
Finally, Safely-extensible and Efficient
Language-integrated Query

Kenichi Suzuki
University of Tsukuba, Japan
ken@logic.cs.tsukuba.ac.jp

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Yukiyoshi Kameyama
University of Tsukuba, Japan

kameyama@acm.org

Abstract
Language-integrated query is an embedding of database queries
into a host language to code queries at a higher level than the
all-to-common concatenation of strings of SQL fragments. The
eventually produced SQL is ensured to be well-formed and well-
typed, and hence free from the embarrassing (security) problems.
Language-integrated query takes advantage of the host language’s
functional and modular abstractions to compose and reuse queries
and build query libraries. Furthermore, language-integrated query
systems like T-LINQ generate efficient SQL, by applying a number
of program transformations to the embedded query. Alas, the set of
transformation rules is not designed to be extensible.

We demonstrate a new technique of integrating database queries
into a typed functional programming language, so to write well-
typed, composable queries and execute them efficiently on any SQL
back-end as well as on an in-memory noSQL store. A distinct
feature of our framework is that both the query language as well as
the transformation rules needed to generate efficient SQL are safely
user-extensible, to account for many variations in the SQL back-
ends, as well for domain-specific knowledge. The transformation
rules are guaranteed to be type-preserving and hygienic by their
very construction. They can be built from separately developed and
reusable parts and arbitrarily composed into optimization pipelines.

With this technique we have embedded into OCaml a relational
query language that supports a very large subset of SQL includ-
ing grouping and aggregation. Its types cover the complete set of
intricate SQL behaviors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code Generation; H.2.3 [Database Man-
agement]: Languages—Query Languages; D.3.2 [Programming
Languages]: Language Classifications—Applicative (functional)
languages

Keywords SQL, tagless-final, language-integrated query, LINQ,
EDSL

1. Introduction
Writing efficient database queries in a composable, extensible and
safe way is a yet-to-be-achieved dream of every database program-

mer. For better or for worse, SQL still stands as the unique stan-
dard query language in widely used database management sys-
tems. Mature database systems can execute queries in the classi-
cal SQL (SQL-92 Intermediate level) very efficiently by now. The
lack of functional abstractions and nested data structures in that
language however makes it hard or impossible to build efficient
complex queries from simpler, previously written and tested ones,
and to compile query libraries. Various ways of embedding SQL
into (functional) programming languages – so called language-
integrated queries – let us use the abstraction facilities and the type
system of the host language to build queries safely and modularly.
Yet this composability comes at the expense of efficiency. We illus-
trate the hard trade-off between efficiency and composability/reuse
in §2.

As in numeric computing, metaprogramming comes to the res-
cue and once again lets us have the “abstraction without guilt:”
the performance problem of language-integrated queries is cured
by program transformation. Cooper, in the well-titled paper “The
Script-Writer’s Dream: How to Write Great SQL in Your Own Lan-
guage, and Be Sure It Will Succeed” [6], proposes transformation
rules. One notable implementation of the rules is the T-LINQ sys-
tem by Cheney et al. [4], which is an embedding of a typed rela-
tional query language T-LINQ into F#. Although the system was
designed primarily for F#, it could be ported to other languages
with typed quotation. An important design choice was that the set
of the transformation rules was not user-extensible. Since the im-
plementation is not expected to change, one could afford one-time
thorough verification of the code.

In contrast, the starting point for our system is to make both the
embedded query language and the set of optimization rules for gen-
erating efficient SQL open, moreover, user-extensible. There are
many subtly different SQL implementations with the host of exten-
sions and restrictions, which require adjustments to the embedded
query language and its rules. In addition, a programmer may add
custom rules to express domain-specific knowledge unavailable to
a general-purpose SQL optimizer. The consequence of letting users
extend the language and its optimizations is the obligation to make
it easy and safe to do so. Any extension should be incremental and
reuse as much of the already written code as possible. We should
strive to automatically prevent classes of mistakes and ensure some
degree of correctness by construction.

We have attained the desiderata. Our contribution hence is a
practical, safely-extensible language-integrated query system:

• It is the system to write composable database queries and ex-
ecute them efficiently using any SQL back-end as well as an
in-memory noSQL store.

• The user may add domain-specific optimizations to compensate
for the deficiencies of the back-end (e.g., MySQL) or to better
exploit domain-specific knowledge that may not be available to

the standard SQL query optimizer. The optimizations are type-
safe and type-preserving by construction.

• The system is unique in supporting grouping and aggrega-
tion (see §7) to the letter of the ANSI SQL standard as well
as PostgreSQL extensions: GROUPBY and HAVING clauses
may contain arbitrary expressions with the arbitrary mixture of
grouped and ungrouped columns. An expression with at least
one ungrouped column must be (a part of) an argument of an
aggregate function. Our type system accepts all and the only
queries that satisfy the complex of SQL grouping rules.

• The query language itself is extensible; as an illustration we
show how aggregation and GROUPBY can be added post fac-
tum.

At first glance, our system looks like an re-implementation of
T-LINQ. However, it is

extensible letting the users extend both the language and the opti-
mization rules;

modular letting extensions re-use as much of the old code as
possible and preventing from breaking it;

safe making optimizations type-preserving and hygienic by con-
struction

with full grouping and aggregation in the language type system.

Our system can be easily extended to other back-ends, other SQL
features and peculiarities, and other host languages.

Our framework uses the typed final (aka, ‘tagless-final’) ap-
proach (TFA) [3] to embed and optimize a query language. That
approach proved convenient for embedding domain-specific lan-
guages (DSL): we can express not only the syntax and the de-
notational semantics of the DSL but also its typing rules, getting
the type system of the host language to ensure the type safety of
the embedded one. We are hence spared the trouble of implement-
ing a type checker/inferencer for the DSL. An evaluator, a pretty
printer, and a code generator can be uniformly implemented as
type-respecting interpretations of the terms in DSL. We can also
optimize the embedded language, safely and modularly. The op-
timization technique has been introduced previously [15, 17], but
only on small examples. Hence another contribution of the present
paper is to demonstrate:

• The typed final optimization technique scales up.

One may wonder what fundamentally is being done that could
not be done straightforwardly using traditional compiler technol-
ogy, or the deep embedding (that is, embedding of SQL as a data
type). First of all, all our transformations are type- and scope-
preserving by the very construction. It is not possible to apply a
transformation that makes the result ill-typed or leaves unbound
variables. It is not even possible to write such a bad transformation
and getting it past the type checker. Traditional compiler technol-
ogy works on an untyped AST and hence makes no mechanically
verified promises about the result. Deep embedding, via a datatype,
can make some guarantees (using GADTs) but such embeddings
are difficult to make extensible, that is, add new forms to the lan-
guages and still be able to reuse old transformations as they are.

This paper is organized as follows: the background §2 intro-
duces the running example of sample queries and uses it to infor-
mally introduce our embedded query language, called QUEΛ, a su-
perset of T-LINQ of [4]. The section shows how the naive interpre-
tation of the language to query a SQL database leads to severe per-
formance problems, and how program transformation (some form
of meta-programming) may help. §3 formally introduces QUEΛ,
and its embedding to the host language OCaml in TFA. We briefly
illustrate the normalization (transformation) rules of QUEΛ pro-

grams in §4. §5 evaluates the performance. §6 shows off the exten-
sibility of our QUEΛ embedding: we add to the language set-based
union and re-use, rather than re-write, all the previous interpreters
and the transformers. To normalize the extended language we only
need to add to the optimization pipeline a couple of transformation
rules specifically dealing with the just added operation. §7 extends
the target language in the substantial way, with aggregate functions
and the GROUPBY clauses. We then discuss the related work and
conclude in §9.

The complete code of our system is available online at http:
//logic.cs.tsukuba.ac.jp/~ken/quel/.

2. QUEΛ by Example
This section introduces our query language QUEΛ, modeled after
T-LINQ of [4], on several sample queries that serve as our running
example. We describe the interpretation of the language in terms
of SQL, and see how composing queries leads to very inefficient
database interactions. We then outline how program transforma-
tions may solve the performance problem. §4 will explain how to
actually program these transformations and be sure of their safety.

The language QUEΛ is a simply typed functional language with
the primitives for accessing and manipulating data in database
tables. Its syntax is formally defined in §3.1; here we illustrate it
on very simple and self-explanatory examples. The examples use
the database in Fig. 1 with two tables: the products table is a bag (a
multiset) of records with the fields for product id (pid), name and
price; the orders table has columns for order id (oid), pid, and qty
(quantity).

products
pid name price

1 Tablet 500
2 Laptop 1,000
3 Desktop 1,000
4 Router 150
5 HDD 100
6 SSD 500

orders
oid pid qty

1 1 5
1 2 5
1 4 2
2 5 10
2 6 20
3 2 50

type Product = 〈pid : Int,
name : String, price : Int〉

type Order = 〈oid : Int,
pid : Int, qty : Int〉

Figure 1. Sample database tables and the types of their records

The first sample query Q1 produces all orders with the given
oid. To explain it, we show the corresponding SQL query on the
right.

Q1 = λoid.
for (o← table(“orders”))
where (o.oid = oid) yield o

SELECT o.∗ FROM orders AS o
WHERE o.oid = oid

On the sample database, run (Q1 2) returns the following bag:

[〈oid = 2, pid = 5, qty = 10〉, 〈oid = 2, pid = 6, qty = 20〉]
where run is a primitive to translate the query into SQL and
execute it. The next query Q2 gets the Order record, finds the
product(s) with the pid mentioned in the order and returns the bag
of records with the pid, the name, and the sale amount.

Q2 = λo.
for (p← table(“products”))
where (p.pid = o.pid)
yield 〈pid = p.pid, name = p.name,
sale = p.price ∗ o.qty〉

SELECT p.pid AS pid,
p.name AS name,
p.price ∗ o.qty AS sale

FROM products AS p
WHERE p.pid = o.pid

Then run (Q2 〈oid = 2, pid = 5, qty = 10〉) returns

[〈pid = 5, name = HDD, sale = 1000〉]
We wish to composeQ1 andQ2 to obtain the queryQ′3 yielding

the bag of records with the total sales for the given oid:

Q3
′ = λoid.map (λo. run(Q2 o)) (run(Q1 oid))

Although very natural, Q3
′ has a serious performance problem,

known as Query Avalanche, or the N + 1 query problem [10];
runningQ3

′ 2 would issue 3 SQL queries: firstQ1 is run, returning
a bag with 2 records. Then Q2 is run on each record. In general,
Q3
′ oid would issue N + 1 SQL queries, if Q1 returns a bag of N

records. Running a database query has a very high overhead: setting
up the communication session with the database server, optimizing
the query, setting up and tearing down the transaction, etc. The
key to high-performance is to obtain all results in a single database
query.

A different way to compose the two queries is by a higher-order
function

compose = λq. λr. λx. for (y ← q x) r y
Q3 = λx. compose Q1 Q2 x

Then Q3 oid could be interpreted in SQL as

SELECT (Q2 Ty.oid Ty.pid Ty.qty) FROM Q1 oid AS Ty

Recall however that both Q1 and Q2 are interpreted as SQL SE-
LECT statements; therefore Q3 has nested SELECTs (nested sub-
queries). Many language-integrated query systems used in practice
such as Opaleye [9] and HRR [11] indeed generate nested sub-
queries. However, the performance problem is only partly solved:
Google search for “nested subquery performance” brings the abun-
dance of recommendations to avoid subqueries whenever possible,
even for such mature databases as Oracle1. MySQL 5.7 documen-
tation states “The optimizer is more mature for joins than for sub-
queries, so in many cases a statement that uses a subquery can be
executed more efficiently if you rewrite it as a join.”2. The quote
hints at the solution: re-writing, which is the approach taken by
Cooper [6] and T-LINQ [4]. For example, Q3, after inlining Q1

and Q2 and several beta-reductions, becomes

Q′′3 = λoid.
for (y ← (for (o← orders)

where (o.oid = oid) yield 〈pid = o.oid, qty = o.qty〉))
for (p← products)

where (p.pid = y.pid)
yield 〈pid = p.pid, name = p.name, sale = p.price ∗ y.qty〉

A number of transformation steps, described in §4 (for example,
lifting for and combining adjacent where) result in

Qn
3 = λoid. for (o← orders)

for (p← products)
where (o.oid = oid) ∧ (p.pid = o.pid)
yield 〈pid = p.pid, name = p.name, sale = p.price ∗ o.qty〉

which can be straightforwardly interpreted as the following SQL
statement (keeping in mind that nested consecutive for compute
the Cartesian product, which in SQL is expressed by enumerating
the tables in the FROM clause):

SELECT p.pid AS pid, p.name AS name, p.price ∗ o.qty AS sale
FROM products AS p, orders AS o
WHERE p.pid = o.pid AND o.oid = oid

This single SQL query can be efficiently executed in all relational
database systems. In the rest of the paper we describe how to
program such transformations. But first we have to describe QUEΛ
in more detail as well as its embedding as DSL in OCaml.

1 http://www.remote-dba.net/t_op_sql_tuning_subqueries.
htm
2 http://dev.mysql.com/doc/refman/5.7/en/
subquery-restrictions.html

3. Language-integrated query
This section formally introduces the relational query language
QUEΛ and embeds it in OCaml in the typed-final style. QUEΛ
is deliberately not original: it is Cooper’s language without effects
typing, and Cheney et al.’s T-LINQ without quotation. We extend
it in §7 with aggregates and grouping.

3.1 QUEΛ, its syntax and semantics
The following figure gives types and terms in QUEΛ. We use
metavariables x, y for variables, c for constants, t for table names
in the database, l for record labels, ⊕ for primitive operators
(such as arithmetic, comparison, and also exists.) The sequence
M1, . . . ,Mn is abbreviated as M . Types of QUEΛ are base types,
function types, bag types (for multisets), and record types 〈l : A〉
where l1, . . . , ln are field labels. We say a record type 〈l : A〉 is flat
if all Ai are base types, and similarly for a bag type Bag 〈l : A〉.

Base type O ::= Int | Bool | String
Type A,B ::= O | A→ B | Bag A | 〈l : A〉
Term L,M,N ::= c | ⊕(M) | x | λx.N | LM

| 〈l = M〉 | L.l
| for (x ← M) N |M] N
| where LM | yieldM | [] | table(t)

QUEΛ terms are the standard lambda terms with primitive op-
erators and records, plus several primitives: for (x ← M) N for
bag comprehension, M] N for bag union, yield M for the sin-
gleton bag, [] for the empty bag, where L M for the conditional;
table(t) denotes the table with the name t.

In many databases, tables may only store the values of basic
types; therefore, we assume that the input table table(t) has a flat
bag type. We can still create and use non-flat records in QUEΛ,
which do not have direct counterparts in SQL queries. However, the
transformation in §4 always eliminates non-flat records and bags;
namely, we can always transform a QUEΛ-term of flat bag type into
a term which does not use non-flat records and bags.

The operational semantics of QUEΛ is standard call-by-value
with the left-to-right evaluation order for function applications. Val-
ues V are constants, abstractions, records with the value compo-
nents and [V1, . . . , Vn], which is the abbreviation for yield V1]
. . .] yield Vn] [] for n ≥ 0. We assume that] is associative and
commutative.

The reduction relation −→ is the same as those of T-LINQ
modulo notational difference. The map δ gives semantics to each
primitive operator, and Ω maps each table name to a value of a flat
bag type. Let −→∗ be the reflexive and transitive closure of −→.
Shown below is a sample of primitive reduction rules. Appendix A
lists the complete definition.

table(t) −→ Ω(t)
where trueM −→M where falseM −→ []

for (x ← yield V) M −→M [x := V] for (x ← []) M −→ []
Typing rules, given in the natural-deduction style, are standard;

shown below is a representative sample. The complete presentation
is in Appendix A. The typing judgment is of the form M : A for
a term M and a type A. The signature Σ maps constants to base
types, primitive operators to functions on base types, and table
names to flat bag types. We assume that Ω and δ are consistent
with Σ. We write x1 : B1, . . . , xn : Bn ` M : A if we can derive
M : A under the assumptions x1 : B1, . . . , xn : Bn.

SINGLETON
M : A

yieldM : Bag A

FOR

M : Bag A

[x : A]
|

N : Bag B

for (x ← M) N : Bag B

WHERE
L : Bool M : Bag A

where LM : Bag A

THEOREM 1 (Subject reduction). If Γ ` M : A and M −→∗ N ,
then Γ ` N : A.

The proof is not difficult but tedious, as we need a lemma: if Γ1 `
V : B and Γ1,Γ2, x : B `M : A hold, then Γ1,Γ2 `M [x := V]
holds. Our typed-final embedding can be taken as indication or even
an automatic proof of this property: see the next section for detail.

3.2 Typed Final Embedding of QUEΛ

This section describes the embedding of QUEΛ in the typed final
(a.k.a. ‘tagless-final’) approach [16]. We will be using OCaml as
the host language; Haskell or Scala, etc. may be used as well (see
§8 for more discussion).

The typed final approach does a shallow embedding: for each
syntactic form of the embedded language we define an OCaml
function that will construct the representation of that form. For
example, the function app constructs the representation of QUEΛ
applications. These constructor functions are collected in the mod-
ule, whose interface is often called Symantics since it essentially
defines the syntax of the embedded language, and its implemen-
tations define the semantics. The interface for QUEΛ from §3.1 is
given below.

module type Symantics = sig
type α repr (* representation type *)
val int: int → int repr
val bool: bool → bool repr
val string: string → string repr
val lam: (α repr → β repr) → (α→β) repr
val app: (α → β) repr → α repr → β repr
val foreach: (unit→ α list repr) →

(α repr → β list repr) → β list repr
val where: bool repr →

(unit→ α list repr) → α list repr
val yield: α repr → α list repr
val nil: unit → α list repr
val (@%): α list repr → α list repr →

α list repr (* bag union *)
val (=%): α repr → α repr → bool repr
... (* abbreviated *)
type α obs (* observation *)
val observe: (unit → α repr) → α obs
end

The interface represents not just the syntax of QUEΛ (in the
form close to BNF), but also its type system. The type of OCaml
expressions that represent QUEΛ terms, typically called repr, is
indexed by the QUEΛ’s type. (We take Bag to be a synonym for
list.) The type of foreach3 encodes the typing rule FOR, and
similarly for the other constructor functions. The embedding has
a bit of noise in the form of extra arguments of type unit, to delay
the evaluation of conditional branches and to get around the value
restriction. We use the symbol @% for], =% for equality test, and
%. for projection, whose typing is elided for brevity. See our code
for more details. The typed final embedding is tight and faithful,
representing all and the only typed embedded-language terms. This
property holds for our QUEΛ embedding, as it is easy to see. Ill-
typed QUEΛ terms cannot be encoded: their representation will
not type check in OCaml. As a bonus, we use the OCaml type
inferencer to infer QUEΛ types.

Formally the embedding of QUEΛ is defined in Appendix C.
Here we give a few examples: QUEΛ’s term (λx. 3 + x) 5 of
type Int is represented as app (fun x → add (int 3) x)
(int 5) of type int repr. We use Higher-order Abstract Syntax
(HOAS) [5, 13, 19] to represent variable bindings, which lets us use

3 We use foreach instead of for, since the latter is reserved in OCaml.

OCaml syntax for bindings and, mainly, saves us from program-
ming α-conversions and worrying about variable name clashes.
HOAS lets us faithfully encode the natural-deduction style of typ-
ing rules. HOAS also has a seemingly fatal drawback of preventing
any inspection or optimization of functions bodies, which is over-
come in the typed final approach.

Characteristically for the typed-final approach, the representa-
tion type repr is kept abstract. Different implementations of the
Symantics interface will define repr in their own ways, but the en-
coded term cannot know it. The implementation of Symantics is ab-
stracted away: therefore, a QUEΛ term is represented as an OCaml
functor. For example, the query Q1 from our running example §2
is represented in OCaml as follows:4

module Q1(S:Symantics) = struct open S
let res = fun xoid →

foreach (fun () → table_orders) @@ fun o →
where ((o %. oid) %= xoid) @@ fun () →

yield o
end

Records of QUEΛ can be implemented in several ways, and we use
OCaml objects. Please see Appendix B for details. We rely on the
extensibility of the embedding to add the descriptions of tables as
constants. The application Q1 2 then takes the form

module Q1_2 (S:Symantics) = struct open S
module M = Q1(S)
let res = app M.res (int 2) end

It is possible to embed QUEΛ in OCaml more conveniently, without
many spurious fun () and using the familiar operator names like
= rather than =%. For example, the above query might then look as

module Q1Nicer(S:Symantics) = struct open S
let res = fun xoid → fun () →

let o = table_orders_gen () in
where ((o %. oid) = xoid); o

end

Another possible improvement is to use first-class modules, as
demonstrated in [17]. For clarity, we use the (painfully) explicit
approach for the time being. We plan to investigate the more con-
venient embedding in future work.

The representation for Q2 is similar. For the composed query
Q3 2 (producing total sales for the given oid) we write

module Q3(S:Symantics) = struct open S
module M1 = Q1(S) module M2 = Q2(S)
let q3 x = foreach (fun () → app M1.res x) @@

fun y → M2.res y
let res = app q3 (int 2)
end

Once written, a QUEΛ representation can be interpreted using
any implementation of the Symantics signature. There are several.
First is a meta-circular interpreter, typically called R:

module R = struct
type α repr = α
let int n = n let bool b = b let string s = s
let lam f = f
let app e1 e2 = e1 e2
let rec foreach tbl f = match tbl () with
| [] → []
| t::rest → f t @ (foreach (fun ()→ rest) f)

let where p e = if p then e () else []
let yield e = [e]
let nil () = []

4 OCaml’s @@, like Haskell’s $, is the low-precedence infix operator for
applications.

let (@%) e1 e2 = e1 @ e2
let (=%) e1 e2 = e1 = e2
...
type α obs = α
let observe f = f ()

end

A QUEΛ term of type α is represented by an OCaml term of the
same type, and the evaluation of QUEΛ maps to the evaluation
of OCaml. Since OCaml type system (at least of the subset used
here) is sound, the R-embedding of QUEΛ is type-sound. Since the
representation type repr is kept abstract, and since the typed-final
encoding is tight, it follows that QUEΛ itself has the property of
subject reduction.

To run the query Q1_2 on an in-memory non-SQL database with
the needed tables, we evaluate

let module M = Q1_2(R) in
M.observe (fun () → M.res)

obtaining the result shown in §2. Exactly the same Q1_2 can be
run against an SQL database, as we show below. We have used the
so far neglected function observe to observe the α repr value
as a value of some observation type α obs, which is also kept
abstract. The choice of obs hence is also left for a Symantics
implementation. In the R implementation it is the same as repr
but they generally differ as some post-processing is often needed to
observe the result (as we will soon see).

Another implementation of the Symantics interface, called P,
pretty-prints QUEΛ terms: using it with Q1:

let module M = Q1(P) in
print_endline @@ M.observe (fun () → M.res)

prints out the query:

fun x → foreach (fun ()→ table "orders") (fun y →
where (y.oid = x) (fun () → yield y))

3.3 Normal QUEΛ programs
There is another implementation of the Symantics interface, GenSQL,
which however works only on normal QUEΛ programs that pro-
duce flat record bags. Normal programs are closed irreducible
QUEΛ terms under the transformation rules in the next section,
and its syntax is defined as follows.

Queries U ::= U1] U2 | [] | F
Comprehensions F ::= for (x ← table(t)) F | Z
Body Z ::= where B Z | yield R | table(t)

Record R ::= 〈l = B〉 | x
Primitives B ::= ⊕(B) | x.l | c
A normal program can be straightforwardly converted to the

single SQL query without nested subqueries. For reference, this
transformation is described in Appendix D.

For example, the following code that is similar to Q1_2 pro-
duces a flat record bag and is in the normal form. Evaluating it with
the GenSQL implementation

module Q1’(S:Symantics) = struct open S
let res =

foreach (fun () → table_orders) @@ fun o →
where ((oid o) =% (int 2)) @@ fun () →
yield o

end
let module M = Q1’(GenSQL) in M.observe (fun () →

M.res)

first converts the program to SQL – the same SELECT query
we saw in §2 for Q1. The function observe in the GenSQL
interpretation does the non-trivial work of sending the generated
SQL query to the database server and receiving the result (of the

type order list GenSQL.obs, which is order list). On the
other hand, the program Q3 is not in the normal form and hence
cannot be converted to the efficient SQL as it is. It has to be
normalized first. That process is described next.

4. Typed-Final Program Transformations
This section briefly describes program transformations in the
typed-final style, on an example of bringing in our sample Q2 and
Q3 programs to the normal form. For clarity and to save space
we describe only a couple of transformations, but we have imple-
mented all the normalization rules of Cheney et al. [4] (listed in
Appendix E for reference) as well as extensions in §6, all of which
preserve well-typedness and well-scopedness by construction. §5
demonstrates the good performance of the transformations. The
general idea of typed-final transformations, independent of the ap-
plication domain and applicable to Haskell, OCaml, Scala, etc., has
been presented elsewhere [15, 17]. The application to language-
integrated query described here is the largest so far application of
the typed-final optimization method, demonstrating its expressiv-
ity.

In the typed-final approach used in the paper, an term of the
embedded DSL (EDSL) is represented as a function (functor) that
takes an implementation of the Symantics interface. The only thing
to do with such a representation is to pass an implementation
of Symantics. Therefore, a term transformation has also to be
expressed as a Symantics interpreter.

For a running example we use a simple program transformation
[]] N N . It is the standard constant folding, well-familiar
from partial evaluation, which suggests the implementation: anno-
tate each expression with available static information – in our case,
if it is statically known to be the empty bag. Let F be some imple-
mentation of Symantics and hence α F.repr be the un-annotated
representation type. The annotated type then takes the form of the
GADT

type α annrepr =
| Empty : α list annrepr
| Unknown : α F.repr → α annrepr

The variant Unknown represents the value about which nothing is
statically known. The function

let dyn : α annrepr → α F.repr = function
| Empty → F.nil ()
| Unknown x → x

forgets the statically known information and returns the un-annotated
term. We now write the implementation of Symantics that interprets
QUEΛ terms in the domain of annotated F representation:

module LNil_preliminary = struct
type α repr = α annrepr
let int n = Unknown(F.int n)
let bool n = Unknown(F.bool n)
let app x y = Unknown(F.app (dyn x) (dyn y))
let lam f = Unknown(F.lam

(fun x → dyn (f (Unknown x))))
...
let nil () = Empty
let (@%) x y = match x with
| Empty → y
| Unknown x → Unknown ((F.@%) x (dyn y))

type α obs = α F.obs
let observe x = F.observe (fun () → dyn (x ()))

end

As expected, nil creates the statically known empty bag; the inter-
pretation of union looks at the annotation and does constant folding.

The observation function extracts the un-annotated term and ob-
serves it. The LNil_preliminary transformation looks very sim-
ilar to the simple optimization in [12] (whose development also fol-
lowed the tagless-final style); one can even relate it to the Kleene’s
pairing trick of encoding the predecessor in the lambda-calculus.
Our particular form of the annotated term α annrepr however en-
ables generalization to the extensible optimization framework [15],
illustrated below.

Our sample F implementation is truly arbitrary, therefore, we
abstract it. Thus the nil-suppression transformer takes the following
form

module LNil(F:Symantics) = struct
type α annrepr =

| Empty : α list annrepr
| Unknown : α F.repr → α annrepr

type α repr = α annrepr
... (* as before *)

That is, the transformation has the form of a functor which takes a
Symantics interpreter and produces another Symantics interpreter.
To apply it to the sample query Q1_2 and run the result, we do

let module M = Q1_2(LNil(GenSQL)) in
M.observe (fun () → M.res)

One can read this code as doing the transformation LNil and in-
terpreting the result with GenSQL. One can also read it as interpret-
ing the original Q1_2 term using the transformed interpreter LNil
(GenSQL); the inner GenSQL will never see the terms of the form
[]] N since they will be normalized away. Thus in the typed-final
style, transformations on EDSL terms are written as transforma-
tions on their interpreters.

The above LNil functor that implemented the trivial nil-
suppression rule had to produce the complete implementation of
Symantics. Therefore, it had to define how to interpret booleans,
integers and all other QUEΛ expressions in the annrepr domain.
Only the interpretations of nil and union did something for normal-
ization; the rest was the boilerplate. One can eliminate the boiler-
plate arriving at the general transformation framework [15], which
is used in the present paper. Incidentally, [15] discuss at length the
differences between deep-embedding optimizations (transforming
the data type representation) from the typed-final optimizations.
One of the main advantages of the latter is modularity: when new
expression forms are added to the language, the previously written
optimization passes, if they apply, can be used as they are.

To reiterate the pattern we demonstrate another optimization,
the ForFor rule:
for (x ← for (y ← L) M) N

for (y ← L) (for (x ← M) N) (if y /∈ FV (N))
where FV (N) denotes the set of free variables in N .

Again we introduce the data type that adds an annotation to the
unadorned α F.repr type. The annotation relevant for the ForFor
transformation is whether a term has the form (for (y ← L) M)
or not:

type α annrepr =
| For : (unit → α list annrepr) *

(α annrepr → β list annrepr) →
β list annrepr

| Unknown : α F.repr → α annrepr

The ever-present Unknown represents the value about which noth-
ing is statically known. The annotations can always be forgotten:

let rec dyn : α annrepr → α F.repr = function
| Unknown e → e
| For (s,b) →

F.foreach (fun () → dyn @@ s ())
(fun x → dyn @@ b (Unknown x))

The ForFor optimization is implemented quite literally, in a couple
of lines of code, as the new interpretation of foreach in the inter-
preter of the annotated terms:

let foreach s b’ = match s () with
| Unknown e → For (s, b’)
| For (s,b) → Unknown @@

F.foreach (fun () → dyn @@ s ()) (fun y →
F.foreach (fun () → dyn @@ b (Unknown y))
(fun x → dyn @@ b’ (Unknown x)))

In our optimization framework, this is essentially all what the
programmer has to write to program the optimization. One may
wonder however about the side-condition of the ForFor rule: in
the result of the transformation, the index variable y of the outer
loop must not occur free in the body N of the inner loop. We have
done nothing to satisfy that side condition. We did not have to:
the higher-order abstract syntax used for representing loop bodies
ensures the condition holds at all times, automatically. This is one
more example of assuring safety by the very construction.

Composing program transformations is achieved by simply
composing the correspondent functors. For example, to compose
the five main transformations of [4] we do

module MainPasses(S:Symantics) = AbsBeta(
RecordBeta(ForFor(ForWhere(ForYield(WhereFor(
WhereWhere(S)))))))

Interpreting our running example Q3 from §2 and §3 using MainPasses
(GenSQL) normalizes Q3 to the form shown at the end of §2, from
which the efficient, subquery-free SQL is produced.

Since we have implemented all of the transformations of [4],
our system has the property guaranteed by Prop. 4 of Cheney et
al.’s paper, that is: Applying a sequence of our transformations to a
QUEΛ program of the flat record type eventually produces normal
form from which a single, flat SQL statement can be generated.

Our system thus meets its goal. Its performance is addressed
next.

5. Performance
This section describes performance of our language-integrated
query system, embedding of QUEΛ into OCaml. The performance
has several components: optimizing the user-entered QUEΛ expres-
sion, generating the SQL code, sending it to the database server and
executing. First we evaluate the former two contributions. Tab. 1
summarizes the results. The execution environment is MacBook
Pro 11,1 with Intel Core i5-4288U CPU; we used bytecode OCaml
4.01.0. The sample query was compose of Cheney et al.[4]. We
implemented its transformation in two ways, the first of which is
MainPasses in §4 and the second is AllPasses defined as fol-
lows.

module AllPasses(S:Symantics) = AbsBeta(
RecordBeta(ForYield(ForFor(ForWhere(ForEmpty1
(ForUnionAll1(WhereTrue(WhereFalse(
ForUnionAll2(ForEmpty2(WhereEmpty(WhereWhere(
WhereFor(S))))))))))))))

The latter applies all transformation rules, while the former applies
only rules necessary to normalize the given query.

We also implemented two different iteration policies. The first
one iterates the transformation for a given number, set to 10 in this
experiment. The other is to iterate the transformation until the given
term is in the normal form (NF).

In total, we have four difference cases (two for the order of
primitive transformations, two for the policy of iterations). In Tab. 1
the first four lines show the total execution time of the program
transformations and SQL generation in our implementation. For the

AllPasses for 10 times 324.20
AllPasses until NF 6.68

MainPasses for 10 times 0.49
MainPasses until NF 0.18

P-LINQ 0.8
Time in milliseconds.

Table 1. Execution time for the compose query

purpose of comparison, the last line shows the execution time for
the program transformation in [4].

Although our typed-final embedding is a proof-of-concept im-
plementation, it runs within a modest time-bound even if we apply
all possible transformation rules to the given query, provided we
stop the iteration as soon as the target term becomes a normal form
(the second line). If we selectively apply the necessary transforma-
tion rules only, it even outperforms the efficient implementation in
the literature (the last three lines). We stress that the shown run-
ning time is not just the transformation time; it includes the time
for generating SQL code.

Compared to the time of executing the query against a database,
which typically runs for seconds if not minutes, all optimization
and SQL generation steps clearly take negligible time.

The most interesting question is how fast the generated SQL
code executes. This question is also difficult to answer as bench-
marking database performance is very hard due to a large number
of contributing factors. Fortunately, we can reduce this question to
an already solved problem. Our QUEΛ system has the same input
language as T-LINQ (modulo notational differences between F#
and our encoding) – and it generates exactly the same SQL code as
T-LINQ does. Therefore, all the extensive empirical evaluation re-
sults of running the queries done in the T-LINQ paper [4, §9] apply
as they are. We refer the reader to that paper for all detail.

6. Extension
This section shows off the extensibility, by adding one small exten-
sion: set-based union. The union operation (@%) used before was
the multiset union, or UNION ALL in SQL terms. It turns out we
can re-use, rather than re-write, all previously written interpreters
and transformers. Extending QUEΛ is as simple as it can get.

First we extend the syntax of QUEΛ with the new set-based
union operation, to be called (@^):
module type SymanticsS = sig

include Symantics
val (@^) : α list repr → α list repr →

α list repr
end

The code literally adds a new declaration to the existing set of
declarations Symantics, fully reusing the latter.

Next we have to extend the interpreters of QUEΛ, to handle the
newly added form. The extensions are just as straightforward, fully
reusing the existing interpreters as they were. For example, for the
R interpreter, we write
module RS = struct
include R
let (@^) xs ys =

List.fold_right (fun x l →
if List.mem x l then l else x::l) xs ys

end

The existing optimization passes apply to the extended QUEΛ
exactly as they were, with no changes. We do need to add new
passes that concern the set-based union, for example
for (x ← L @^M) N

for (x ← L) N @^ for (x ← M) N

This rule is programmed similarly to other optimization rules, as
described in §4.

That is all we need to use the new feature and normalize queries
with its feature.

7. Grouping and Aggregation
This section extends QUEΛ post-factum by the group-by clause
and aggregate functions, which are frequently used in practice.
Adding them to the language-integrated query in a type-safe and
efficient way has been a challenge (which we review in §8). We
meet the challenge here, also demonstrating that our system is truly
extensible: we reuse, as they are, all previously written interpreters
and optimization passes.

Our sample query runs against the database in §2 and counts the
total sales classified by categories. It can be written in the extended
QUEΛ as follows. The corresponding SQL query is shown on the
right.

Q4 =
for (o← orders)
for (p← products)
where (o.pid = p.pid

∧ p.price > 200)
group (gprice← p.price)
having (sum(p.price ∗ o.qty)

> 500)
gyield 〈gprice,

sum (p.price ∗ o.qty)〉

SELECT p.price ,
SUM(p.price ∗ o.qty)

FROM orders AS o,
products AS p

WHERE o.pid = p.pid
AND p.price > 200
GROUP BY p.price
HAVING
SUM(p.price ∗ o.qty) > 500

The query Q4 joins the tables orders and products, selects the
products with the price higher than 200, groups by price, keeps
only the groups with sales total higher than 500, and finally lists
the price and the sales total. Its result is

[<1000, 55000>, <500, 12500>]

Such a query is very common in practice.

Types A,B ::= · · · | A×B
Terms L,M,N ::= · · · | group (g ←M) N | having LM

| gyieldM | 〈M,N〉 | }(M)

Figure 2. Syntax of QUEΛG. The metavariable } ranges over
aggregate functions such as sum and average.

To implementQ4 we extend QUEΛ with several new primitives,
obtaining QUEΛG; see Fig. 2. The group keyword corresponds
to the GROUP BY clause in SQL. In the example above, group (
gprice ← p.price) groups the bag of records generated by the
outer for and where clauses by the key p.price. For the sample
database in Fig. 1, these clauses produce the bag

[<name=Tablet,price=500,qty=5>,
<name=Laptop,price=1000,qty=5>,...]

The group statement then builds a bag of bags

[<gprice=500, [<name=Tablet,price=500,qty=5>,
<name=SSD,price=500,qty=20>]>,

<gprice=1000,[<name=Laptop,price=1000,qty=5>,
<name=Laptop,price=1000,qty=50>]>]

which then enumerates. The variable gprice is bound to the price
value within each bag. Since this is a grouping key, all records
within the inner bag have the same value of price. The having and
gyield primitives are similar to where and yield, respectively, and
are used only with a group clause, that is, within the bag-of-bag
enumeration. The former filters whereas the latter selects from the
tuples of the outer bag. In the first tuple, price has the value 500,
whereas qty, not the grouping key, does not have the fixed value:
it is 5 for the first inner record and 20 for the second. Likewise, the

product of the price and quantity does not have the fixed value. The
aggregate function sum aggregates over the inner bag; in our case,
it sums up the total sales within each inner bag to the single scalar
value. The semantics just explained is intuitive semantics but not
compositional: when explaining group we had to refer to the bag
produced by the outer for clauses. Describing the semantics in
terms of building and enumerating bags also gives a poor guidance
to implementors (since it is hard to implement efficiently).

We have designed compositional semantics of grouping and
aggregation, which we implemented as an R interpreter and used
to run Q4. We cannot describe this semantics here for the lack of
space and have to refer the reader to the accompanying source code.
In the rest of the section we explain the type system of QUEΛG.

The goal of the type system is to statically enforce the restriction
on expressions that may appear with having and yield clauses:
such expressions may only contain constants, aggregated values,
and group keys, and have the fixed value for all records within one
group. Here are examples of acceptable expressions:

gprice, sum(o.qty), sum(p.price), gprice ∗ sum(o.qty),
sum(p.price ∗ o.qty ∗ weightfactor(p.name))

An argument of an aggregate function on the other hand may freely
mix fixed-value expressions such as group keys with references
to ungrouped columns. The last expression above is an example;
weightfactor is a user-defined function.

The type system for QUEΛG uses two new judgments: `a M :
A and `G M : A in addition to the previously introduced one
M : A (here we write ` M : A to distinguish it from others).
The former defines expressions that have the fixed value within a
group and are hence acceptable for having and yield clauses. The
judgment `G M : A is used for typing those clauses, which can
only be used within grouping. Fig. 3 shows the new typing rules
with the new judgments.

It is now easy to extend the definition of Symantics to accom-
modate grouping and aggregation. In fact, we developed the other
way round; we first implemented Symantics and then formulated
the typing rules in Fig. 3. We note that the type system of the host
language is very helpful in designing and developing correct typing
rules, which is not possible in other formulations. The typed final
approach truly helps.

The following code shows the extended Symantics correspond-
ing to the typing rules in Fig. 3.

module type SymanticsG = sig
include SymanticsL
type (α,β,’key) grepr
type (α,β,’key) gres
type (α,β,’groupkeys,’reskeys) coll

val group : ’gk gb_sequence →
(’gk gb_key_sequence → (α,β,’res) gres) →
(α,β,’gk,’res) coll list repr

val gint : int → (int,int,constk) grepr
val sum : int repr → (int,int,sumk) grepr
val gpair:(α,β1,’k1) grepr → (β,β2,’k2) grepr

→ (α * β,β1*β2,’k1*’k2) grepr
val having : (bool,β1,’k1) grepr →

(unit → (α,β2,’k2) gres) →
(α,β1*β2,’k1*’k2) gres

val gyield : (α,β,’key) grepr → (α,β,’key) gres
(* ... abbreviated ... *)
end

The type (α,β,’key) grepr corresponds to the second judgment
`a M : α in Fig. 3, where we ignore the arguments β and ’
key which are used for final observation only. The function gint
implements the typing rule CONST when O is int, and sum and
gpair, resp., implement the typing rules AGGREGATION (when }
is sum) and pair, resp. Similarly, the types (α,β,’key) gres

`M : A

GROUP

`M : A

[`a g : A]
|

`G N : Bag B

` group (g ←M) N : Bag B

`a M : A

CONST
Σ(c) = O

`a c : O

OP
Σ(⊕) = O1 × · · · ×On → O
`a Mi : Oi (for each 1 ≤ i ≤ n)

`a ⊕ (M) : O

AGGREGATION
Σ(}) = O1 → O2 `M : O1

`a }(M) : O2

PAIR
`a M1 : A1 `a M2 : A2

`a 〈M1,M2〉 : A1 ×A2

`G M : A

HAVING
`a L : Bool `G M : Bag A

`G having LM : Bag A

SINGLETON
`a M : A

`G gyieldM : Bag A

Figure 3. Typing rules of QUEΛG

and (α,β,’groupkeys,’reskeys) coll, resp., correspond to
the judgments `G M : α and `M : α, resp.

We can write the query Q4 in QUEΛG as follows.

module Q4(S:SYM_SCHEMA) = struct
open S
let products = table("products", products ())
let orders = table("orders", orders ())

let res =
foreach (fun () → orders) @@ fun o →
foreach (fun () → products) @@ fun p →
where ((o %. opid =% p %. pid) &%

(p %. price >% int 100)) @@ fun () →
group (seq_one (p %. price)) @@ seq_decon

(fun gprice _ →
having (sum (p %. price *% o %. qty)

>$ gint 500) @@ fun () →
gyield (gpair gprice

(sum ((p %. price) *% (o %. qty)))))
end

This query is complicated, but the type system again helps us to
formulate it correctly. Due to lack of space, we refer the reader to
the accompanying code for further details.

To repeat, our implementation stands out in supporting grouping
and aggregation to the letter of the ANSI SQL standard as well
as PostgreSQL extensions: GROUPBY and HAVING clauses may
contain arbitrary expressions with the arbitrary mixture of grouped
and ungrouped columns. An expression with at least one ungrouped
column must be (a part of) an argument of an aggregate function.
Our type system accepts all and the only queries that satisfy the
complex of SQL grouping rules.

8. Related Work
Language-integrated query is an old topic, dating back to [22]. The
Nested Relational Calculus (NRC) of Buneman et al. [2] provides
the foundation for query languages on comprehension. Cooper
presents a strongly normalizing rewriting system for NRC [6].
Cheney et al.’s T-LINQ [4] refines Cooper’s normalization. We
use the T-LINQ rules as they are in our system.

The language-integrated query of T-LINQ was designed to un-
derstand and improve SQL extensions of F#, and so naturally took
advantage of the F# quotation mechanism and Microsoft F# LINQ
library. Normalization transformations are implemented on the un-
typed, first-order representation of their query language. One has
to be careful: some rules involve beta-reductions under binders, so
one has to be sure to do alpha-conversion to avoid variable cap-
ture. Although theoretically trivial, such operations are tedious and
a source of subtle bugs. Correctness, including type preservation,
confluence and termination, have all been proven – offline. Since
nothing is assured by construction, upon modification of the rules
or the language, the proofs have to be reworked.

Our approach does not use any language-specific meta-programming
facilities (quotation, etc). Although implemented in OCaml, it can
easily be ported to Haskell or Scala, for example.

HRR [11] and Opaleye [9] (and the older and less capable
HaskellDB [18] and others) are meant for industrial-scale appli-
cations and support a very large subset of SQL. (It is not clear if
they support all of the GROUPBY facility as mandated by the SQL
standard.) Queries are composable; however, they result in SQL
with (sometimes, very many) nested SELECT statements, which is
known to be suboptimal. The author of Opaleye does consider this
to be weakness and intends to redress it at some point.

Some functional language systems natively support type-safe
SQL queries: for example, Ohori et al.’s SML# [20] and Cooper et
al.’s early version of Links [7]. Composing SQL statements is either
not allowed (SML#) or leads to the query avalanche problem.

Rompf and Amin [21] describe compiling simple SQL queries
to the very efficient C by a sequence of small transformations, ul-
timately realizing one of the Holy Grails of partial evaluation: ob-
taining an efficient compiler by specializing an interpreter to the
program. Their paper is another good illustration of Lightweight
Modular Staging (LMS). Whereas in Rompf and Amin’s approach,
SQL is the input, we take SQL as the output of our transformation
chain, relaying on the off-the-shelf data base engines for its execu-
tion.

Peyton Jones and Wadler [14] proposed an extension of list
comprehensions of Haskell to be called ComCom, inspired by
SQL’s GROUP BY and ORDER BY. It has an elegant design going
beyond SQL in generality (for example, getting group-by to com-
pute running average). Also, Haskell list comprehensions do not
have to produce flat list of base-type tuples; nested lists are easily
possible. For these reasons, ComCom comprehensions cannot be
translated to SQL. Although more general than SQL, ComCom is
also, unexpectedly, less expressive than SQL. Furthermore, the er-
rors that database systems typically catch when compiling a SQL
statement and we prevent using types, are detected by ComCom
only at run-time. Concomitant with the weak typing is the loss of
efficiency.

Peyton Jones and Wadler’s design has a surprising and unique
(as the paper itself calls) feature – implicit rebinding of variables,
which changes their types. For example, the following SQL query
against the table employees :: [(Name,Dept,Float)]

SELECT dept, SUM(salary) FROM employees
GROUP BY dept

is represented by the following comprehension:

[(the dept, sum salary)

| (name, dept, salary) <− employees,
group by dept]

On the second line, the variable dept (explicitly bound by the pat-
tern) has the type Dept. Yet on the first line, the same variable has
the type [Dept]. This feature has even more unpleasant surprises.
Consider a slightly changed query

SELECT dept, salary FROM employees GROUP BY dept

with the following comprehension:

[(the dept, the salary)
| (name, dept, salary) <− employees ,

group by dept]

The new query is invalid according to the SQL standard: the column
salary is not grouped by and it appears in the SELECT list by itself
rather than within an aggregate. SQL engines will reject the query
when compiling it. In our QUEΛG, it is ill-typed. Yet the Haskell
comprehension is well-typed and can even be run, with a run-time
error. The function the

the :: Eq a => [a] → a
the (x:xs) | all (x ==) xs = x

is partial. The expression the dept succeeds since dept is a list of
identical values because it is a group key. However, the salary
fails since the ungrouped salary is in general the list of distinct

values. Because of this typing flaw, the function the has to compare
all list values, every time it is applied.

The implicit rebinding also prevents realizing valid SQL state-
ments such as

SELECT dept, SUM(salary) FROM employees
GROUP BY dept
HAVING SUM (deptweight(dept) * salary) > 2000

Assume deptweight is a SQL function that assigns a weight factor
to a dept5. Its straightforward translation to the comprehension

[(the dept, the salary)
| (name, dept, salary) <− employees
, group by dept
, sum (deptweight(dept) * salary) > 2000]

is ill-typed since group implicitly rebound dept to the type [Dept
], which cannot then be passed to the deptweight :: Dept →
Float function.

Our QUEΛ is unique in fully matching the SQL behavior, ac-
cepting compilable SQL statements and statically rejecting invalid
statements with a type error.

Typed final, or tagless-final style is introduced in [3] and fur-
ther described in [16]. The former paper has the extensive compar-
ison with the related work in this area, to which the latter adds the
discussion of Böhm-Berarducci encodings of data types 6 [1]. Un-
like the tagless-final representation, Böhm-Berarducci encodings
are defined only for strictly positive data types, and, mainly, are
not extensible. Tagless-final style was recently applied to OO lan-
guages, under the name of object algebras [8].

This paper described the tagless-final embedding of QUEΛ into
OCaml. We could have just as well used Haskell or Scala as host
languages. In fact, we have performed a small experiment with the
Haskell embedding [15]. Haskell typeclasses made the encoding
lightweight compared to OCaml modules. On the other hand, in

5 The example is patterned after the one in the PostgreSQL doc-
umentation http://www.postgresql.org/docs/9.4/interactive/
queries-table-expressions.html#QUERIES-GROUP
6 which are frequently confused with Church encodings; see http://
okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
for the explanation of the differences.

OCaml we relied on the include mechanism to program optimiza-
tions by reusing the code for the identity transformation and over-
riding a couple of definitions. Haskell does not support that sort of
code reuse among type classes. Therefore, programming tagless-
final transformation in Haskell has quite a bit of boilerplate.

9. Conclusion and Future work
Building high-performance, practical applications and tools is hard
because performance is often at odds with features that make pro-
gramming manageable: early error detection, abstracting away mi-
cromanagement and boilerplate, reusing previously developed and
tested components in new and bigger ones. We faced two such hard
trade-offs in this paper: First, tagless-final approach with higher-
order abstract syntax makes embedding of higher-order typed lan-
guages as simple as it can probably be, offering extensibility, en-
suring well-typedness and hygiene by construction and taking ad-
vantage of the host language type checker to check and even in-
fer embedded language types. On the other hand, such embed-
ding was considered to be impossible to optimize. On the applica-
tion side, language-integrated queries are composable and reusable,
with good error detection, thanks to the host language type system.
On the other hand, it is very hard to generate efficient SQL to com-
municate with mature high-performance database engines.

In this paper we overcome both trade-offs. We show that op-
timizing tagless-final embedded languages is not only possible but
advantageous. Optimization rules are also well-typed and type- and
scope-preserving by construction. The rules can be reused even in
face of extensions to the language. Optimizations rules may be ar-
bitrarily assembled into optimization pipelines; a programmer may
easily reassemble the pipeline or add previously or newly written
passes to account for peculiarities of database engines or domain-
specific knowledge (e.g., presence or importance of NULLs).

We have not only shown the general framework for embed-
ding and optimizing DSL, but also applied it to language-integrated
queries. We implemented all optimization rules proposed in the ear-
lier work by Cooper and Cheney et al. and thus are able to generate
efficient SQL. Taking advantage of the extensibility of the frame-
work we extended the language and the optimizations to the com-
plete SQL grouping and aggregation behavior. Our implementation
of the meta-circular interpreter can be seen a first formal semantics
of this facility.

In the future work, we plan to investigate more convenient,
comprehension-like surface syntax, demonstrated in §3. We would
also like to automatically generate QUEΛ’s table types from
database schema.

Acknowledgments.
We are immensely grateful to James Cheney for the explanations of
the T-LINQ implementation and great many helpful comments. We
thank Kazu Yamamoto for many helpful discussions, and anony-
mous reviewers for constructive comments.

The third author is supported in part by JSPS Grant-in-Aid for
Scientific Research No. 25280020.

References

A. Operational Semantics and Typing of QUEΛ
We define operational semantics in Fig. 4 and 5, and typing rules
in Fig. 6. Recall that [V1, · · · , Vn] is an abbreviated expression for
yield V1] . . .] yield Vn] [].

Value
V ::= c | λx.M | 〈l = V 〉 | [V1, · · · , Vn]

Evaluation context
E ::= [] | ⊕(V , E ,M) | E M | V E

| 〈l = V , l′ = E , l′′ = M〉 | E .l | yield E
| E] M | V] E | for (x ← E) N

| where E M

Figure 4. Values and Evaluation Contexts

⊕(V) −→ δ(⊕)(V)

table(t) −→ Ω(t)

(λx.M) V −→ M [x := V]

〈l = V 〉.li −→ Vi

where trueM −→ M

where falseM −→ []
for (x ← yield V) M −→ M [x := V]

for (x ← []) M −→ []
for (x ← L] M) N −→

(for (x ← L) N)] (for (x ← M) N)

M −→ N

E [M] −→ E [N]
(E-CONTEXT)

Figure 5. Operational Semantics of QUEΛ

The map δ gives semantics to each primitive operator, and Ω
maps each table name to a value of a flat bag type.

We assume that Ω and δ in the previous subsection are consis-
tent with Σ: for each table Ω(t) is assumed to be a value of type
Σ(t), and δ respect types: if Σ(⊕) = O → O and ` V : O and
V = δ(⊕, V) then ` V : O.

B. Encoding Schemata and Records
We briefly mention how we encoded database schemata and
records.

To encode records in the object language, we use objects in
OCaml. Record construction is encoded as a function which creates
an object, and record projection is encoded as a function that takes a
record (encoded as an object) and returns its field value. A database
schema is then encoded as a signature for these functions. Fig. 7 is
an example schema encoded as a signature.

To use the signature for a schema, we extend a standard Syman-
tics with the schema as follows.

module type SYM_SCHEMA = sig
include SymanticsL
include SCHEMA with type α repr := α repr

end

In this paper, we implicitly assumed that we use this extended
signature as a Symantics. Interpreters are similarly extended.

CONST
Σ(c) = O

c : O

OP
Σ(⊕) = O1 × · · · ×On → O
Mi : Oi (for each 1 ≤ i ≤ n)

⊕(M) : O

ABS
[x : A]
|

M : B

λx.M : A→ B

APP
L : A→ B M : A

LM : B

RECORD
Mi : Ai (for each1 ≤ i ≤ n)

〈l = M〉 : 〈l : A〉

PROJECT

M : 〈l : A〉
M.li : Ai

SINGLETON
M : A

yieldM : Bag A

EMPTY

[] : Bag A

UNIONALL
M : Bag A N : Bag A

M] N : Bag A

TABLE

Σ(t) = Bag 〈l : O〉
table(t) : Bag 〈l : O〉

FOR

M : Bag A

[x : A]
|

N : Bag B

for (x ← M) N : Bag B

WHERE
L : Bool M : Bag A

where LM : Bag A

Figure 6. Typing rules

module type SCHEMA = sig
type α repr

(* record constructors *)
val product : int repr → string repr →
int repr → <pid:int; name:string; price:int>
repr

...

(* projection *)
val pid : <pid:int; name:string; price:int>

repr → int repr
val name : <pid:int; name:string; price:int>

repr → string repr
val price: <pid:int; name:string; price:int>

repr → int repr
...

(* data sources *)
val products : unit → <pid:int; name:string;

price:int> list
...

end

Figure 7. An Example Schema as a Signature

C. Embedding the Object Language
Fig. 8 defines the embedding functionM that maps the terms and
types in the object language into those in the metalanguage.

<l : A∗> is the type for objects in OCaml. The function constO
maps constants in the object language to OCaml constants of type

MJAK = A∗ repr
Int∗ = int
Bool∗ = bool

String∗ = string
(A→ B)∗ = A∗ → B∗

(Bag A)∗ = A∗ list

(〈l : A〉)∗ = <l : A∗>

MJxK = x
MJcK = constO(c)

MJ⊕(M)K = ⊕M(MJMK)
MJLMK = app MJLK MJMK
MJλx.NK = lam (fun x → MJNK)

MJ〈l = M〉K = recordl(MJMK)
MJL.lK = MJLK %. l

MJfor (x ← M) NK = foreach (fun () → MJMK)
(fun x → MJNK)

MJwhere LMK = where (MJLK)
(fun () → MJMK)

MJyieldMK = yield MJMK
MJ[]K = nil ()

MJM] NK = MJMK @% MJNK
MJtable(t)K = table(t,Ω(t))

Figure 8. Embedding QUEΛ into OCaml

O. We assume that recordl builds OCaml objects with labels l,
such as products in Fig. 7. %. is record projection for the label l.

D. Generating SQL
After applying transformations to a given closed query of flat bag
type, we will get its normal form, which is then translated to a SQL
query. Fig. 9 shows Cooper’s translation for this last step where φ
denotes an empty database table. We list it here for completeness.

SJU1] U2K = SJU1K UNION ALL SJU2K
SJ[]K = SELECT null AS l FROM φ WHERE FALSE

SJF K = SELECT e AS l FROM s AS x, t AS y WHERE B
where F = for (x ← table(s)) F ′

and SJF ′K = (SELECT e AS l FROM t AS y WHERE B)

SJwhere B ZK = SELECT e AS l FROM t WHERE B′ ∧ SJBK
where SJZK = (SELECT e AS l FROM t WHERE B′)

SJtable(s)K = SELECT s.l AS l FROM s WHERE TRUE
SJyield RK = SELECT SJRK FROM φ WHERE TRUE
SJ[〈l = B〉]K = SJBK AS l
SJexists UK = EXISTS(SJUK)
SJ⊕(B)K = ⊕sql(SJBK)
SJx.lK = x.l

SJxK = x.∗
SJcK = c

Figure 9. SQL Translation

Stage 1:
(λx.N) M N [x := M]

(ABS-β)
〈l = M〉.li Mi (RECORD-β)

for (x ← yieldM) N N [x := M]

(FORYIELD)
for (x ← for (y ← L) M) N

for (y ← L) (for (x ← M) N) (FORFOR)
if y /∈ FV (N)

for (x ← where LM) N
where L (for (x ← M) N) (FORWHERE1)
for (x ← []) N [] (FOREMPTY1)

for (x ← L] M) N
for (x ← L) N] for (x ← M) N (FORUNIONALL1)

where trueM M (WHERETRUE)
where falseM [] (WHEREFLASE)

Stage 2:
for (x ← L) (M] N) ↪→

for (x ← L) M] for (x ← L) N (FORUNIONALL2)
for (x ← M) [] ↪→ [] (FOREMPTY2)

where L (M] N) ↪→
(where LM)] (where L N) (WHEREUNION)

where L [] ↪→ [] (WHEREEMPTY)
where L (whereM N) ↪→ where (L ∧ M) N

(WHEREWHERE)
where L (for (x ← M) N) ↪→

for (x ← M) (where L N) (WHEREFOR)

Figure 10. Normalization rules

E. Normalization rules
Fig. 10 lists the normalization rules by Cheney et al.’s T-LINQ. We
have implemented all these rules as typed final program transfor-
mations.

