
FFT Program Generation for Ring LWE-based

Cryptography

Masahiro Masuda � and Yukiyoshi Kameyama

University of Tsukuba, Tsukuba, Japan
masa@logic.cs.tsukuba.ac.jp, kameyama@acm.org

Abstract. Fast Fourier Transform (FFT) enables an e�cient implemen-
tation of polynomial multiplication, which is at the core of any crypto-
graphic constructions based on the hardness of the Ring learning with
errors (RLWE) problem. Existing implementations of FFT for RLWE-
based cryptography rely on hand-written assembly code for performance,
making it di�cult to understand, maintain, and extend for new archi-
tectures.
We present a novel framework to implement FFT for RLWE-based cryp-
tography, based on a principled program-generation approach. We start
with a high-level, abstract de�nition of an FFT program, and gener-
ate low-level code by interpreting high-level primitives and delegating
low-level details to an architecture-speci�c module. Since low-level de-
tails concerning modular arithmetic and vectorization are separated from
high-level logic, we can easily generate both AVX2- and AVX512-optimized
low-level code from the same high-level description of the FFT program.
Our generated code is highly competitive compared to expert-written
assembly code: For AVX2 (and AVX512, resp) it runs 1.13x (and 1.39x,
resp) faster than the AVX2-optimized assembly implementation in the
NewHope key-exchange protocol.

1 Introduction

Lattice cryptography has been receiving increasing attention due to its widely
believed resistance against quantum attacks while still allowing e�cient imple-
mentations of important cryptographic protocols. A construction based on the
hardness of Ring learning with errors (RLWE) problem [15] is particularly ef-
�cient, thanks to its algebraic structure. At the heart of all RLWE-based pro-
tocols is the multiplication of polynomials, whose coe�cients are taken from
integers modulo a certain prime. It is well known that the polynomial multipli-
cation can be computed in O(n log n) time via Fast Fourier transform (FFT)1[6].
Since the computational cost for polynomial multiplication is dominated by FFT,
there have been many work on optimized FFT implementations for RLWE-based
cryptography[7,2,14,19].

However, we believe that existing implementations have some shortcomings,
in terms of ease of understanding, maintainability, and reusability:

1 FFT in which coe�cients are taken from a �nite �eld is often called NTT (Number
Theoretic Transform), but we use the term FFT throughout this paper.



� They support either only one set of security parameters, or multiple sets
of parameters by duplicating code. Duplication makes implementation and
maintenance of code tedious and error prone.

� Precomputed constants are hardcoded in the source code. In the context of
RLWE, the size and modulus parameters are always �xed, making it possible
to precompute all the twiddle factors in an FFT implementation. In addition,
it is common to pre-multiply the twiddle factors by other factors arising
from Montgomery multiplication or negative wrapped convolution [2,14].
Since each implementation does precomputation in slightly di�erent ways
and often comes without explanation of how those constants are computed,
it is di�cult to precisely understand what each constant represents.

� Most likely, an optimized implementation is written in assembly. This makes
it extremely di�cult to understand the code and be con�dent in its correct-
ness. Moreover, since an assembly program is hardcoded using a particular
SIMD instruction set (e.g. AVX2), porting the implementation to new ar-
chitectures requires writing another assembly program from scratch. We are
not aware of any FFT implementation that leverages AVX512 instructions
in the context of RLWE-based cryptography.

We address these problems by a principled program-generation approach.
By adopting program-generation techniques developed in programming language
research, it is possible to give an abstract description of an FFT algorithm, from
which we can generate highly optimized low-level code for various instruction
sets, including AVX2 and AVX512. Moreover, the program-generation approach
makes it easy to combine optimization techniques developed in di�erent studies,
which allows us to generate more e�cient code than the assembly program in
NewHope2, one of the recent FFT implementations.

Our framework is written in a functional programming language OCaml [12].
A user would write an FFT program in a specialized domain-speci�c language
(DSL) embedded in OCaml. The DSL program can be evaluated in multiple
ways. For example, we can generate an equivalent C program, including those
optimized with SIMD intrinsics. Since our vectorized DSL programs are written
in a way that is generic with respect to the vector length and not tied to a
particular SIMD instruction set, we can easily generate both AVX2 and AVX512
code from the same high-level DSL program. Supporting a new ISA, such as
ARM Neon, should be straightforward: We only need to provide the mapping
between vectorized primitives in our DSL, such as add, mullo and mulhi, and
corresponding SIMD instructions in the target ISA.

We demonstrate our framework by implementing vectorized FFT code for
RLWE-based cryptography. We start with the reference implementation of NewHope
[2], and incorporate an optimization technique introduced in Kyber FFT [19].
We demonstrate that our high-level framework allows expressing the low-level
optimization in Kyber FFT that was the key to its performance. On a recent
laptop with Intel Ice Lake CPU, our AVX2- and AVX512-optimized FFT are
1.13x and 1.39x faster than the NewHope AVX2 implementation respectively.

2 https://github.com/newhopecrypto/newhope-usenix



We would like to stress that obtaining one FFT implementation that outper-
forms an existing one is not our primary goal. Our goal is to build a program-
generation framework which can be applied to any existing FFT algorithm, to
improve code maintainability, reusability and modularity. To show the e�ective-
ness of our framework, we chose to start with the NewHope reference imple-
mentation because of its relative simplicity compared the to the state of the art
implementation of Kyber[19], and compare and report our results with respect
to the optimized counterpart.

2 Related Work

There is already a large body of work on optimizing FFT or polynomial mul-
tiplication as a whole for RLWE-based cryptography [7,18,13,1,2,14,19]. Here,
we focus on the most relevant work whose optimized AVX2 implementations are
publically available [2,14,19].

The NewHope key-exchange protocol [2] introduced two implementations
of FFT for RLWE-based key exchange: One is a reference C implementation,
and the other is an AVX2 assembly implementation. The optimized one uses
double-precision �oating-point instructions to compute modular reduction by

a mod q = a−
⌊
a 1
q

⌋
q, since they found that the �oating-point implementation

is faster than their integer one when vectorization is applied.
The current fastest FFT implementation is the one used in Kyber KEM

[4], described in detail in [19]. For the �rst time, it outperformed the �oating-
point implementation in NewHope using only integer SIMD instructions. It also
incorporates the optimization used in [13,14] to remove the bit reversal step.

All of the existing work above implement FFT in assembly using AVX2
instructions. To the best of our knowledge, there is no AVX512 implementation,
even though an AVX512-capable CPU is becoming widely available. This work
presents an AVX512 implementation of FFT for RLWE-based cryptography.
In particular, we generate both AVX2 and AVX512 code from the same FFT
program.

3 Background

3.1 FFT in the RLWE context

FFT is an O(n log n) time algorithm to compute Discrete Fourier Transform
(DFT) for an input of size n. Given an input a = (a0, a1, ..., an−1), ai ∈ Zq, its
DFT y = (y0, y1, ..., yn−1), yi ∈ Zq is de�ned by the following equation [6]:

yk =

n−1∑
j=0

ajω
kj
n

ωn is the nth primitive root of unity modulo q, satisfying ω
n
n ≡ 1 (mod q). All

addition and multiplication are done in mod q. In the context of RLWE-based



cryptography, n is a power of two, and q must satisfy q ≡ 1 (mod 2n) for FFT
to be valid3. For example, NewHope uses n = 1024 and q = 12289 [2] , while
Kyber uses n = 256 and q = 7681 [4].

All existing implementations of FFT in the context of RLWE-based cryp-
tography compute FFT in an iterative, bottom-up manner [2,14,19]. Moreover,
the output is computed in-place. Although in-place FFT generally requires a bit
reverse step to make an output in the standard order, recent work showed a way
to eliminate it entirely for the two transforms (forward and inverse FFT) used
in polynomial multiplication [18,13]. However, for simplicity we do not imple-
ment the full polynomial multiplication and focus on a standard, self-contained
forward FFT which uses the bit reverse step at the beginning.

Algorithm 1 shows the pseudocode of our FFT implementation. It uses the
standard Cooley-Tukey algorithm [6] and all powers of ωn, called twiddle factors,
are precomputed and stored in an array. Each iteration of the outermost loop
is often called stage, and the number of stages is log2 n. The innermost loop
performs the Cooly-Tukey butter�y with modular arithmetic.

Algorithm 1 The pseudocode for the bottom-up, in-place FFT
1: procedure FFT

Input: a = (a0, a1, ..., an−1) ∈ Zn
q , precomputed constants table Ω ∈ Zn

q

2: Output: y = DFT(a), in standard order
3: bit-reverse(A)
4: for (s = 1; s <= log2(n); s = s+ 1) do
5: m = 2s

6: o = 2s−1 − 1
7: for (k = 0; k < m; k = k +m) do
8: for (j = 0; j < m/2; j = j + 1) do
9: u = a[k + j]
10: t = (a[k + j +m/2] ·Ω[o+ j]) mod q
11: a[k + j] = (u+ t) mod q
12: a[k + j +m/2] = (u− t) mod q
13: end for

14: end for

15: end for

16: end procedure

An e�cient implementation of modular reduction is the most important com-
ponent in FFT for RLWE-based cryptography. We follow existing work for the
choice of algorithms [2,19]: We use Barrett reduction [3] to reduce the results of
addition and subtraction, and Montgomery reduction [16] for multiplication.

3.2 Tagless-�nal style

The tagless-�nal style is an approach to embed a domain-speci�c language (DSL)
in a general-purpose host language in a type-safe way. The DSL, embedded in our

3 The requirement on q comes from the fact that in general multiplying two polyno-
mials of degree n requires a transform of size 2n. However, thanks to the property of
negative wrapped convolution, it is enough to do a transform of size n in practice.



host language OCaml, allows high-level descriptions of algorithms independent of
security parameters and target architectures. Here, we give its brief introduction
to understand the rest of the paper. For more details, see [5,9].

The following OCaml program vector_add adds two vectors of integers:

let vector_add arr1 arr2 =

for i = 0 to (n - 1) do

arr1.(i) = arr1.(i) + arr2.(i)

done

The variable n is the length of arrays and assumed to be a compile-time constant.
The operator .(i) indexes array elements in OCaml.

In the tagless-�nal style, a DSL program is implemented using language prim-
itives o�ered by a signature. In particular, the signature declares language prim-
itives as abstract functions, whose implementations are yet to be de�ned.

It is easy to rewrite the above program into an abstract one; we only have to
replace all constants and language syntactic constructs by new, abstract func-
tions, for instance, for by for_, the integer constant 0 by zero or int_ 0, and
arr1.(i) by arr_get arr1 i. We can write an abstract program equivalent to
vector_add above in our DSL as follows:

func2 "vector_add" arg_ty arg_ty (fun arr1 arr2 ->

(for_ zero (int_ n) (int_ 1) (fun i ->

arr_set arr1 i (D.add (arr_get arr1 i) (arr_get arr2 i)))))

This is the signature of our C-like language:4.

module type C_lang = sig

type 'a expr type 'a stmt ...

val zero : int expr

val int_ : int -> int expr

val for_ : int expr -> int expr -> int expr -> (int expr -> unit stmt)

-> unit stmt

val arr_set : int array expr -> int expr -> int expr -> unit stmt

...

end

The tagless-�nal style lets us implement the signature in various ways, and
di�erent implementations give di�erent meanings to the same program.

For example, if we use MetaOCaml [10] for the implementation, the meaning
of the above program would become "OCaml code that adds two arrays". The
brackets .<>. surrounds the value representation of the generated OCaml code.

4 It is similar to "interface" in other languages.



.<let vector_add arg0 arg1 =

let num_iter_3 = (1024 - 0) / 1 in

for i_4 = 0 to num_iter_3 - 1 do

let index_5 = 0 + (1 * i_4) in

let t_7 = Array.get arg0 index_5 in

let t_6 = Array.get arg1 index_5 in

Array.set arg0 index_5 ((t_7 + t_6) mod 12289)

done in vector_add>.

Similarly, we can also obtain equivalent C code, using a di�erent interpreta-
tion of the same program. Under this interpretation, a string representation of
the C program is generated.

void vector_add(uint16_t *arg0, uint16_t *arg1) {

for (int v_8 = 0; v_8 < ((1024 - 0) / 16); v_8 += 1) {

arg0[v_8] = arg0[v_8] + arg1[v_8];

}

}

Program transformation can be done by rede�ning the meaning of language
primitives. For example, in this program the meaning of language primitives are
overwritten to be a "vectorization mode" by Vectorizemodule (see Appendix A
for more details). Under this new interpretation, integer addition, array access
and assignment are reinterpreted as vector addition, vector load and store re-
spectively. The loop bound and index are also recalculated accordingly.

func2 "vector_add" (fun arr1 arr2->

let open Vectorize(AVX2_UInt16(D)) in

for_ (int_ 0) (int_ 1024) (int_ 1) (fun i ->

arr_set arr1 i (D.add (arr_get arr1 i) (arr_get arr2 i))))

Here is the generated code using the AVX2 instruction set. By changing one
line, we can also generate AVX512 code, without modifying the DSL program.

void vector_add(uint16_t *arg0, uint16_t *arg1) {

for (int v_8 = 0; v_8 < ((1024 - 0) / 16); v_8 += 1) {

_mm256_storeu_si256(

(__m256i *)(arg0 + (0 + (v_8 * 16))),

_mm256_add_epi16(

_mm256_loadu_si256((__m256i *)(arg0 + (0 + (v_8 * 16)))),

_mm256_loadu_si256((__m256i *)(arg1 + (0 + (v_8 * 16))))));

}

}

This shows the strength of the tagless-�nal style: From a high-level, abstract
description of a program, we can generate a variety of low-level code. Although



the example above is trivial, the same technique can be applied to vectorize the
innermost loop of FFT, as we will see next.

4 The proposed approach

We propose to apply program-generation techniques to an FFT implementation
using the tagless-�nal style, to obtain highly optimized FFT implementations
tailored to various security parameters and target architectures. The tagless-�nal
style allows us to give di�erent interpretations of the same abstract program,
which makes it possible to generate both AVX2 and AVX512 vectorized FFT
code from a single, abstract FFT program.

While the approach and the language used are both high-level, that does
not mean we would lose low-level control necessary for the optimal performance.
We show that it is possible to reason and program at very low-level, involving
delicate arithmetic or vector shu�ing, for example. A clean separation between
high- and low-level layers is the key to the generality and reusability of our
framework.

4.1 Abstract de�nition of the FFT innermost loop

We begin by translating the pseudocode of bottom up, in-place FFT in Algorithm
1 into our DSL. This is a description of the innermost loop using primitives
de�ned in our DSL.

for_ (int_ 0) m_half (int_ 1) (fun j ->

let index = k %+ j in

let omega = arr_get prim_root_powers (coeff_begin %+ j) in

let2

(D.mul (arr_get input (index %+ m_half)) omega)

(arr_get input index)

(fun t u ->

seq

(arr_set input index (D.add u t))

(arr_set input (index %+ m_half) (D.sub u t))))

let2 V1 V2 (fun t u -> V3) is an syntax sugar for a doubly-nested let bind-
ing: let t = V1 in let u = V2 in V3. The variable prim_root_powers stores
precomputed twiddle factors in an array. An array and operations on it are also
abstracted using the following signature:

module type Array_lang = sig

include C_lang

type 'a arr = 'a array

val arr_init: int -> (int -> 'a expr) -> 'a arr expr

val arr_get: 'a arr expr -> int expr -> 'a expr



val arr_set: 'a arr expr -> int expr -> 'a expr -> unit stmt

end

Unlike previous implementations where constants are precomputed o�ine and
embedded in the source code without further information, we compute constants
at code generation time, in OCaml (not shown). Therefore, our OCaml source
code tells exactly how all constants are precomputed.

The domain our FFT will operate on, which in our case is always integers
modulo q, is abstracted with the following signature. This is not strictly necessary
in the context of this work, but this abstraction increases the reusability of
our FFT program: For example, by implementing this signature for complex
numbers, we would obtain a standard complex valued FFT implementation from
the same FFT program.

module type Domain = sig

type 'a expr type t

val lift: t -> t expr

val add: t expr -> t expr -> t expr

val sub: t expr -> t expr -> t expr

val mul: t expr -> t expr -> t expr

end

4.2 Vectorizing modular reductions

Our goal is to vectorize the innermost loop. The �rst challenge we need to
address is the vectorization of Barrett and Montgomery reductions [3,16]. Even
though the FFT program itself is generic with respect to the choice of parameters
and the data type of inputs and outputs, instantiating the implementation of
modular reductions requires choosing them ahead of time. We follow the setting
of NewHope reference implementation: The input size n is 1024, the modulus
parameter q is 12289, and inputs and outputs are arrays of unsigned 16 bit
integers whose values �t in 14 bits.

Below is the implementation of Barrett and Montgomery reductions from
the NewHope reference implementation, modi�ed slightly for our exposition.
The code does not fully reduce modulo q: the output is correct as long as the
output from reduction �ts in 14 bits [2].

static const uint32_t rlog = 18;

static const uint32_t R = 1 << rlog;

uint16_t barrett_reduce(uint16_t a) {

uint32_t u = ((uint32_t) a * 5) >> 16;

return a - (uint16_t)(u * PARAM_Q);

}



uint16_t montgomery_multiply_reduce(uint16_t x, uint16_t twiddle) {

uint32_t a = ((uint32_t)x * (uint32_t)twiddle) & (R - 1);

uint32_t u = (a * PARAM_Q_INV) & (R - 1);

return (a + u * PARAM_Q) >> rlog;

}

Suppose that the size of a vector register is 256 bit, so that we can pack
16 unsigned 16 bit integer into one vector register. Since the scalar code uses
32 bit arithmetic, a direct vectorization of these routines requires extracting 8
32 bit values from a 16 element vector, do 8-way 32 bit integer arithmetic, and
packing reduced 16 bit values back into an output 16 element register. This is
highly ine�cient, and not surprisingly the optimized assembly implementation of
NewHope uses �oating-point SIMD instructions to compute reduction by a mod

q = a−
⌊
a 1
q

⌋
q.

An idea for e�cient vectorization of modular reduction using 16 bit integer
SIMD instructions was introduced in [19]. The key observation is that 32 bit value
is introduced as a result of multiplying two 16 bit integers, and the multiplication
is always followed by division or modulo by a power of two. For example, the
�rst multiplication in Barrett reduction is immediately followed by a right shift
of 16. Since we immediately discard the lower 16 bits half of the product, we
only have to compute the upper 16 bits half of it. AVX has the mulhi instruction
for this purpose. Similarly, the second 32 bit multiplication can be replaced by
mullo instruction, since the cast to 16 bit discards the upper 16 bits half of the
product.

The case for Montgomery reduction is not as straightforward, since NewHope
uses the constant R = 218 as the divisor. Naively replacing 18 by 16 leads to an
incorrect result, because the result of reduction is not guaranteed to �t in 14 bits
if we right shift a 32 bit value by 16. Fortunately, one conditional subtraction
by q is enough to make the output of the reduction �t in 14 bits. Using R = 216,
we can replace the two occurrences of the multiplication followed by modulo R
(& (R - 1) in the code) by 16 bit mullo instruction.

The last multiplication by q is not followed by either division or modulo by
R, so it seems we cannot replace this 32 bit multiplication by either 16 bit mulhi
or mullo instructions. Here, we can exploit a property of Montgomery reduction:
The result of the last addition is guaranteed to be divisible by R. Since we can
make R to be 216, this means that low 16 bits half of the addition result is 0.
This suggests the possibility to multiply only the high 16 bits half just before
the addition, and do the addition of the high 16 bits. To realize this, we need to
take care of a carry bit from the lower 16 bits half addition that we are going
to omit. We can determine if a carry is necessary by examining the lower 16
bits half of the left hand side of the addition (a in the code). If it is zero, there
is no carry. Otherwise, there must be a carry into the 17-th bit because of the
requirement that lower 16 bits half is zero after addition. In the latter case, we
need to explicitly add a carry bit after the last addition.



Based on the above reasoning, we declare a DSL signature necessary to im-
plement vectorized reductions as follows:

module type SIMD_Instr = sig

val broadcast: t -> (t, n) vec expr

val add: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val sub: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val mullo: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val mulhi: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val bitwise_and: (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val shift_right_a: (t, n) vec expr -> int -> (t, n) vec expr

val not_zero: (t, n) vec expr -> (t, n) vec expr

module Infix: sig

val (%+): (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

val (%-): (t, n) vec expr -> (t, n) vec expr -> (t, n) vec expr

end

end

(t, n) vec is a type of a length n vector whose element type is t, but the
details are not important. not_zero takes a vector and return 0x0000 or 0x0001
for each element depending on whether or not the input element is not zero.
shift_right_a does an arithmetic right shift and it is used to implement the
constant time conditional subtraction csub (not shown) [19].

Using the primitives above, we can implement vectorized reductions as fol-
lows. The �nal line in vmul (for Montgomery modular multiplication) does the
conditional subtraction, to ensure that the result of modular multiplication �ts
in 14 bits as required by our speci�cation.

func "barrett_reduce" in_ty (fun v ->

let vec_5 = broadcast 5 in

let v_1 = mulhi v vec_5 in

let vec_q = broadcast Param.q in

return_ (v %- (mullo v_1 vec_q)))

func2 "vmul" in_ty in_ty (fun v1 v2 ->

let_ (mullo v1 v2) (fun mlo ->

let_ (mulhi v1 v2) (fun mhi ->

let_ (broadcast Param.q) (fun vec_q ->

let_ (broadcast Param.qinv) (fun vec_qinv ->

let_ (mullo mlo vec_qinv) (fun mlo_qinv ->

let_ (mulhi mlo_qinv vec_q) (fun t ->

let_ (not_zero mlo) (fun carry ->

let_ (mhi %+ t %+ carry) (fun res ->

return_ (app csub res))))))))))

Here is the generated vectorized Barrett reduction and Montgomery modular
multiplication, using the AVX2 instruction set.



__m256i barrett_reduce(__m256i arg0) {

return _mm256_sub_epi16(

arg0, _mm256_mullo_epi16(_mm256_mulhi_epu16(arg0,

_mm256_set1_epi16(5)),

_mm256_set1_epi16(12289)));

}

__m256i vmul(__m256i arg0, __m256i arg1) {

__m256i v_19 = _mm256_mullo_epi16(arg0, arg1);

__m256i v_20 = _mm256_mulhi_epu16(arg0, arg1);

__m256i v_21 = _mm256_set1_epi16(12289);

__m256i v_22 = _mm256_set1_epi16(12287);

__m256i v_23 = _mm256_mullo_epi16(v_19, v_22);

__m256i v_24 = _mm256_mulhi_epu16(v_23, v_21);

__m256i v_25 = _mm256_add_epi16(

_mm256_cmpeq_epi16(v_19, _mm256_set1_epi16(0)),

_mm256_set1_epi16(1));

__m256i v_26 = _mm256_add_epi16(_mm256_add_epi16(v_20, v_24), v_25);

return csub(v_26);

}

Note that the optimizations in this section is generic with respect to the choice
of instruction sets. Indeed, we can generate AVX512 code by changing only the
last part of code generation (see Section 4.6).

4.3 Subtraction

Since we use unsigned arithmetic following the reference implementation of
NewHope, we need to be careful with the subtraction in the butter�y operation.
To prevent an unsigned under�ow, we need to add a su�ciently large multiple of
q, which we call the bias, to the left hand side of the subtraction. The reference
implementation of NewHope �rst casts the left-hand side to 32 bit and adds 3q.
However, we would like to avoid the cast to 32 bit, because we want to vectorize
with 16 bit arithmetic. Since 3q = 36867 > 215, and the left hand side of the
subtraction can be 15 bit because of the lazy reduction explained later, naively
adding 3q, using 16 bit arithmetic, could lead to an over�ow. Therefore, a more
careful analysis is needed to allow 16 bit vectorized arithmetic without a concern
for over�ow or unsigned under�ow.

The right hand side of the subtraction is always the result of a modular
multiplication, which is guaranteed to �t in 14 bit. Therefore, the bias needs to
be bigger than the maximum of a 14 bit unsigned integer, 214− 1. Since the left
hand side can be 15 bit, the bias needs to �t in 15 bits to avoid over�ow in the
addition using 16 bit arithmetic. The above considerations leads to the choice of
2q = 24578 as the bias, since 214 − 1 < 24578 < 215 − 1.

The result of the bias addition followed by subtraction in general requires 16
bits. However, the result of a modular subtraction needs to be either 14 or 15
bit, following the speci�cation we adopted from NewHope. We chose to reduce



the result of the subtraction to 14 bits via one Barrett reduction. This means
that the lazy reduction will not be concerned with the result of the subtraction
in the butter�y operation.

This is the implementation of the vectorized modular subtraction in our DSL.
Generated AVX2 code is shown below.

func2 "vsub" in_ty in_ty (fun v1 v2 ->

let bias = broadcast (Param.q * 2) in

return_ (app barrett_reduce ((v1 %+ bias) %- v2)))

__m256i vsub(__m256i arg0, __m256i arg1) {

return barrett_reduce(

_mm256_sub_epi16(_mm256_add_epi16(arg0, _mm256_set1_epi16(24578)),

arg1));

}

We also de�ne a vectorized addition vadd, whose implementation is omitted
because it is simply a wrapper around add (%+ in the in�x notation).

4.4 Vectorizing the innermost loop

Having decided all the ingredients necessary to vectorize the butter�y operation,
we can now discuss how we vectorize the innermost loop.

Since the number of iterations in the innermost loop is di�erent for each stage,
vectorization needs to be done carefully. Suppose that the width of a vector is 16.
When the input size is 1024, as in NewHope, the number of iterations becomes
greater or equal to 16 after the �fth stage. Therefore, for stages after the �fth
stage, vectorization can be done by just adding one line, thanks to Vectorize

module introduced in the section 3.2.

let open Vectorize(V_lang) in

for_ (int_ 0) m_half (int_ 1) (fun j ->

...

Here is an example of the generated AVX2 code, for the �fth stage. Note the
use of vadd, vsub, and vmul introduced earlier.

for (int v_90 = 0; v_90 < ((16 - 0) / 16); v_90 += 1) {

__m256i v_99 =

vmul(_mm256_loadu_si256(

(__m256i *)(arg0 + ((v_89 + (0 + (v_90 * 16))) + 16))),

_mm256_loadu_si256((__m256i *)(v_9 + (64 + (0 + (v_90 * 16))))));

__m256i v_100 =

_mm256_loadu_si256((__m256i *)(arg0 + (v_89 + (0 + (v_90 * 16)))));

_mm256_storeu_si256((__m256i *)(arg0 + (v_89 + (0 + (v_90 * 16)))),



vadd(v_100, v_99));

_mm256_storeu_si256((__m256i *)(arg0 + ((v_89 + (0 + (v_90 * 16))) + 16)),

vsub(v_100, v_99));

}

Vectorizing the earlier stages is more di�cult, since the number of iterations
of the loop we want to vectorize is less than the vector width. The situation and
the idea for the solution are illustrated in Fig.1, for the case where the vector
width is 4. Two butter�y operations on four neighboring elements on the left
corresponds to one innermost loop. Since the top two and bottom two elements
undergo di�erent operations, we cannot apply vectorization to the four-element
group. The key to enable vectorization is to operate on two neighboring four-
element groups at the same time. By shu�ing elements between two groups,
we can group elements that undergo the same operations into one vector. For
example, the blue elements are �rst multiplied by twiddle factors, and added and
subtracted with the red elements. By applying the same shu�ing to the result
of vectorized butter�y operations, we recover the expected results.

Fig. 1. Shu�ing elements between neighboring two vectors enables vectorization

Based on the observation above, we introduce the shuffle primitive in our
language. Since each stage requires di�erent shu�ing, this primitive takes an
integer representing the stage as its arguments. Given two vectors, it shu�es
elements between them and returns a new pair of vectors.

val shuffle: int -> t vec expr -> t vec expr -> (t vec expr * t vec expr)

Using the shuffle primitive, we can write the vectorized inner loop for ear-
lier stages as follows. vadd, vsub, and vmul are vectorized modular arithmetic
introduced earlier. vload, vstore are vector load and store respectively.

for_ zero (int_ n) (int_ (vec_len * 2)) (fun k ->

let_ (vload input k) (fun v0 ->

let_ (vload input (k %+ (int_ vec_len))) (fun v1 ->

let2_ (shuffle s v0 v1) (fun v_lo v_hi ->



let_ (vmul v_hi coeff) (fun v_mul ->

let_ (vadd v_lo v_mul) (fun tmp_add ->

let_ (vsub v_lo v_mul) (fun tmp_sub ->

let2_ (shuffle s tmp_add tmp_sub) (fun v0_res v1_res ->

seq

(vstore input k v0_res)

(vstore input (k %+ (int_ vec_len)) v1_res)))))))))))

By abstracting the details of di�erent shu�ing into the shuffle primitive,
we are able to write a generic vectorized inner loop that can be specialized to
each stage. Unlike the vectorization of the innermost loop for later stages where
we do not have to change the original sequential FFT program, the vectorization
for earlier stages required rewriting the innermost loop with explicit vectorized
primitives. Although it is not ideal in terms of program reuse, we believe that
the rewriting was necessary to enable low-level optimization involving shu�ing.
Our framework is �exible enough to accomodate both the trivial vectorization
via Vectorize module and the explicit vectorization using vectorized primitives.

4.5 Lazy reduction

The reference implementation of NewHope does not always reduce the result of
addition to 14 bits. Since the result of adding two 14 bit values �ts in 15 bits,
in the next stage we can do another addition of 15 bit values without causing
16 bit over�ow. Therefore, Barrett reduction is applied every other stage. This
is called lazy reduction [2].

In our implementation, the addition follows the same lazy approach as NewHope,
applying Barrett reduction every other stage. For subtraction, we always reduce
the result to 14 bits as explained earlier. The implementation detail of our lazy
reduction is in Appendix B.

4.6 SIMD Backend implementation

We have shown "vectorized" programs without specifying which SIMD instruc-
tion sets we use. At the lowest layer of abstraction in our framework, we need a
mapping between our primitives and concrete SIMD instructions.

For the AVX2 backend, we specify the mapping in the following way. The
AVX512 backend is entirely similar, modulo the names of instructions and the
vector length.

module AVX2_v16_Instr = struct

let vec_len = 16

let add = "_mm256_add_epi16"

let mullo = "_mm256_mullo_epi16"

let mulhi = "_mm256_mulhi_epi16"

...

end



We also need to specify the implementation of shu�e operations for earlier stages.
For the AVX2 backend, for example, we need to implement di�erent shu�e
operations for the stages between 1 and 4. See Appendix C for more details.

5 Experiments

We benchmarked our generated code against the optimized AVX2 implementa-
tion of NewHope. We used Clang version 11 with -O3 to compile our code. Each
implementation was run 100000 times on an input of size 1024 and we recorded
average cycles spent using perf_event feature in the Linux kernel. Furthermore,
we take the median of 100 average cycles measurements, since we observed some
variations in the average cycles count during our experiment.

The result on a desktop machine with Intel Co�ee Lake CPU is shown in Ta-
ble 1. The e�cient vectorization using only 16 bit integer instructions is the only
reason we were able to outperform NewHope: While we are able to pack four
times more elements into a one vector register5, NewHope uses more optimiza-
tions at the assembly level, such as merging multiple stages to compute as much
as possible inside registers [7,19]. In contrast, we compute intermediate outputs
stage by stage following the pseudocode in Algorithm 1 and overall our code is
much simpler and more readable than the NewHope assembly implementation.

Table 1. Cycle counts on Core i7-8700K (Co�ee Lake, AVX2)

Cycle counts Speedup over NewHope

NewHope 6903
Our AVX2 result 6099 1.132

AVX512 is becoming widely available in consumer laptops. Since our frame-
work can easily target AVX512 instructions from the same abstract de�nition
of FFT, we were able to generate an optimized AVX512 FFT implementation
without signi�cant e�ort after we completed the AVX2 one6. Table 2 shows
the benchmark result on a laptop with AVX512-capable Intel Ice Lake CPU.
AVX512 gave speedup of 23% over our AVX2 result.

Table 2. Cycle counts on Core i7-1065G7 (Ice Lake, AVX2 and AVX512)

Cycle counts Speedup over NewHope

NewHope 6082
Our AVX2 result 5398 1.127
Our AVX512 result 4381 1.388

5 Recall that NewHope uses double precision �oating-point instructions to compute
reductions.

6 Both of our AVX2 and AVX512 support code are less than 90 lines of OCaml.



The work on Kyber showed that their AVX2 forward NTT implementation,
tailored for the NewHope parameters (n = 1024, q = 12289), achieved 3.5x
speedup against the NewHope AVX2 implementation [19]. Based on results from
Table 1 and 2, our AVX2 implementation are expected to be signi�cantly slower
than Kyber. A direct comparison is not possible at the moment since the Ky-
ber implementation that works with the NewHope parameters is not publically
available and both we and Kyber implement optimizations that are speci�c to
respective choice of parameters (for example, Kyber does not apply any Bar-
rett reduction during the forward transform). It would be interesting to apply
our program-generation framework to a Kyber-based implementation: To do so,
we need to analyze the low-level optimizations of Kyber further and provide
high-level descriptions for them, which is left for future work.

6 Conclusion

We have proposed implementing optimized FFT for RLWE-based cryptography
via a program-generation approach. By separating the high-level description of
the FFT program from low-level details concerning arithmetic and vectoriza-
tion, we have achieved a reusable FFT program-generation framework. Gener-
ated code is also e�cient, outperforming the NewHope assembly implementation
by non-trivial factors using AVX2 and AVX512 instruction sets. Our implemen-
tation is available at https://github.com/masahi/iwsec21_ntt.

This work opens up several avenues for future work. For the code generation
aspect, we believe further speedup is possible: For example, while both existing
and our work use the simplest formulation of FFT using the radix 2 butter�y
exclusively, we are also interested in exploring the radix 4 or the split radix
variants which involve fewer multiplications than the dominant radix 2 case
[11,8]. Instantiating the implementation of Kyber FFT [19] in our framework or
adding new targets, such as ARM or RISC-V would also be interesting.

Finally, since the correctness of the code is of paramount importance in cryp-
tography in general, we would like to o�er some notion of correctness assurance.
One way is to automatically prove that our implementation does not have the
possibility of over�ow: As we have shown in Section 4.2 and 4.3, making sure and
be con�dent that our implementation of modular arithmetic is free from over-
�ow required very careful low-level reasoning. A promising direction has been
demonstrated in the recent work of Navas et al. [17]. We believe starting from
abstract high-level description of the program, as proposed in this work, opens
up many possibilities for such veri�cation e�ort.

Acknowledgement

We thank Tadanori Teruya for helpful discussion. Feedbacks from anonymous
reviewers helped improve this paper and are greatly appreciated. The second
author is supported in part by JSPS Grant-in-Aid for Scienti�c Research (B)
18H03218.

https://github.com/masahi/iwsec21_ntt


Appendix A Vectorize module

Vectorize module is used to generate vectorized code for trivially vectorizable
loops. It simply rede�nes the meaning of language primitives used in a sequential
program so that the same program can evaluated to vectorized loop code. It is
implemented as a OCaml functor, which is often used in the tagless-�nal style
to extend the meaning of existing DSL.

module Vectorize(Base_lang: Vector_lang): Vec

...

= struct

module D = struct

let add = Vec_D.vadd

...

end

let arr_get = Base_lang.vload

let arr_set = Base_lang.vstore

let vec_len = ...

let for_ lo hi _ body =

let num_loop = (hi %- lo) %/ (int_ vec_len) in

Base_lang.for_ (int_ 0) num_loop (int_ 1) (fun i ->

body (lo %+ (i %* (int_ vec_len))))

end

Appendix B Lazy reduction implementation

We implement lazy reduction again as a OCaml functor, extending the original
meanings of vadd and vsub to give semantics of lazy reduction. As explained in
Section 4.3, we allow the result of addition to stay in 15 bits and apply Barrett
reduction every other stage, while the result of subtraction is reduced to 14 bits
in every stage by Barrett reduction. We can implement such speci�cation for
lazy reduction as follows:

module Lazy_reduction(V: Vector_lang)(Stage: sig val s: int end) : Vector_lang

(* ... *)

struct

include V

module Vector_domain = struct

let vadd v0 v1 =

let res = V.Vector_domain.vadd v0 v1 in

if Stage.s mod 2 == 0 then barrett_reduce res

else res



let vsub = V.Vector_domain.vsub

end

end

This is used in our FFT code generator as follows. Lazy_reduction is in-
stantiated for each stage s, and by simply wrapping the original meanings of
vectorized primitives such as vadd and vsub de�ned in V_lang, the innermost
loop now executes with lazy reduction enabled. Note that we do not have to
change the code of the innermost loop at all. The tagless-�nal style allows such
extension in a highly modular manner.

let fft n =

...

let fft_stage s =

...

let module V_lang_lazy = Lazy_reduction(V_lang)(struct let s = s end) in

func fname input_ty (fun input ->

...

let open V_lang_lazy in

let open V_lang_lazy.Vector_domain in

...

Appendix C Details on SIMD backend implementation

This is the full mapping between language primitives used in vectorized reduc-
tions of Section 4.2 and corresponding AVX2 instructions.

module AVX2_v16_Instr : SIMD_str = struct

let add = "_mm256_add_epi16"

let sub = "_mm256_sub_epi16"

let mullo = "_mm256_mullo_epi16"

let mulhi = "_mm256_mulhi_epu16"

let broadcast = "_mm256_set1_epi16"

let shift_right_a = "_mm256_srai_epi16"

let bitwise_and = "_mm256_and_si256"

let not_zero v =

sprintf "_mm256_add_epi16(_mm256_cmpeq_epi16(%s, _mm256_set1_epi16(0)),

_mm256_set1_epi16(1))" v

end

not_zero primitive is implemented in a cumbersome way, since AVX instruction
returns 0xFFFF or 0x0000 for the result of comparison instructions, while we
need 0x0001 or 0x0000 to represent the presence or absence of the carry bit.
not_zero primitive hides such details speci�c to a particular ISA and provides
a straightforward interface to a programmer.



Shu�e operations can be implemented by shift, blend, unpack, and permute
instructions. The implementation using AVX2 is shown below. The AVX512
counterpart is entirely similar but uses di�erent instruction combinations to re-
alize desired permutations.

let shuffle1 v0 v1 =

let v1_left_shift = sprintf "_mm256_slli_epi32(%s, 16)" v1 in

let v0_right_shift = sprintf "_mm256_srli_epi32(%s, 16)" v0 in

let v_lo = sprintf "_mm256_blend_epi16(%s, %s, 0xAA)" v0 v1_left_shift in

let v_hi = sprintf "_mm256_blend_epi16(%s, %s, 0xAA)" v0_right_shift v1 in

v_lo, v_hi

let shuffle2 v0 v1 =

let v1_left_shift = sprintf "_mm256_slli_epi64(%s, 32)" v1 in

let v0_right_shift = sprintf "_mm256_srli_epi64(%s, 32)" v0 in

let v_lo = sprintf "_mm256_blend_epi32(%s, %s, 0xAA)" v0 v1_left_shift in

let v_hi = sprintf "_mm256_blend_epi32(%s, %s, 0xAA)" v0_right_shift v1 in

v_lo, v_hi

let shuffle3 v0 v1 =

let v_lo = sprintf "_mm256_unpacklo_epi64(%s, %s)" v0 v1 in

let v_hi = sprintf "_mm256_unpackhi_epi64(%s, %s)" v0 v1 in

v_lo, v_hi

let shuffle4 v0 v1 =

let v_lo = sprintf "_mm256_permute2x128_si256(%s, %s, 0x20)" v0 v1 in

let v_hi = sprintf "_mm256_permute2x128_si256(%s, %s, 0x31)" v0 v1 in

v_lo, v_hi

let shuffle n v0 v1 = match n with

| 1 -> shuffle1 v0 v1

| 2 -> shuffle2 v0 v1

| 3 -> shuffle3 v0 v1

| 4 -> shuffle4 v0 v1

| _ -> assert false

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) Topics in Cryptology
- CT-RSA 2016. pp. 341�356. Springer International Publishing, Cham (2016)

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange: A
new hope. In: Proceedings of the 25th USENIX Conference on Security Symposium.
p. 327�343. SEC'16, USENIX Association, USA (2016)

3. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Proceedings on Advances in
Cryptology�CRYPTO '86. p. 311�323. Springer-Verlag, Berlin, Heidelberg (1987)



4. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J., Schwabe,
P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-based kem.
pp. 353�367 (04 2018). https://doi.org/10.1109/EuroSP.2018.00032

5. Carette, J., Kiselyov, O., Shan, C.c.: Finally tagless, partially evaluated. In: Shao,
Z. (ed.) Programming Languages and Systems. pp. 222�238. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2007)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

7. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) Post-Quantum Cryptography. pp.
67�82. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

8. Johnson, S.G., Frigo, M.: A modi�ed split-radix FFT with fewer
arithmetic operations. Trans. Sig. Proc. 55(1), 111�119 (Jan 2007).
https://doi.org/10.1109/TSP.2006.882087

9. Kiselyov, O.: Typed Tagless Final Interpreters. Generic and Indexed Programming:
International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised
Lectures, pp. 130�174. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

10. Kiselyov, O.: Reconciling abstraction with high performance: A MetaO-
Caml approach. Found. Trends Program. Lang. 5(1), 1�101 (Jun 2018).
https://doi.org/10.1561/2500000038

11. Kiselyov, O., Taha, W.: Relating �tw and split-radix. In: Wu, Z., Chen, C., Guo,
M., Bu, J. (eds.) Embedded Software and Systems. pp. 488�493. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

12. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.11. https://caml.inria.fr/pub/docs/manual-ocaml/ (2020)

13. Liu, Z., Pöppelmann, T., Oder, T., Seo, H., Roy, S.S., Güneysu, T., Groÿschädl, J.,
Kim, H., Verbauwhede, I.: High-performance ideal lattice-based cryptography on
8-bit AVR microcontrollers. ACM Trans. Embed. Comput. Syst. 16(4) (Jul 2017).
https://doi.org/10.1145/3092951

14. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptology and
Network Security. pp. 124�139. Springer International Publishing, Cham (2016)

15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology � EUROCRYPT 2010. pp.
1�23. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

16. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519�521 (1985)

17. Navas, J.A., Dutertre, B., Mason, I.A.: Veri�cation of an optimized ntt algorithm.
In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) Software
Veri�cation. pp. 144�160. Springer International Publishing, Cham (2020)

18. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
ring-lwe cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hard-
ware and Embedded Systems � CHES 2014. pp. 371�391. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

19. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptol. ePrint Arch. 2018, 39 (2018)

https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/TSP.2006.882087
https://doi.org/10.1561/2500000038
https://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1145/3092951

	FFT Program Generation for Ring LWE-based Cryptography

