirectly for even the simple code in
figure 1,1 but the pervasive indirection helps to implement first-
class modules. SML, by contrast, has a deliberately second-class
module system, but this allows clever compilers like MLton to sup-
port a defunctorization pass that eliminates all functors at compile
time [19]. Formal studies on how much this matters in practice
are scarce, but reportedly engineers at Jane Street – an industrial
heavy user of OCaml – have had to avoid the use of OCaml func-
tors for performance reasons [9]. Outside the ML family, object-
oriented languages also routinely access objects’ members indi-

1 Confirmed by inspecting the assembly code emitted by ocamlopt 4.01.0
and 4.02.1.

rectly through references instead of inlining them, which helps to
keep those members first-class, at a certain cost to performance.

A well-designed staged language should enable programmers
to overcome this dilemma between expressivity and performance,
not just for term-level computation but also computations involving
types, as demonstrated above with the set functor.

4. Challenges
We proposed two extensions to staging in MetaOCaml: allowing
modules under brackets and letting modules carry type code that
can be spliced into larger type expressions inside generated code.
As simple and useful as they are, these extensions also raise diffi-
cult questions for semantics and type safety that we found to be
much subtler than initially anticipated. In this section, we sum-
marize the design rationale behind the extensions, along with the
challenges that must be addressed for making type-safe type-level
staging a reality. We then propose a possible approach to meeting
those challenges.

In figure 2, we typed the input as a plain (i.e. non-code)
module Elt : EQ’, and then declared that Elt . t is a new kind of
member, type code. There are two other ways to type the in-
put module that may seem superficially just as viable, but both
turn out to be dead ends. The first option is to type the input as
Elt : EQ’ code, so that Elt . t is automatically code without the
need for a new type code construct. However, with this design,
not only would Elt . t be code of type, but also Elt . eq would be
(Elt . t code → Elt . t code → bool code) code, instead of the
desired Elt . t code → Elt . t code → bool code. This means
that the splice ∼ (Elt . eq 〈x〉 〈y〉) doesn’t work, which was the
main motivation for specializing to int in the first place.

The second approach is to type the input as Elt : EQ’ but without
introducing a new construct type code. Instead, the type splice
type elt = ∼(Elt . t) could be replaced by type elt = Elt. t .
Just as we can refer to the top-level function = inside code, we
allow referring to the type Elt . t inside code. But this scheme
wouldn’t work: there’s no mechanism by which we can generate the
appropriate code when evaluating the code-of-module expression
〈struct ... type elt = Elt. t ... 〉, because when the generator
runs, the plain module Elt : EQ’ would have lost all information
about the type Elt . t . In (Meta)OCaml and in most statically typed
languages, types are erased in the compiled code, so at runtime
we have no way of reconstructing the type expression to which
Elt . t is bound. If we want type information at run-time, we have
to explicitly introduce a run-time representation for it – and that’s
exactly what type code is.

The type code construct does have a difficulty of its own.
Because type code is not a genuine type, it makes no sense to
classify values using type code. For example, we cannot allow

module F(M:...) = struct
type code t = 〈∼(M.t) ∗ int〉
let x : t = (0,0)

end

to be well-typed because there’s no way to check statically that
the fst of x has type M.t. Instead, what we do allow is to classify
code values with type code. Syntactically, a type code should be
used inside code only. Thus, when t is type code, type expressions
like t code or (t ∗ t list) code are allowed, but not t list or
t ∗ t list, with no code surrounding them.

As these discussions show, there are clearly great difficulties in
devising a static type system for the proposed extensions. In fact,
devising a coherent semantics is already a challenge. Nonetheless,
we feel these extensions are justified because we have a promising
line of attack on these problems. The main ingredient is Rossberg
et al.’s “F-ing translation”, which explains (second-class) modules

3 2015/11/24

type α eq = α→ α→ bool
let make set (type a) : a eq →
(module SET with type elt = a) =
fun eq →
(module struct

type elt = a
type set = elt list
let singleton x = [x]
let rec member x = function
| [] → false
| y:: ys → eq x y | | member x ys

end)

Figure 3. Set functor example from figure 1, but without the func-
tor.

type α eq code = α code → α code → bool code
let gen set (type a) : a eq code →
(module SET with type elt = a) =
fun eq →
(module struct
type elt = a
type set = elt list
let singleton x = [x]
let member =
! 〈let rec member x = function

| [] → false
| y:: ys → ∼ (eq 〈x〉 〈y〉) | |

member x ys in member〉
end)

Figure 4. Set functor example, without module generation.

in terms of existentials in System Fω [15]. By applying this trans-
lation to staging with modules, we expect to reduce its type safety
and semantics issues to those of system Fω with staging. System
Fω with staging, in turn, has been investigated already in the form
of Concoqtion [2]. By finessing the extensions so that after the F-
ing translation we are left with permissible uses of staging in staged
Fω, we expect to establish a sound, clean semantics for our exten-
sions.

5. Unexpected Solution
We have seen that staging the functor application in figure 1 has
many unanswered challenges. It seems there is no hope even to
contemplate the specialization of SET in the current MetaOCaml.
And yet we’ve hit upon an unexpected solution, using first-class
modules and ordinary (term-level) staging. Moreover, the solution
does not mention any module expressions (informally, any struct)
in brackets and so it works in the current MetaOCaml. This section
describes the solution and §7 reflects on its ramifications.

The key idea is replacing the MakeSet : EQ →SET functor
with the ordinary function

make set : α eq → (module SET with type elt = α)

as shown in figure 3. We can specialize make set to the statically
known equality predicate αeq in the same way we specialized
power n x to the statically known n. The result is gen set shown in
figure 4.

In general, we represent the functor F in
module type Ssig = sig
type t
val m1: s1 val m2: s2 ...

end
module F: functor(S:Ssig) → struct end

(where the types s1, s2, etc, may contain the abstract type t) with a
function f

type α srec = {m1: s1; m2: s2; ...}
val f : α srec → (module struct end)

(where likewise the types s1, s2, etc. may mention the type param-
eter α, which takes place of t in Ssig). In other words, a module of
type Ssig with an abstract type t is represented as a polymorphic
record α srec. Informally, the existential, typically used to encode
abstract types, is replaced with the universal.

What is most surprising is that the basis for this idea, of encod-
ing abstract types by universals, can be found in the well-known
paper by Mitchell and Plotkin [10] that helped to cement the di-
rect opposite view of abstract types as existentials. The paper as a
whole argues how existentials are the proper way of representing
abstract types, but in section 3.8 it mentions the alternative encod-
ing by universals (in the form of polymorphic records), crediting it
to Reynolds. It is this alternative that we have just outlined.

Mitchell and Plotkin argue that Reynolds’ encoding falls short
of properly encoding the abstype construction they advocate. One
of their arguments, that abstype is syntactically more expressive,
does not apply in the case abstract types are represented as modules
(which Mitchell and Plotkin mention themselves, in their discus-
sion of the condition (AB.3)). The other argument, that Reynolds’
encoding cannot be used if we want to choose an appropriate rep-
resentation of the structure at runtime, does not apply to our case
of module specialization. We explicitly do not want to defer the
selection of the module representation to runtime: that is why we
are generating specialized code in the first place. Thus Reynolds’
encoding of modules with abstract types as polymorphic records
covers all the applicable cases. The encoding clearly generalizes to
modules with more than one abstract type.

Coming back to staging, the main feature of our solution in fig-
ure 4 is that there are no type splices. All the types are explicit when
type-checking the generator (at stage -1, so to speak). The code for
the generated member function is ensured type-correct and does
not need to be type-checked at later stages. There does not seem
to be any compelling need to generate any splice types. All our at-
tempts to come up with a realistic example of module generation
that cannot be emulated with the techniques just outlined have so
far come up empty. Thus, we have a question to the community:
is there an example where module generation could make a differ-
ence, for the purpose of type manipulation?

6. Related Work
In Standard ML, which does not support recursive and first-class
modules, all functor applications can be done at compile-time. In
fact, the MLton compiler does exactly that. Compile-time functor
applications generally cannot be done in OCaml, not only because
of recursive, first-class and local modules but also because such ap-
plications do not work well with separate compilation. There are
however preprocessors for OCaml that do some functor applica-
tions. The preprocessors do the best-effort functor applications and
offer little user control. Mainly, they do not at all ensure any type
or scope safety of the resulting code.

As explained before, the main reason we feel justified with our
extensions to MetaOCaml presented in this paper is that we have
a promising line of attack at establishing type safety: we apply
Rossberg et al.’s F-ing translation [15] to reduce the system to
system Fω with staging, and then check the results against a subset
of Concoqtion [2]. Rossberg has also recently presented work on
1ML, which extends the F-ing translation to first-class modules
[14]. Incidentally, however, 1ML incurs performance penalties for
functor abstraction. In fact, functors become regular functions. We
believe that staging could be a good complement to this work:

4 2015/11/24

1ML can provide a means to establish type safety for staging with
modules, while staging could recover guilt-free functors in 1ML.

An important use of module generation is type manipulation.
This ability comes naturally with dependent types, and their goals
and mechanisms overlap with ours. However, type-level staging via
modules has a strict phase separation between the type and term
levels, which is essential for providing abstraction without guilt.
Agda, Coq, and other systems similar to Martin-Löf’s intuitionistic
type theory [8], by contrast, allow computations on types and terms
to be freely mixed, which is essential for using them as logics but
can make performance harder to predict. ATS [21] and Concoqtion
[2] provide type-level programming with phase separation from the
term-level and are closer to our work. Module generation, however,
has not been addressed in these languages.

Rompf et al. [13] have successfully applied data structure op-
timizations based on a higher-level formulation of staging. Their
goals appear to be less ambitious than ours for the systematic, type-
safe manipulation of types. Perhaps our research could find use
in extending theirs, while we could hope to learn from their more
practical experiences. A systematic encoding of universes in depen-
dent type theory is proposed by Chapman et al. [1], which is also
suitable for type generation and type-level programming. One thing
that has not been investigated in depth there is nominal type dis-
tinctions. They do not distinguish types with the same implementa-
tion, so for example, the set implementation in section 3 cannot be
distinguished from lists. With modules, however, abstracted types
are considered distinct from all other types. Investigating type-level
metaprogramming via modules may therefore help achieve nomi-
nal separation of data in frameworks like that of Chapman et al.

7. Discussion and Conclusion
We have shown the promises and challenges for type-level metapro-
gramming via staging with modules. We have advocated the fol-
lowing extensions to the conventional bracket-escape-run formu-
lation of staging: generation of code of modules and splicing
types into modules. These extensions introduce splicing of binders,
bringing in the problem of representing and accessing types. These
are complex questions, suitable for a grand challenge in the next
stage of staging research.

However, once we started working on examples of module gen-
eration, it turns out that we can implement them already, in the ex-
isting MetaOCaml, or in MetaOCaml with small, easy extensions.
Thus we have come against a deeper challenge: what are the com-
pelling examples of module generation? If we want to assure the
safety of the generated code at the generator time, aren’t we com-
pelled to expose all the types for the generator? One of the most
important roles of types is to ensure abstraction. However, when
we generate code, we can ensure abstraction boundaries during the
code generation, in the generator. Therefore, there is nothing left
to enforce in the generated code. We do not need abstract types to
enforce abstraction in the generated code. Perhaps we do not even
need modules in the generated code.

If we a generate typed language, we do need types since they
guide the process of code generation (for example, checking of
exhaustiveness of pattern-match and generating the default failure
clause). Types are also needed for memory layout of data, etc.
But those types, relevant for type generation, can be simple, and
manifest types. Whereas the generator may deal with some abstract
type t, the generated code may have int.

Thus, we have a question to the community: is there an example
where module generation could make a difference, for the purpose
of type manipulation?

References
[1] J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art

of levitation. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 3–14, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. .

[2] S. Fogarty, E. Pašalić, J. Siek, and W. Taha. Concoqtion: Indexed
types now! In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Ma-
nipulation, pages 112–121, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-620-2. .

[3] J. Gillenwater, G. Malecha, C. Salama, A. Y. Zhu, W. Taha, J. Grundy,
and J. O’Leary. Synthesizable high level hardware descriptions: us-
ing statically typed two-level languages to guarantee verilog synthe-
sizability. In PEPM ’08: Proceedings of the 2008 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program ma-
nipulation, pages 41–50, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-977-7. .

[4] J. Inoue and W. Taha. Reasoning about multi-stage programs. In
Proceedings of the 21st European Conference on Programming Lan-
guages and Systems, ESOP’12, pages 357–376, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-28868-5. .

[5] Y. Kameyama, O. Kiselyov, and C.-c. Shan. Combinators for impure
yet hygienic code generation. In Proceedings of the ACM SIGPLAN
2014 Workshop on Partial Evaluation and Program Manipulation,
PEPM ’14, pages 3–14, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2619-3. .

[6] O. Kiselyov, K. N. Swadi, and W. Taha. A methodology for generating
verified combinatorial circuits. In EMSOFT ’04: Proceedings of
the 4th ACM International Conference on Embedded Software, pages
249–258, New York, NY, USA, 2004. ACM. ISBN 1-58113-860-1. .

[7] A. Madhavapeddy, T. Gazagnaire, D. Scott, and R. Mortier. Metapro-
gramming with ML modules in the MirageOS. http://sites.
google.com/site/mlworkshoppe/Gazagnaire-abstract.
pdf, September 2014. ML Family Workshop 2014.

[8] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[9] Y. Minsky. Discussions on the caml-list mailinglist, June
2007. http://caml.inria.fr/pub/ml-archives/caml-list/
2007/06/8517ef8cab9b778b7ded013f6a59c051.en.html, last
viewed January 2015.

[10] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):
470–502, July 1988.

[11] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Gen-
eration, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[12] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. Commun.
ACM, 55(6):121–130, 2012. .

[13] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs: New directions for extensible com-
pilers based on staging. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, pages 497–510, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1832-7. .

[14] A. Rossberg. 1ML – core and modules united (F-ing first-class mod-
ules). In Proc. 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 35–47, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3669-7. .

[15] A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. In Pro-
ceedings of the 5th ACM SIGPLAN Workshop on Types in Language
Design and Implementation, TLDI ’10, pages 89–102, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-891-9. .

[16] T. Sheard and S. P. Jones. Template meta-programming for haskell.
SIGPLAN Not., 37(12):60–75, Dec. 2002. ISSN 0362-1340. .

5 2015/11/24

[17] W. Taha and P. Johann. Staged notational definitions. In GPCE
’03: Proceedings of the 2nd International Conference on Generative
Programming and Component Engineering, pages 97–116. Springer-
Verlag New York, Inc., 2003.

[18] W. Taha and M. F. Nielsen. Environment classifiers. In 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’03, pages 26–37, New York, NY, USA, 2003. ACM.
ISBN 1-58113-628-5. .

[19] S. Weeks. Whole-program compilation in MLton. Online slides on
MLton’s official website, September 2006. http://mlton.org/
References.attachments/060916-mlton.pdf, last viewed Jan-
uary 2015.

[20] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, SC ’98, pages 1–27, Washington, DC, USA, 1998.
IEEE Computer Society. ISBN 0-89791-984-X.

[21] H. Xi. Applied Type System (extended abstract). In post-workshop
Proceedings of TYPES 2003, pages 394–408. Springer-Verlag LNCS
3085, 2004.

6 2015/11/24

