
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012
1355

PAPER Special Section on Formal Approach

Efficient Multi-Valued Bounded Model Checking for LTL over
Quasi-Boolean Algebras∗

Jefferson O. ANDRADE†a) and Yukiyoshi KAMEYAMA††b), Members

SUMMARY Multi-valued Model Checking extends classical, two-
valued model checking to multi-valued logic such as Quasi-Boolean logic.
The added expressivity is useful in dealing with such concepts as incom-
pleteness and uncertainty in target systems, while it comes with the cost
of time and space. Chechik and others proposed an efficient reduction
from multi-valued model checking problems to two-valued ones, but to the
authors’ knowledge, no study was done for multi-valued bounded model
checking. In this paper, we propose a novel, efficient algorithm for multi-
valued bounded model checking. A notable feature of our algorithm is
that it is not based on reduction of multi-values into two-values; instead, it
generates a single formula which represents multi-valuedness by a suitable
encoding, and asks a standard SAT solver to check its satisfiability. Our
experimental results show a significant improvement in the number of vari-
ables and clauses and also in execution time compared with the reduction-
based one.
key words: multi-valued model checking, bounded model checking, quasi-
boolean logic

1. Introduction

Model Checking is an automatic technique for verifying
temporal properties of finite transition systems [2]. Multi-
valued model checking extends it by using multi-valued
logic [3], [4] instead of two-valued one. Multi-valuedness
gives us a more natural way to express such concepts as
incompleteness, uncertainty, authenticity, capability, and
many others, and has been proved useful in various fields
of verification.

This extra expressivity, however, comes at the cost of
performance and/or space, and many researchers have inves-
tigated this problem. Among others, Chechik et al. [5] pro-
posed (1) an embedding of Quasi-Boolean algebra (Quasi-
Boolean logic) into Boolean algebra, and (2) Multi-valued
Decision Diagrams (MDD) as an extension of Binary De-
cision Diagrams (BDD) [6]. By combining them, they
obtained an efficient symbolic model checker for Quasi-
Boolean logics. Nakajima [7] applied their technique to ver-
ify a non-trivial real-world software specification.

This paper investigates Bounded Model Checking

Manuscript received July 18, 2011.
Manuscript revised November 13, 2011.
†The author is with the Department of Informatics, Campus

Serra, Federal Institute of Espı́rito Santo, Brazil.
††The author is with the Department of Computer Science, Uni-

versity of Tsukuba, Tsukuba-shi, 305–8573 Japan.
∗This paper is a revised and extended version of the paper pre-

sented at International Symposium on Automated Technology for
Verification and Analysis, October 20–23, 2008, Seoul, Korea [1].

a) E-mail: joandrade@ifes.edu.br
b) E-mail: kameyama@acm.org

DOI: 10.1587/transinf.E95.D.1355

(BMC) [8] for multi-valued logic. In particular, we propose
a novel algorithm for multi-valued BMC problems where
both models and specifications are defined over Quasi-
Boolean algebras.

The fundamental problem to build such an algorithm
is that the standard reduction method is quite inefficient,
where reduction means a way to represent a multi-valued
formula by many two-valued ones (which are called slices).
Intead of generating many slices, our algorithm generates a
single two-valued formula that represents these slices with
clever encoding. Based on our prototype implemenetation,
our algorithm shows a significant improvement in the num-
ber of variables and clauses and also in runtime compared
with reduction-based one.

The rest of this paper is organized as follows. Section 2
introduces a motivating example, and Sect. 3 introduces ba-
sic concepts. Section 4 describes our algorithms, and Sect. 5
shows our experiments with a prototype implementation. Fi-
nally, Sect. 6 provides our conclusion.

2. Example

As a motivating example, we introduce a simple message
relay system inspired by Nakajima’s example [7]. Figure 1
shows our model for the system, where IDLE etc. are states,
received=F etc. are the values of the variables in each
state. The model is similar to a Kripke structure, however

Fig. 1 A multi-valued model for a simple message relay system.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

1356
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

some transitions and values are annotated with an element
of Quasi-Boolean algebra such as T (true), S (should), N
(should not), and F (false). Unannotated transitions are as-
sumed to have T as its annotation.

Let us explain the model. Initially, the system is IDLE.
It can remain IDLE or transit to RECEIVING. After the mes-
sage has been RECEIVED, the system starts SENDING. Af-
ter transmission is completed, the system returns to IDLE.
The system should not present any DELAY on the transmis-
sion, but it is possible (not prohibited) that DELAY occurs in
exceptional situations. If there is a delay, the system should
eventually resume transmission, but we cannot say it must
resume transmission, since the environment may not allow
it. The system should not lose the received data, but it is
not impossible that an ERROR occurs. After data loss, the
system should return to IDLE.

We want to specify the following properties on this sys-
tem using Linear-time Temporal Logic (LTL):

1. All messages received must be sent eventually.
G(received→ F sent)

2. The system must always resume from an error.
G(error→ F(¬error ∧ ¬received ∧ ¬sent))

3. The system should not begin a transmission unless a
message has been received.
G((¬received ∧ ¬sent) ∨ F(received R ¬sent))

Note that the truth values of the formulas above may
be N or S, and therefore they are actually formulas of multi-
valued logic†.

The method in this paper allows one to verify these
properties even if the model is expressed over a Quasi-
Boolean Algebra.

3. Basic Definitions and Results

Classical model checking algorithms are defined for Kripke
structures and specifications written as temporal logic for-
mulas. In multi-valued model checking, Kripke structures
and temporal logic are extended so that the domain of truth
values is a multi-valued one. Fitting [3], [4] showed that
many of the desired properties in multi-valued logic are ob-
tained if the truth values form a complete lattice. In ad-
dition, to preserve the relationship between logic operators
and their meaning, we require the domain to satisfy the dis-
tributivity laws (for conjunction and disjunction) and De
Morgan’s laws (for complement). Boolean Algebra satis-
fies these conditions, but they are too restrictive for practi-
cal purposes. Quasi-Boolean Algebra is a minimal structure
that satisfies these conditions, and is widely used in various
areas which need multi-valued logic.

In this section, we review its definition and application
to multi-valued model checking.

3.1 Quasi-Boolean Algebra

A lattice L = 〈L,�〉 is a partially ordered set in which any
two elements x and y have a least upper bound (join, denoted

by x
 y), and a greatest lower bound (meet, denoted by
x�y). In this paper, we consider only finite lattices, namely,
the set L of elements should be finite. A finite lattice has
the greatest element (denoted by �) and the least element
(denoted by ⊥).

Alternatively, a lattice may be defined as an algebraic
structure with the underlying set L and operations � and
,
i.e., L = 〈L,�,
〉.
Definition 1 (Distributive Lattices). We say a lattice L =
〈L,�〉 is a distributive lattice iff the following properties hold
for all x, y, z ∈ L.

x � (y
 z) = (x � y)
 (x � z)
x
 (y � z) = (x
 y) � (x
 z)

Distributivity

It is easy to see that every finite distributive lattice is a
complete lattice, that is, the least upper bound and the great-
est lower bound for any set of elements exist.

Definition 2 (Quasi-Boolean Algebra). Given a finite dis-
tributive lattice L = 〈L,�,
〉, Quasi-Boolean algebra
(QBA) is a tuple QL = 〈L,�,
,¬〉, where ¬ is a unary oper-
ator called quasi-boolean complement for which the follow-
ing properties hold for all x, y ∈ L.

¬(x � y) = ¬x
 ¬y
¬(x
 y) = ¬x � ¬y

De Morgan laws

¬¬a = a Involution
x � y iff ¬y � ¬x Anti-monotonicity

Figure 2 shows some QBA of practical interest. Fig-
ure 2 (a) shows a 3-valued logic with truth values F (false),
U (unknown) and T (true), where the negation of U is U it-
self. Figure 2 (b) extends it to n+1 values with a total order.
Figures 2 (c) and 2 (d) are QBAs obtained by the products
L2 × L2 and L3 × L3, resp. Figure 2 (e) shows a QBA used
in the example of the previous section. It has six truth val-
ues T, F, N (“should not”), DK (“don’t know”), DC (“don’t
care”), and S (“should”). It is interesting to note that nega-
tion of S is N, while negation of DK is DK itself.

All Boolean Algebras (BA) are QBAs. Figure 2 (c) and
Fig. 2 (f) are Boolean algebras with 22 elements, and 23 ele-
ments, resp, called order-2 and order-3 Boolean Algebras.

Chechik et al. [5] embeds QBAs into BAs using the no-
tion of join-irreducible elements defined below.

Definition 3 (Join-Irreducible Element). Let Q = 〈L,�,

,¬〉 be a QBA. An element j of L is join-irreducible iff
j is not the least element ⊥, and for any a, b ∈ L, a
 b = j
implies a = j or b = j.

Definition 4 (Embedding of QBA). Let Q = 〈L,�,
,¬〉 be
a QBA, and JQ be the set of join-irreducible elements in Q.
The embedding em : L → 2JQ is defined by em(�) = { j ∈
JQ | j � �}.

†The multi-valued logic used here will be later shown in
Fig. 2 (e).

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
1357

(a) L3 (b) Ln+1

(c) L2,2 = L2 × L2 (d) L3,3 = L3 × L3

(e) Q6 (f) B3 = 〈2J3 ,⊆〉, J3 = {1, 2, 3}
Fig. 2 Examples of lattices of practical interest. The gray nodes denote
join-irreducible elements of each lattice.

For instance, in the 3-valued lattice L3, em maps F, U,
and T, to {} {U}, and {U,T}, resp.

The embedding em is injective, and preserves the
greatest and least elements, meet, and join where we regard
2JQ as a Boolean Algebra ordered by set inclusion. The em-
bedding is not necessarily surjective, and may not preserve
negation. For L3, negation of U is U, but the complement of
{U} in 2JQ is {�}, which is not in the image of em.

The embedding gives us a way of representing an el-
ement of QBA as a bit sequence. Let j1, . . . , jn be an enu-
meration of JQ (we fix the order of these elements.) We
represent � ∈ L by a bit-sequence of length n, where the
ith bit of the bit-sequence is 1 iff ji � �, for 1 ≤ i ≤ n. The
bit-sequence is written as, for instance, �110.

3.2 Multi-Valued Model Checking

To perform multi-valued model checking (mvMC) based on
QBA, we need to extend Kripke structures and LTL to their
multi-valued counterparts.

Let Q = 〈L,�,
,¬〉 be a QBA throughout this subsec-
tion. Multi-valued Kripke structures [3] extend 2-valued one
as follows.

Definition 5 (Multi-Valued Kripke Structure).
A multi-valued Kripke structure (mvKS) over Q is a tuple
M = 〈S ,I,R,AP,V〉 such that:

• S is a finite set of states.
• I : S → L gives the initial states.
• R : S × S → L gives the transition relation.
• AP is a finite set of atomic propositions.
• V : S ×AP → L is the valuation function for an atom

at a state.

Note that the codomain of I, R and V is L by which
multi-valuedness may be introduced. For instance, I(s0) =
U means that it is undefined (unspecified) that s0 is an initial
state or not. We say an mvKSM is total if (

⊔
s∈S I(s)) = �,

and, for all s ∈ S , (
⊔

s′∈S R(s, s′)) = �. Following [2],
[8], [9], we assume that every mvKS is total throughout the
present paper.

Definition 6 (Path). A path over a mvKS is a mapping π :
N → S where N is the set of natural numbers. The suffix π j

of a path π denotes the path such that π j(i) = π(i + j) for
i ≥ 0.

To express specifications of systems, we use mvLTL,
a multi-valued extension of Linear-time Temporal Logic,
which was first introduced in [10].

Definition 7 (Formulas of mvLTL). Given a mvKSM based
on a QBA Q, a formula in mvLTL is defined as follows:

φ, ψ ::= � | p | ¬φ | φ ∧ ψ | φ ∨ ψ | X φ | F φ | φ U ψ

where � ∈ L (an element of QBA), and p ∈ AP (an atomic
proposition inM).

We may introduce other temporal operators such as G
and R using X, F, and U.

Definition 8 (Semantics of mvLTL). LetM be a mvKS over
Q as before, π be a path onM, and φ be a mvLTL formula.
We define the interpretation of φw.r.t. π inM (written π |= φ)
as an element of Q as follows:

π |= � def
= � for � ∈ L

π |= p
def
= V(π(0), p) for p ∈ AP

π |= ¬φ def
= ¬(π |= φ)

π |= φ ∧ ψ def
= (π |= φ) � (π |= ψ)

π |= φ ∨ ψ def
= (π |= φ)
 (π |= ψ)

π |= X φ
def
= π1 |= φ

π |= F φ
def
= (π |= φ)
 (π1 |= F φ)

π |= φ U ψ
def
= (π |= ψ)

(
(π |= φ) � (π1 |= φ U ψ)

)

Note that the interpretation does not necessarily give
a boolean value to each mvLTL formula. Rather, it gives a
truth value as an element of Q, as indicated by the use of �
and
 in the right-hand side of the definition.

The interpretation above is a straightforward extension
of the standard, boolean semantics of LTL formulas except
one point: the “definition” for F and U may be circular when
π1 is identical to π. This circularity can be easily avoided by

1358
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

using the least fixpoint†, since the right-hand sides of the
“definitions” are monotone, and the least fixpoints exist for
any set of elements, as our domain is a complete lattice.

A counter-intuitive fact about the QBA-based multi-
valued logic is that logical equivalence is not the same as
equality. As an example, in the three-valued logic L3, the
value of U↔ U (under the standard definition of↔ in terms
of
 etc.) is not T, but U.

We define the semantics of a mvLTL formula φ w.r.t.
M by:

M |= φ def
=

�

π∈N→S

(¬W(π)
 (π |= φ))

whereW is defined by:

W(π)
def
= I(π(0)) � (

�

i≥0

R(π(i), π(i + 1)))

W(π) is the “weight” of the path π, which represents the de-
gree of “being a path inM”. In the definition, we explicitly
take the greatest lower bound.

Finally we state the Multi-Valued Model Checking
problem.

Definition 9 (mvMC problem). The multi-valued model
checking problem is to decide if (M |= φ) = � holds. If
it holds, we say that φ is valid inM.

It immediately follows that, to check the validity of
φ, we only have to check if there exists a path π (a coun-
terexample of φ) such that the value of (¬W(π))
 (π |= φ)
is not �. By taking negation of both sides, we check if
W(π) � (π |= ¬φ) is not ⊥. The last check can be done
using the bit-sequence representation of QBA elements ex-
plained earlier; we only have to check if there is 1 in the bit
sequence, which can be represented by disjunction of all the
bits.

In the next section, we present an algorithm to perform
such a check in the context of bounded model checking.

3.3 Generalized Queries

In some applications, we need to check, for � ∈ L, a more
general form (M |= φ) � �. For instance, the specification
G(received → F sent) of the example in Sect. 2 does not
always hold since the transmission may be delayed infinitely
in some exceptional case. However, the specification should
hold for normal cases, and we would like, then, to check if:

(M |= G(received→ F sent)) � S

We can cope with the generalized form as follows. A
counterexample of the query (M |= φ) � � is a path π such
that

(W(π) � (π |= ¬φ)) � ¬�
It is easy to check if a certain value v is not equal to or
smaller than ¬�. For instance, suppose the underlying QBA

is embedded into order-5 BA (with 25 elements), and ¬� is
mapped to the bit sequence �10100 by this embedding. To
check v � ¬�, we only have to check if at least one of the
2nd, 4th and 5th bits of v is 1, which can be represented by
disjunction.

In summary, we can cope with the generalized queries
with no extra cost, and hence we will ignore the generalized
queries in the subsequent sections.

4. Algorithms

This section discusses several possible algorithms for multi-
valued bounded model checking, and present our algorithm.

4.1 Review of Classical Bounded Model Checking

Figure 3 illustrates the process of classical Bounded Model
Checking.

The process can be rephrased in words as follows.

1. Given a Kripke structure, an LTL formula φ, and a
bound k > 0, it generates a propositional formula f
(with state variables x0, x1, . . . , xk) which expresses a k-
bounded model of ¬φ. More precisely, f (x0, x1, . . . , xk)
holds if and only if x0, x1, . . . , xk is either a finite path
or a looping path such that ¬φ holds along this path.

2. The formula f is converted to a conjunctive normal
form (CNF) since most SAT solvers accept CNF only.

3. Finally a SAT solver decides if the CNF is satisfiable
or not. If it is satisfiable, there is a counterexample
of length k. Otherwise, k is incremented and the same
procedure is repeated.

We have to iterate this process only finitely many times,
up to the completeness threshold: if there is no counterex-
ample until then, we can conclude that the given specifica-
tion is verified [11].

4.2 Overview of Multi-Valued BMC

The goal of the algorithms is to encode a multi-valued
bounded model checking problem as a boolean satisfiabil-
ity problem, which can be solved by the state-of-the-art

Fig. 3 Diagram for classical Bounded Model Checking.

†If we directly define the semantics of G, we should use the
greatest fixpoint.

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
1359

SAT solver. We must convert multi-valued entities (mod-
els and formulas) to two-valued ones at some point of our
algorithm, and the embedding of QBA into BA in the previ-
ous section makes such a conversion possible. The question
is when we convert multi-valued ones to two-valued ones,
and we have several possibilities as follows. (They are illus-
trated in Fig. 4.)

1. Naı̈ve algorithm — route 1 → 3 → 6 → 7 — This
method converts the mvKS and mvLTL specification to
n 2-valued ones, and then solves the corresponding n
instances of 2-valued BMC problems separately. This
method is the easiest way, but is applicable only when
the QBA is a BA, in which case each bit in the bit se-
quence has no dependency.

2. Reduction-based algorithm — route 2 → 4 → 6 → 7
— This method encodes the mvBMC problem as a
multi-valued propositional formula θ and then reduces
the formula θ to n 2-valued propositional formulas rep-
resenting each bit of θ. We then take the conjunction
of the n 2v-propositional formulas as the translation of
the original mvBMC model and proceed with the BMC
procedure as we would do in classical BMC. This ap-
proach was investigated for multi-valued boolean logic
in [10] where we reported results of some experiments.

3. Direct algorithm — route 2 → 5 → 7 — This method
is similar to the reduction-based one, except that it does
not actually convert (or reduce) QBA to BA, which
takes time and space. Rather, we generate a single
formula which represents the conversion, and the size
of the generated formula has comparative length as the
formula for each bit, rather than the conjunction of all

Fig. 4 The possible paths to the mvBMC depicted as an extended
flowchart diagram. Q is a QBA, M is the given model, φ is the mvLTL
specification to verify and k is the bound. The numbers in the processes are
for identification purpose only.

such formulas.

There is yet another possible algorithm; we translate
the encoded mvBMC problem (i.e. θ) to a multi-valued
clause form, mvCNF, and then pass it to a multi-valued SAT
solver such as CAMA [12] and CMV-SAT-1 [13]. However,
these multi-valued SAT solvers rely on the assumption that
the set of logic values is totally ordered, which is not gen-
erally the case for QBA. Therefore, we do not consider this
algorithm in this paper.

Naı̈ve conversion was studied in the context of multi-
valued CTL symbolic model checking [10], [14], but it is
much less efficient than the others, and therefore we con-
centrate on the reduction-based and direct algorithms.

We note that while the embedding of QBA to BA does
not preserve negation, it is not a problem in our develop-
ment, since we first convert, using De Morgan laws, every
multi-valued formulas to the formulas in Negation Normal
Form (NNF), in which negation may appear only in front of
atomic propositions. This point will be explained later.

Both algorithms for mvBMC, reduction-based and di-
rect, share the first step, step 2 in Fig. 4, also referenced
as bounded model generation. Our algorithm for bounded
model generation is an extension of the 2-valued case [8]
and is the same one that we previously published for BA [1].

To illustrate the general idea of the bounded model gen-
eration algorithm we present a simple example of its appli-
cation below.

Example 1. Let M be the model presented in Fig. 1, over
the logic Q6, the bound k = 2 and also let the negation of the
specification, already in NNF, be ψ = Fsent. We represent
the transition relation of the model M by R(xi, x j)†. So,
following the definitions given in [1], the bounded model
generation outputs the following multi-valued formula:

[[M, ψ]]2 = [[M]]2 ∧ [[Fsent]]2 (1)

[[M]]2 = I′(x0) ∧
1∧

i=0

R′(xi, xi+1)

= I′(x0) ∧ R′(x0, x1) ∧ R′(x1, x2) (2)

[[Fsent]]2 =

⎛⎜⎜⎜⎜⎜⎜⎝¬
⎛⎜⎜⎜⎜⎜⎜⎝

2∨
l=0

R′(x2, xl)

⎞⎟⎟⎟⎟⎟⎟⎠ ∧ [[Fsent]]0
2

⎞⎟⎟⎟⎟⎟⎟⎠

∨
⎛⎜⎜⎜⎜⎜⎜⎝

2∨
l=0

(
R′(x2, xl) ∧ l[[Fsent]]0

2

)⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝¬
⎛⎜⎜⎜⎜⎜⎜⎝

2∨
l=0

R′(x2, xl)

⎞⎟⎟⎟⎟⎟⎟⎠ ∧
⎛⎜⎜⎜⎜⎜⎜⎝

2∨
j=0

sent j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

∨
⎛⎜⎜⎜⎜⎜⎜⎝

2∨
l=0

⎛⎜⎜⎜⎜⎜⎜⎝R′(x2, xl) ∧
2∨

j=0

sent j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (3)

In the above set of equations, I′ and R′ are mv-
propositional formulas that encode the set of initial states

†Due to space constraints, we do not unroll the transition rela-
tion.

1360
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

and the transition relation of model M resp. Equation (1)
is the general form of the encoding for the bounded model
checking problem. Equation (2) is the encoding for the
model and its transition relation. Equation (3) is the encod-
ing for the given specification. We used sent j as a shorthand
forV′(x j, sent), i.e., the valuation of the atomic proposition
sent in the state x j.

We have not specified how we represent I′, R′, and
V′, which depends on how we encode state variables
x0, x1, · · · , xk. For this, we take a simple method that en-
codes each state by a binary encoding as follows: let m be
the smallest integer not smaller than log2 |S | (where |S | is the
number of states). We introduce two-valued propositional
variables y0, y1, · · · , ym−1, and represent each state by con-
junction of positive or negative literals for these variables.
For instance, the state 3 is represented by y0 ∧ y1 ∧ ¬y2 ∧
· · · ∧ ¬ym−1. There are more efficient ways for this encoding
in the case of the two-valued BMC, for instance, represent-
ing a state by a conjunction of atomic propositions. How-
ever, it may not work for some multi-valued models, so we
take this simple encoding. In summary, the formula output
by BMC generation contains two-valued propositional vari-
ables y0, y1, · · · , ym−1, which we also call state variables.

4.3 Reduction-Based Algorithm

The Reduction-based Algorithm takes the route 2 → 4 →
6→ 7 in Fig. 4 and we explain steps 4 and 6 in this section.

Algorithm 1 shows a top-level description of the
reduction-based mvBMC procedure. The call to function
boundedModel, generates a multi-valued propositional for-
mula which expresses a bounded model of length k. It
slightly extends the classical algorithm in the literature [8]
for two-valued bounded model checking. The resulting for-
mula [[M,¬φ]]k contains state variables x0, x1, . . . , xk, and
expresses that x0, x1, . . . , xk forms a counterexample of the
given specification. We have proved that our mvBMC algo-
rithm is correct for an arbitrary finite Boolean algebra [10].

Algorithm 1 Reduction-based mvBMC
1: function redMvBmc(Q,M,φ,k)
2: k′ ← 0
3: while k′ < k do
4: k′ ← k′ + 1
5: ψ← nnf(¬φ)
6: θ ← boundedModel(Q,M, ψ, k′)
7: n← |JQ|
8: θ′ ← ∨n

i=0 θ
(i) � θ′ is a 2v-prop. formula.

9: cnf← boolToCnf(θ′)
10: S ← satSolver(cnf)
11: if S � ∅ then � Found a counterexample.
12: return 〈false, S 〉
13: end if
14: end while
15: return 〈true, ∅〉 � Property φ holds.
16: end function

4.3.1 Reduce mv-Prop Formula to n 2v-Prop Formulas
(Step 4)

Line 8 is central in Algorithm 1, since it is where the reduc-
tion from mv-propositional to 2v-propositional is performed.
Each formula θ(i) represents one bit (or one layer) of the
original mv-formula, i.e., the mv-formula θ being reduced
with respect to a single join-irreducible element of Q.

The process of obtaining θ(i) is not straightforward as
in the BA case [10], since the embedding does not preserve
negation. Table 1 shows an example for the negation in QBA
L3.

Since the variables in the formula we are treating are
two-valued variables only, we can take each slice (each bit)
of the formula as follows.

Definition 10 (mv-Propositional Slicing). Given an
mv-propositional formula θ over a QBA Q, we define the
2-valued propositional formula θ(i) inductively as follows:

For literals:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(i)
def
= bi(l)

(¬l)(i) def
= bi(¬l)

y(i) def
= y

(¬y)(i) def
= ¬y

For composite
formulas:

⎧⎪⎪⎨⎪⎪⎩ (◦ φ)(i) def
= ◦(φ(i))

(φ ◦ ψ)(i) def
= φ(i) ◦ ψ(i)

where y is a two-valued propositional variable (state vari-
able), bi : L → {0, 1} is a function that maps a lattice value
to its “bit” of order i, assuming a binary encoding for lattice
values. The symbol ◦ is used as a placeholder for logical
operators such as conjunction.

4.3.2 Convert 2v-Prop Formula to CNF (Step 6)

The call to boolToCnf in Algorithm 1 represents the conver-
sion from 2v-propositional to CNF. In order to generate as
small CNFs as possible, we apply the structure-preserving
CNF conversion [15] to share as many subformulas as pos-
sible.

Although sharing subformulas is performed in the last
step, the space-complexity of Reduction-based Algorithm is
not very good, since we generate n formulas corresponding
to n bits (which again corresponds to each join-irreducible
elements), and take the disjunction of them.

4.3.3 Correctness of Reduction-Based Algorithm

Theorem 1. The reduction-based algorithm is sound and
complete, namely, given a mvMC problem 〈Q,M, φ〉 and

Table 1 Bitmap representation of lattice values for QBA L3 and their
respective negations.

Lattice Value Repr. Negation Neg. Repr.
F �00 T �11
U �10 U �10
T �11 F �00

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
1361

a bound k, the algorithm generates a counterexample of
length up to k if and only ifM |= φ has a counterexample of
length up to k.

Proof. The proof of this theorem consists of verification of
each part of the algorithm. Each step is rather straightfor-
ward and can be proved by simple reasoning, and thus omit-
ted.

�

It is easy to see that, even for Multi-Valued Model
Checking, there is a completeness threshold c in the sense
of [11], for instance, the “diameter” of mvKS can be such a
threshold. It follows that, by repeating the reduction-based
algorithm for k = 1, 2, · · · , c, we can verify the given speci-
fication.

4.4 Direct Algorithm

We now come to Direct Algorithm which we think is the
best among the algorithms. It takes route 2 → 5 → 7. In
this section we cover step 5.

The Direct Algorithm has been developed based on
Reduction-based Algorithm with one additional idea: rather
than generating all the sliced formulas, we introduce propo-
sitional variables to represent each slice (bit), and leave the
decision to the SAT solver, as to which slice must actually be
generated. Besides this point, Direct Algorithm is the same
as Reduction-based one; we use negQ(p, i) for negation of
atomic propositions, and we share as many sub-expressions
as possible during the CNF generation.

To understand the key idea, let us first see an example.

Example 2. Consider algebra B3 (Fig. 2 (f)). We introduce
two propositional variables q0 and q1 to represent each slice
number as a binary number. Actually we only have 3 slices
(one for each join-irreducible element of B3), so we will not
use all possible combinations of q0 and q1. For instance,
the 0th slice is (¬q0 ∧ ¬q1), the 1st is (q0 ∧ ¬q1) and so on†.
A lattice element �110 has the bit 1 in the 0th and 1st slices,
hence it is represented by (¬q0∧¬q1)∨ (q0∧¬q1), or simply
¬q1. Then an mv-formula (x = s0) ∧ �110 is represented
by (x = s0) ∧ ¬q1. This translation increases the size of
the resulting formula, compared to the original mv-formula,
much less than the Reduction-based algorithm does.

Note that the CNF generation is done without any re-
duction from mv-propositional formulas to 2-valued ones.

4.4.1 Convert mv-Prop Formula to CNF (Step 5)

A high level description of our approach to mvBMC is pre-
sented in Algorithm 2. This algorithm differs from the
reduction-based one in the call to function mvPropToCnf,
which converts a multi-valued propositional formula to a 2-
valued CNF, which is key to the algorithm’s efficiency and
is described in Definition 12.

Algorithm 2 Direct Algorithm for mvBMC
1: function mvbmc(Q,M,φ,k)
2: k′ ← 0
3: while k′ < k do
4: k′ ← k′ + 1
5: ψ← nnf(¬φ)
6: θ ← boundedModel(Q,M, ψ, k′)
7: cnf← mvPropToCnf(Q, θ)
8: S ← satSolver(cnf)
9: if S � ∅ then � Found a counterexample.

10: return 〈false, S 〉
11: end if
12: end while
13: return 〈true, ∅〉 � Property φ holds.
14: end function

Definition 11 (Representation of Lattice Values).
For a QBA Q where n = |JQ|, let h = �log2(n)� and
q0, . . . , qh−1 be propositional variables.

• For a natural number i such that 0 ≤ i < n, we define
Qp(i) for 0 ≤ p < h by:

Qp(i) =

{
qp if the pth bit of i is 1
¬qp otherwise

and then R(i) is defined as Q0(i) ∧ · · · ∧ Qh−1(i). Note
that R(i) is the binary representation of i in terms of
q0, . . . , qh−1. For instance, if h = 5, then R(6) is ¬q0 ∧
q1∧q2∧¬q3∧¬q4, which is 00110 as a binary number.

• For an element � of Q, we define

Rep(�) =
∨

i∈Ones(�)

R(i)

where Ones(�) = {i | �’s ith bit is 1}.
It is possible to use circuit minimization techniques to

simplify the above representation††. Note also that, we need
only �log2(n)� propositional variables to represent the bits,
where n = |JQ|.
Definition 12 (Direct CNF Conversion). Let f be a multi-
valued propositional formula over a QBA Q, and h =
�log2(n)�, where n = |JQ|.

1. Generate h propositional variables q0, . . . , qh−1.
2. Replace any lattice element � in f by Rep(�).
3. If n < 2h, let f ′ be f ∧∧n≤i<2h ¬R(i). If n = 2h, let f ′

be f . (exclude spurious bits)
4. Apply the structure-preserving conversion to f ′.

4.4.2 Correctness of Direct Algorithm

The algorithm above is guaranteed to be correct [10]. For
simplicity we assume that n = 2h for some natural number
h where n = |JQ|.

†q0 corresponds to the least significant bit.
††Our prototype implements the Quine-McCluskey minimiza-

tion algorithm.

1362
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

Theorem 2. The direct algorithm is also sound and com-
plete.

Proof. We can prove this theorem by reducing it to the pre-
vious theorem as follows: Suppose Direct Algorithm gener-
ates the formula ψ in CNF. Then, by definition, for each i
less than n, the formula:

ψ ∧ Q0(i) ∧ Q1(i) ∧ · · · ∧ Qh−1(i)

is equivalent to the i-th sliced formula generated by
Reduction-based Algorithm. Hence, for some truth-
assignment for q0, q1, · · · , qh−1, ψ is satisfiable iff the dis-
junction of all the sliced formulas generated by Reduction-
based Algorithm is satisfiable. It follows that, sound-
ness and completeness of Reduction-based Algorithm imply
those of Direct Algorithm.

�

Since Direct Algorithm is designed as a refinement
of Reduction-based Algorithm, we can naturally expect the
former’s performance is better than the latter’s. We will con-
firm this observation in the next section.

5. Experiments and Discussion

We have built a prototype that implements both the
reduction-based algorithm and the direct algorithm in
Sect. 4. We implemented the prototype in the Scala pro-
gramming language over the Java Virtual Machine version
1.6. Algorithm 2 shows the direct mvBMC algorithm, and
Algorithm 1 shows the reduction-based version. Note that
not only CNFs but also the representation of lattice ele-
ments are cached and shared, hence they are processed only
once. For SAT solving, we used SAT4J [16] as an embedded
SAT solver. We have executed the tests on a machine with
4.0 GiB of RAM and an Intel Core i5 M430 (2.27 GHz) pro-
cessor running Ubuntu Linux 10.04 operating system.

The models used in our experiments belong to four dif-
ferent groups.

1. Systems modeled after “real world” examples, taken
from the literature:

a. The coffee machine system (CMS) [17].
b. The message relay system (MRS) [7].

2. Systems that form a simple loop, that we called Ln sys-
tems. All Ln systems have exactly n states and n vari-
ables on each state. Figure 5 (a) shows the graphic rep-
resentation for the L4 system. Transitions are 2-valued,
with the truth values � or ⊥ only. The valuation func-
tion is given byV(si, x j) = tord(Q, i+ j), where tord is
a selection function that obeys an arbitrary total order
over the elements of Q. Then F xi is valid in this model
if |Q| ≥ n, and not valid otherwise, in which case there
exists a counterexample of length k ≤ |Q| − 1.

3. System that form a completed connected graph, i.e.,
where we have transitions from each state to all the
other states in the system, that we called Tn systems.

(a) Loop model L4.

(b) Total model T5.

Fig. 5 Example of the artificial test models used to collect statistics of
the prototype.

All Tn systems have exactly n variables on every state
and the weight of every transition is assigned according
to an arbitrary order from the QB algebra over which
the system is defined. Figure 5 (b) shows the T5 system.

The reason we introduced the artificial systems, Ln and
Tn, is that we needed models that could scale on a parameter.
As can be seem by their description the two artificial models
we presented are scalable in the parameter n what makes
possible to obtain the statistical data we needed.

We have run tests with both algorithms for a number of
Ln and Tn instances. Of course, due to space limitations we
can not show all these experimental results here, but we se-
lected one instance of each of these systems to illustrate their
behavior. Since we want to compare the two real world sys-
tems, CMS and MRS, with the two artificial ones we choose
instances L7 and T7 since their size is approximately equal
to the size of the coffee machine and message relay systems.

Figure 6 shows the evolution of the four selected sys-
tems number of CNF variables as a function of k for both
algorithms, and Fig. 7 shows the number of CNF clauses
also as a function of k. As can be seen, for all systems the
growth of the curves for the direct algorithm is much slower
than the growth for the reduction-based algorithm, with a
much more accentuated reduction for the number of CNF
clauses. We call attention to the fact that even if the reduc-
tion in the number of variables is approximately linear, the
absolute value of this reduction can be significant, with a
maximum of more than 104 variables for model MRS in the

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
1363

Fig. 6 Average number of CNF variables.

Fig. 7 Average number of CNF clauses.

data shown. Even more impressive was the reduction in the
number of CNF clauses. Where the maximum difference be-
tween the reduction-based and the direct algorithm reached
about 6.5 million clauses.

Maybe of greater interest is the behavior of both algo-
rithms regarding their running time. For that matter, since
the bounded model generation phase is common to both
algorithms, we concentrated on the CNF conversion time.
Figure 8 show the CNF conversion CPU time of the exam-
ple model for both algorithms. As can be seen, the runtime
evolution it is much less consistent than that of the number
of CNF variables or clauses, but it is still clearly visible that
the direct algorithm has a much lower runtime cost than the
reduction-based one. Possible explanations for the incon-
sistency of the evolution of the CNF conversion runtime are
the fact that the number of shared sub-expressions is not lin-
ear in k and the action of the garbage collector of the Java
Virtual Machine which we could not isolate during the col-
lection of data.

Figure 9 shows the SAT solver CPU running time for
the selected models. As we observed for CNF conversion,
the SAT solver running time does not express a consistent
behavior when compared to the number of CNF variables
or CNF clauses. This is a known issue and we do not elab-

Fig. 8 Average mv-prop→CNF conversion runtime.

Fig. 9 Average SAT solver runtime.

orate on the topic. What we do want to call attention for
is the fact that, regardless of the inconsistency of the SAT
solver runtime evolution, in all tested models, the running
time for the direct version of was much smaller than that for
the reduction based version.

Since our experiments are for relatively small models
and our implementation may be sub-optimal we cannot gen-
eralize this results at the moment. But we consider these
results very encouraging.

6. Conclusion

In this article we presented an extension of classical LTL
model-checking to reasoning with quasi-boolean algebras
and described the notion of multi-valued Kripke structures.
We also presented a translation of the LTL mvBMC problem
over quasi-boolean algebras to a SAT problem. We then pre-
sented two algorithms for LTL mvBMC based on this trans-
lation, namely the reduction-based algorithm and the direct
algorithm.

As part of our experiments we built a prototype that
implements both algorithms, and our experiments confirm
our claims that for the direct algorithm the number of CNF
variables and clauses generated by the translation is linear in

1364
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

the size of the problem instance. We also observed a signifi-
cant reduction in the runtime for the CNF conversion phase
in favor of the direct algorithm. This behavior is much more
efficient than the one presented by the reduction-based algo-
rithm in both runtime and space.

As for continuing our research, we expect the method
described here to be useful for dealing with model abstrac-
tion. Also in this line of research, we have already started
some theoretical work on the generalization of queries for
multi-valued bounded model checking. We foresee that this
generalization technique will also be useful in the context
of model abstraction, so we surely hope to conduct inves-
tigations in this area. One other path of future work is to
investigate the impact of optimization techniques known for
classical bounded model checking for the multi-valued case.

References

[1] J.O. Andrade and Y. Kameyama, “A direct algorithm for multi-
valued bounded model checking,” ATVA 2008: 6th International
Symposium on Automated Technology for Verification and Anal-
ysis, Lect. Notes Comput. Sci., pp.80–94, Springer-Verlag, 2008.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, The
MIT Press, 1999.

[3] M.C. Fitting, “Many-valued modal logics,” Fundamenta Informati-
cae, vol.XV, pp.235–254, 1991.

[4] M.C. Fitting, “Many-valued modal logics II,” Proc. LFCS’92,
Springer-Verlag, 1992.

[5] M. Chechik, B. Devereaux, S. Easterbrook, Y.C. Lai, and V.
Petrovykh, “Efficient multiple-valued model-checking using lattice
representations,” Lect. Notes Comput. Sci., vol.2154, pp.441–455,
2001.

[6] D.M. Miller, “Multiple-valued logic design tools,” Proc. 23rd
International Symposium on Multiple-Valued Logic, pp.2–11,
Sacramento, CA, USA, IEEE Computer Society, May 1993.

[7] S. Nakajima, “Behavioural analysis of component framework with
multi-valued transition system,” APSEC ’02, p.217, Washington,
DC, USA, IEEE Computer Society, 2002.

[8] A. Biere, E.M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” Design Automa-
tion Conference, pp.317–320, 1999.

[9] M. Chechik, B. Devereaux, S. Easterbrook, and A. Gurfinkel,
“Multi-valued symbolic model-checking,” ACM Trans. Softw. Eng.
Methodol., vol.2, no.4, pp.371–408, 2003.

[10] J.O. Andrade and Y. Kameyama, “An algorithm for bounded multi-
valued model checking,” Proc. 4th Symposium on Science and Tech-
nology for System Verification (DSW 2007), pp.11–20, Nagoya,
Japan, Japan Society for Software Science and Technology, 2007.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model check-
ing without BDDs,” TACAS’99, Lect. Notes Comput. Sci., vol.1579,
pp.193–207, 1999.

[12] C. Liu, A. Kuehlmann, and M.W. Moskewicz, “CAMA: A multi-
valued satisfiability solver,” Proc. 2003 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’03, pp.326–333,
Washington, DC, USA, IEEE Computer Society, 2003.

[13] S. Jain, E. O’Mahony, and M. Sellmann, “A complete multi-valued
SAT solver,” Proc. 16th International Conference on Principles and
Practice of Constraint Programming, CP’10, pp.281–296, Berlin,
Heidelberg, Springer-Verlag, 2010.

[14] A. Gurfinkel and M. Chechik, “Multi-valued model checking via
classical model checking,” CONCUR 2003 – Concurrency Theory,
14th International Conference, ed. R.M. Armadio and D. Lugiez,
Lect. Notes Comput. Sci., vol.2761, pp.263–277, Marseille, France,
Springer, Sept. 2003.

[15] D. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” J. Symbolic Computation, vol.2, pp.293–304, 1986.

[16] D. Le Berre and A. Parrain, “The SAT4J library, release 2.2,” JSAT
Journal on Satisfiability, Boolean Modeling and Computation, vol.7,
pp.59–64, 2010.

[17] M. Chechik, B. Devereaux, and S. Easterbrook, “Implementing
a multi-valued symbolic model checker,” TACAS’01, Lect. Notes
Comput. Sci., vol.2031, pp.404–419, Springer, 2001.

Jefferson O. Andrade received the Diploma
of Engineer in Computer Engineering and Mas-
ter of Informatics degrees from the Federal Uni-
versity of Espirito Santo, Brazil, in 1995 and
2001, resp. He is currently pursuing the Ph.D.
in Engineering at the Graduate School of Sys-
tems and Information Engineering in the Uni-
versity of Tsukuba. He worked with software
development companies in Brazil from 1995 to
2003 and he is a lecturer at the Federal Insti-
tute of Education, Science and Technology of

Espirito Santo since 2003. His research interests include formal methods
in software engineering, verification and validation of software and logical
methods in artificial intelligence. He is a member of ACM and SBC.

Yukiyoshi Kameyama received the B.Sc.
and M.Sc. degrees from the University of Tokyo
in 1985 and 1987, resp, and the Ph.D. degree
from Kyoto University in 1996. He worked as
a faculty at Tohoku University and Kyoto Uni-
versity from 1987 to 2001, and he is a professor
at the University of Tsukuba. His research in-
terests include programming logic and software
verification. He is a member of ACM, JSSST
and IPSJ.

