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Abstract. A CPS translation is a syntactic translation of programs, which is
useful for describing their operational behavior. By iterating the standard call-
by-value CPS translation, Danvy and Filinski discovered the CPS hierarchy and
proposed a family of control operators, shift and reset, that make it possible to
capture successive delimited continuations in a CPS hierarchy.

Although shift and reset have found their applications in several areas such as
partial evaluation, most studies in the literature have been devoted to the base level
of the hierarchy, namely, to level-1 shift and reset. In this article, we investigate
the whole family of shift and reset. We give a simple calculus with level-n shift and
level-n reset for an arbitrary n > 0. We then give a set of equational axioms for
them, and prove that these axioms are sound and complete with respect to the CPS
translation. The resulting set of axioms is concise and a natural extension of those
for level-1 shift and reset.

Keywords: CPS translation, control operator, delimited continuation, axiomati-
zation, type system

1. Introduction

A CPS translation transforms a source term into continuation-passing
style (CPS for short). It can be regarded as a compilation step, since
it makes explicit the evaluation order of the source program and gives
names to intermediate results. Another motivating fact for CPS is that
it makes it possible to represent various control mechanisms, such as
callcc in Scheme and Standard ML of New Jersey, that give program-
mers first-class continuations in the source language.

Logically, a CPS translation for the simply typed lambda calculus
is a double negation interpretation from classical logic into minimal
logic, or Friedman’s A-translation [17]. The control mechanisms added
to the source language can also be understood logically. For instance,
Griffin [18] has revealed the Curry-Howard correspondence between the
calculus with callcc and classical logic.

Danvy and Filinski [9, 10] have observed that there is room for a
more refined control mechanism. By repeatedly CPS translating the
answer type of the standard CPS translation, they obtained what they
call a CPS hierarchy. Furthermore, they have proposed a family of
∗ This article is a revised version of the paper presented at CSL’04, September,
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control operators shift and reset to abstract delimited continuations
in this hierarchy. In the literature, many different control operators for
delimited continuations have been proposed [12, 19, 20, 21]. In contrast
to these control operators, shift and reset are defined by the CPS
translation in a purely functional way. In addition, they have found
applications in partial evaluation [24], one-pass CPS translation [10],
and normalization by evaluation [7], as well as to represent layered
monads [15] and mobile computation [30].

In this article, we study a theoretical foundation of the control
operators in the CPS hierarchy. Specifically, we address the problem
of finding direct-style axioms for them. While these operators are used
in many applications and their semantics is given by a CPS translation
(be it iterated or extended), we often want to reason about source
programs directly, rather than about the image of a translation, since a
CPS translation is a global program transformation which significantly
changes the overall structure of source programs. Also finding a good
set of direct-style axioms could lead one to a better understanding of
these operators.

We give a simple set of axioms consisting of only three equations
for shift and two equations for reset, and then prove that this set of
equations is sound and complete with respect to the CPS translation.
This work builds on our previous work, in which we gave a sound
and complete axiomatization for level-1 shift and reset [23], and for
level-2 shift and reset [22]. Since completeness proofs of this kind often
require quite a lot of calculations, we make the proof more structured
by reconstructing Sabry’s proof method [28] in a type-theoretic setting.

Overview: The rest of this article is organized as follows. In Sec-
tion 2, we informally introduce shift and reset and we explain their
operational aspects. In Section 3 we formally introduce the calculi with
these control operators, and in Section 4, we give a CPS translation
for them as well as a type structure for the target calculus of the CPS
translation. In Section 5 we present the axioms for control operators
and develop useful equations from them. In Section 6, we give a direct-
style translation as an inverse of the CPS translation, and by using it
we prove soundness and completeness. In Section 7, we conclude and
mention future work.

Prerequisites: We assume that readers have some familiarity with
CPS translations.
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2. Control Operators in the CPS hierarchy

2.1. A Simple Example

The following example uses shift and reset in a simple way:

1 + 〈2 ∗ Sk. (3 + (k (k 4)))〉 = let k be λx.〈2 ∗ x〉
in 1 + 〈3 + (k (k 4))〉

= 1 + 〈3 + 〈2 ∗ 〈2 ∗ 4〉〉〉
= 20

where 〈 〉 is the reset operator and S is the shift operator, which binds
the variable k in the scope 3 + (k (k 4)). Unlike the continuation
captured by callcc, the continuation captured by shift is not the whole
rest of the computation (such as 1 + 〈2 ∗ [ ]〉), but the part which is
delimited by reset, that is, 〈2 ∗ [ ]〉. Also it is not abortive, and thus
we can compose the captured continuation with ordinary functions.
When several occurrences of reset enclose an occurrence of shift, the
(dynamically determined) nearest one is chosen as the delimiter.

As more substantial examples, we borrow the ones by Danvy and
Filinski [9].

2.2. Nondeterminism

A non-deterministic choice can be represented by backtracking in direct
style using shift and reset as follows:

flip(x)
def
= Sc. begin c(true); c(false); fail( ) end

fail(x)
def
= Sc. "no"

choice(n)
def
= if n < 1 then fail( )

else if flip( ) then choice(n− 1)
else n

where is an anonymous variable, true and false are truth values,
and begin· · · end is for sequencing.
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To understand the program, we CPS translate1 these three functions
as:

flip-c(x, k)
def
= begin k(true); k(false); fail-c( , k) end

fail-c(x, k)
def
= "no"

choice-c(n, k)
def
= if n < 1 then fail-c( , k)

else flip-c( , λy. if y then choice-c(n− 1, k)
else k(n))

Suppose display is a function for displaying values to the screen, and
consider the program 〈display(choice(3))〉. Its CPS translation (as
a program) is choice-c(3, display), which displays 1, 2 and 3. Thus,
shift captures the current continuation, which is composable with an
ordinary function. The control operator reset delimits the extent of the
captured evaluation context. Its role can be made clearer by comparing
the following two programs:

p1
def
= begin 〈display(choice(3))〉; display(10) end

p2
def
= 〈begin display(choice(3)); display(10) end〉

The program p1 is CPS translated to

begin choice-c(3, display); display(10) end

which, when executed, displays 1, 2, 3 and then 10. On the other hand,
the program p2 is CPS translated to

choice-c(3, λx.(begin display(x); display(10) end))

which, when executed, displays 1, 10, 2, 10, 3, and 10.

2.3. Collecting Successive Results

Consider now the function emit defined as follows, which is meant to
collect a series of answers:

emit(n)
def
= Sc. cons(n, c(nil))

where cons and nil are for lists. For instance,

〈begin emit(1); emit(2); emit(3); nil end〉
returns a list (1 2 3).

1 The definition of the CPS translation appears in a later section.
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It is then natural to expect that the combined program 〈emit(choice(3))〉
generates the list (1 2 3) of all non-deterministic choices. However it
does not, since the control operators in the two programs interfere. To
see this, let us CPS translate emit as:

emit-c(n, k)
def
= cons(n, k(nil))

The term 〈emit(choice(3))〉 is CPS translated into

choice-c(3, λx.emit-c(x, λx.x)),

which generates three lists (1), (2) and (3), but never collects these
answers.

A correct way of combining these programs is to make them layered.
The continuation captured in emit should be in a higher level than
that captured in choice. To achieve this, the CPS counterpart of emit
should be:

emit-c2(n, k, γ)
def
= cons(n, k(nil)γ)

where γ is a level-2 continuation, or a metacontinuation. Its direct-style
counterpart is:

emit-c1(n, k)
def
= k(Sc. cons(n, c(nil)))

which passes a continuation, even though it is not in CPS since the
argument of k is not a trivial term.2 Its direct-style counterpart is:

emit(n)
def
= S2c. cons(n, c(nil))

This is the point where we need a level-2 control operator S2 in the
CPS hierarchy.

Finally, by replacing control operators without indices by those with
level-1 (for instance S is replaced by S1), and enclosing the whole term
by a level-2 reset, we get a program:

〈begin 〈emit(choice(3))〉1; nil end〉2
which evaluates to (1 2 3) as expected.

In summary, a direct-style program with level-2 control operators
is CPS translated to a 1-CPS program with level-1 control operators,
which is then CPS translated to a 2-CPS program with no control
operators. CPS translating this program yields a real CPS program

2 A trivial term is a synonym for a value.
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where all calls are tail calls and all subterms are trivial. The family of
layered control operators thus corresponds to the CPS hierarchy.

3. The Calculi with Control Operators

In this section, we introduce the languages of our source calculi and
their operational semantics.

3.1. Language of the Calculi

The calculus we choose here is a type-free call-by-value lambda calculus
with control operators for delimited continuations. Later we will briefly
discuss typed calculi.

We define two calculi λSn and λCn for a natural number n. The
former is a calculus with shift and reset, and the latter is a calculus
with C and reset. The control operator C will be explained later.

We assume that there are infinitely many variables (written x, y, z, k
and so on). Terms of λSn are defined by the following grammar (1 ≤
i ≤ n):

M, N ::= x | λx.M | MN | 〈M〉i | Sik.M

The index i denotes the level of control operators, which is con-
ceptually the number of the iterations of CPS translations that are
necessary to interpret the control operator. 〈M〉i is a term with a level-
i reset operator, and Sik.M is a term with a level-i shift operator. The
variable k is bound in Sik.M . We define 〈M〉0 def

= M .
Terms of λCn are defined in the same way as λSn where Sik.M is

replaced by Cik.M . The variable k is bound in Cik.M .
A value (written V ) is either a variable or λ-abstraction. Variables

are bound by λ and Si in λSn and λ and Ci in λCn. Free and bound
variables of terms are defined as usual. FV(M) denotes the set of free
variables in M . We identify two terms which differ only in renaming
of bound variables. M{x := N} is the result of the capture-avoiding
substitution of N for x in M .

Contexts (C), evaluation contexts (E) and level-j evaluation con-
texts (Ej for 0 ≤ j ≤ n) in λSn are defined as follows:

C ::= [ ] | CM | MC | λx.C | Sik.C | 〈C〉i
E ::= [ ] | EM | V E | 〈E〉i

Ej ::= [ ] | EjM | V Ej | 〈Ej〉l for 1 ≤ l ≤ j

Contexts and evaluation contexts are the standard ones in call by value
with the addition of shift and reset. Ej is a level-j evaluation context in
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which the levels of reset operators enclosing the hole must be equal to or
less than j. For example, 〈x[ ]〉2 and 〈x[ ]〉2〈yz〉3 are level-2 evaluation
contexts. As a special case, E0 is an evaluation context in which no
reset may enclose the hole. In our previous work [23], E0 was called
a pure evaluation context. Contexts, evaluation contexts and level-j
evaluation contexts in λCn are defined similarly.

As we will see in the next section, being aware of the levels of
evaluation contexts is important in defining reduction rules for control
operators, since level-j shift captures the delimited continuation up to
level-j.

3.2. Operational Semantics

We introduce the operational semantics of λSn in this section. The
formal definitions of shift and reset will be given in terms of the CPS
translation, and the operational semantics in this section should be
considered as an informal explanation of these control operators. Nev-
ertheless, we present it here to provide intuition about their operational
behavior.

The small-step operational semantics is given a set of reduction rules
for programs, where programs are terms that have no free variables3.
We have the following three reduction rules (where x 6∈ FV(Ej−1) and
1 ≤ j ≤ n):

E[(λx.M)V ] → E[M{x := V }]
E[〈V 〉j ] → E[V ]

E[〈Ej−1[Sjk.M ]〉j ] → E[〈M{k := λx.〈Ej−1[x]〉j}〉j ]
The first rule is the standard call-by-value β-reduction. The second rule
says that delimiting a value does nothing. The third rule shows how
shift and reset work. Shift captures the continuation delimited by the
reset which has the same level as shift. If there are multiple occurrences
of reset which enclose the term Sjk.M , the (dynamically determined)
nearest reset is chosen, as the evaluation context Ej−1 contains no
occurrences of level-j reset which enclose the hole.

In order to understand the third reduction rule, let us compare it
with the rule for callcc, the control operator for unlimited continuations
in Scheme and Standard ML of New Jersey:

E0[callcc(λk.M)] → E0[M{k := λx.abort(E0[x])}]
where abort has the reduction rule: E0[abort(V )] → V . In the case of
shift, the continuation delimited by the corresponding reset operator

3 We will refine the definition of programs later in this section.
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(the evaluation context 〈Ej−1〉j) is captured and k is bound to a func-
tion λx.〈Ej−1[x]〉j . In the case of callcc, the whole evaluation context
E0 is captured and k is bound to a function λx.abort(E0[x]). Thus,
continuations captured by shift are called delimited continuations. An-
other difference between these operators is that the former contains
an additional reset, while the latter contains an additional abort. As a
consequence continuations captured by shift are composable with other
functions.

To illustrate how the three reduction rules are used, we evaluate the
choice-emit example. The program we want to evaluate is 〈E[M ]〉2
where E is a level-1 evaluation context (begin 〈[ ]〉1; nil end) and M
is emit(choice(1)). →∗ denotes the reflexive, transitive closure of →.

〈E[M ]〉2
→∗ 〈E[emit(if (S1c.begin c(true); c(false); fail( ) end)

then choice(0) else 1)]〉2
→∗ 〈E[begin (λx.〈emit(if x then choice(0) else 1)〉1)(true);

(λx.〈emit(if x then choice(0) else 1)〉1)(false);
fail( )

end]〉2
→∗ 〈E[begin 〈S2c.cons(1, c(nil))〉1; fail( ) end]〉2

Now the continuation captured by S2 is 〈E[begin 〈[ ]〉1; fail( ) end]〉2.
If we had used S1 instead of S2 in the definition of emit, the captured
continuation would have been 〈[ ]〉1, in which case the function emit
could not collect all the answers of non-deterministic choices.

The whole evaluation proceeds as follows:

→∗ 〈cons(1, c(nil)){c := λx.〈E[begin 〈x〉1; fail( ) end]〉2}〉2
→∗ 〈cons(1, 〈E[begin 〈nil〉1; fail( ) end]〉2)〉2
→∗ cons(1, nil)

Similarly we have:

〈begin 〈emit(choice(3))〉1; nil end〉2 →∗ cons(1, cons(2, cons(3, nil)))

which is the desired result.
The reduction rule for shift (the third reduction rule) is applicable

only when the level of shift and that of reset agree, and we must
generalize it to the case when they are different. Shift and reset are
layered control operators in that the evaluation context captured by a
level-j shift is delimited not only by a level-j reset but by any higher-
level reset. Therefore a general reduction rule is (where j ≤ i and
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f 6∈ FV(Ej−1)):

E[〈Ej−1[Sjk.M ]〉i] → E[〈M{k := λx.〈Ej−1[x]〉j}〉i]
Put differently, a level-i reset delimits not only a level-i evaluation
context, but also any level-j evaluation contexts if j ≤ i.

3.3. Comparison of Control Operators for Delimited
Continuations

We briefly compare several control operators for delimited continua-
tions proposed in the literature.

The first group of control operators consists of shift/reset and their
relatives, C/reset and D/reset, whose key reduction rules are defined
as follows (for j ≤ i):

E[〈Ej−1[Cjk.M ]〉i] → E[〈M{k := λx.Aj〈Ej−1[x]〉j}〉i]
E[〈Ej−1[Djk.M ]〉i] → E[〈Ej−1[M{k := λx.Aj〈Ej−1[x]〉j}]〉i]

The control operator C was investigated by Murthy [26], and we use
it in the completeness proof in a later section. The control operator D
generalizes callcc, for D1 coincides with callcc in the absence of reset
[23]. Filinski studied the relationship among these control operators
[14].

Despite the difference of reduction rules, these control operators have
the same expressive power, for they are inter-definable (in the presence
of A). More precisely we have:

(Si, reset) ↔ (Ci, reset) ↔ (Di,Ai, reset)

where ↔ means inter-definability. For instance, Si and Ci are defined
by each other as:

Sik.M = Cik
′.M{k := λx.〈k′x〉i}

Cik.M = Sik
′.M{k := λx.Si .k′x}

where is an anonymous variable. These equations can be formally
justified by the CPS translation in the next section.

In the literature shift and reset are sometimes called control opera-
tors for “composable continuations”, as the continuations they capture
are composable, while those captured by callcc (and by Ci and Di) are
abortive. We think that “delimited continuations” is a better name,
since as long as we are concerned only with expressivity, it does not mat-
ter whether the captured continuations are composable or not, while
it does matter whether the calculus in consideration has a delimiter
(reset) or not.
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The second group consists of Felleisen’s prompt (denoted by #) and
F , the first control operator for delimited continuations [12], and their
relatives (e.g. Gunter, Rémy and Riecke’s operator “cupto” [19]). The
reduction rule of Felleisen’s operators is defined by:

E[#(E0[Fk.M ])] → E[#(M{k := λx.E0[x]})]

The reduction rule looks similar to that for shift/reset if we put i =
j = 1, and identify # with reset and F with shift of level-1. A notable
difference is that the evaluation context captured by F does not con-
tain the enclosing prompt (as indicated by λx.E0[x] in the righthand
side), and the captured continuation is therefore merged with an outer
continuation, which leads to the dynamic behavior of these control
operators.

Control operators in the first group are static and have simple CPS
translations expressed as pure lambda terms, while those in the sec-
ond group are dynamic and are not known to have such simple CPS
translations. In this article, we use the CPS translations as an essential
tool and develop a rigid theory by making use of it, hence we confine
ourselves to the static control operators. We will come back to this
issue in Section 7.

4. CPS Translation

In this section we follow Danvy and Filinski [9] and give CPS trans-
lations for higher level shift and reset. For simplicity, the version we
present here does not use environments nor it does perform optimiza-
tion for administrative redexes.

4.1. The First CPS Translation

The first CPS translation is the standard Plotkin-style call-by-value
CPS translation extended to the calculi λS1 and λC1. It consists of
two translations [[ ]]1 for terms and ∗1 for values in λS1 (or λC1). The
results of these translations are type-free lambda terms without control
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operators:

[[V ]]1
def
= λk. k(V ∗1)

[[MN ]]1
def
= λk. [[M ]]1(λm. [[N ]]1(λn. mnk))

[[S1c.M ]]1
def
= λk. [[M ]]1{c := λxk′. k′(kx)}(λx.x)

[[C1c.M ]]1
def
= λk. [[M ]]1{c := λxk′. kx}(λx.x)

[[〈M〉1]]1
def
= λk. k([[M ]]1(λx.x))

x∗1 def
= x

(λx.M)∗1 def
= λx. [[M ]]1

For shift (the third line), the current continuation k is captured and
the variable c is bound to a function which composes k and k′. For
C (the fourth line), the function bound to c discards k′, and it is
abortive. For reset (the fifth line), the current continuation is reset to
the identity function λx.x (which corresponds to the empty evaluation
context [ ]). The resulting terms are not in the usual CPS form in that
some subterms are not trivial (kx and [[M ]]1(λx.x) are in the argument
positions of functional application). Shift and reset represent a new pro-
gramming pattern where one can compose continuations with functions
and reset continuations, which Danvy and Filinski called Continuation
Composing Style (CCS for short).

We introduce the following type structure for the target terms of
the first CPS translation:

Exp0
def
= Cont1 → Ans

Cont1
def
= Value→ Ans

Value
def
= Value→ Exp0

where Ans is the type of answers. The type Value is defined by a
recursive type, reflecting that the source calculi are type-free.

The type structure above works for the source calculi without control
operators. In the presence of control operators in the source calculi, we
need one more constraint Ans = Value which is necessary to type
terms in CCS, for instance, k′(kx). The target terms of the first CPS
translation are typable under this constraint, namely, for a term M
and a value V in λS1 (or λC1), [[M ]]1 and V ∗1 have the types Exp0 and
Value, resp.

main.tex; 12/07/2005; 23:57; p.11



12

4.2. The Second CPS Translation

The results of the first CPS translation are not in the ordinary CPS
form, but if we CPS translate them once more, the resulting terms are
ordinary CPS terms, and the call-by-value and call-by-name semantics
coincide (Plotkin’s indifference theorem [27]). Rather than sending a
source term M to [[[[M ]]1]]1, Danvy and Filinski defined their second CPS
translation as translating terms of the answer type only. A rationale
for this choice is that, after the first CPS translation, a term of type
Ans is not necessarily a trivial term, while a target term of other types
is a trivial term.

We first introduce the type structure for the target terms of the
second CPS translation:

Exp0
def
= Cont1 → Exp1 Exp1

def
= Cont2 → Ans

Cont1
def
= Value→ Exp1 Cont2

def
= Value→ Ans

Value
def
= Value→ Exp

where Ans is an arbitrary type.
The second CPS translation [[ ]]σ2 is parametrized over types σ. It

sends a term of type Ans to a term of type Exp1 (= (Value→ Ans) →
Ans), and it is homomorphic on a term of other types. We remark
that after the first CPS translation, a term of type Ans (= Value) is
either one of the forms: MK (for M : Exp0 and K : Cont1), KW (for
K : Cont1 and W : Value), x (for x : Value), or λx.M (for x : Value
and M : Exp0).

[[KW ]]Ans2
def
= λγ.[[W ]]Ans2 (λv.[[K]]Cont1

2 vγ) [[λk.A]]Exp0
2

def
= λk.[[A]]Ans2

[[MK]]Ans2
def
= λγ.[[M ]]Exp0

2 [[K]]Cont1
2 γ [[W1W2]]

Exp0
2

def
= [[W1]]

Ans
2 [[W2]]

Ans
2

[[x]]Ans2
def
= λγ.γx [[k]]Cont1

2
def
= k

[[λx.M ]]Ans2
def
= λγ.γ(λx.[[M ]]Exp0

2 ) [[λx.A]]Cont1
2

def
= λx.[[A]]Ans2

In the first two definitions in the left column, we gave an optimized
version by making use of the fact that terms of type Exp or Cont1 are
trivial terms.

By composing two CPS translations, we obtain a single CPS trans-
lation, called 2-CPS translation. After performing the administrative
βη-reductions, the 2-CPS translation can be represented as follows
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where two continuation variables k and γ are introduced:

[[V ]]
def
= λkγ. kV ∗γ

[[MN ]]
def
= λkγ. [[M ]](λmγ′. [[N ]](λnγ′′. mnkγ′′)γ′)γ

[[S1c.M ]]
def
= λkγ. [[M ]]{c := λxk′γ′. kx(λy.k′yγ′)}(λaγ′′.γ′′a)γ

[[C1c.M ]]
def
= λkγ. [[M ]]{c := λxk′. kx}(λaγ′′.γ′′a)γ

[[〈M〉1]] def
= λkγ. [[M ]](λaγ′.γ′a)(λx.kxγ)

x∗ def
= x

(λx.M)∗ def
= λx. [[M ]]

It is easy to check that the results are typable under the type structure
above, namely, for a source term M and a value V , [[M ]] and V ∗ are of
types Exp0 and Value, resp.

4.3. CPS Hierarchy

The 2-CPS translation sends every term with shift and reset to the
CPS form. That all the translated terms are in CPS means that there
is more room yet for continuation composing style in the target lan-
guage, namely, resetting and composing continuations, which should
correspond to another set of control operators in the source language.
By this observation, Danvy and Filinski proposed to iterate CPS trans-
lations, and obtained a hierarchy of higher level shift and reset control
operators. What is interesting here is that we only have to iterate the
standard CPS translations to obtain a series of control operators, and
nothing else is needed.

Let us summarize the relation between the levels of source terms
(that is, the maximum levels of control operators in source terms) and
the number of iterations of CPS translations. Let M be a term with
level ≤ n control operators. If we n-times CPS translate M , we get a
term without control operators, but the result is not necessarily in the
ordinary CPS form (a term in CCS). If we n + 1-times CPS translate
M , we get a term without control operators which is an ordinary CPS
term. To type CCS terms, we need an additional constraint Ans =
Value, while to type CPS terms, we do not need this constraint and
the answer type can be an arbitrary type. In the following, we only
consider (n+1)-times (or more) iteration of CPS translations for level-
n control operators so that all the target terms are in the ordinary CPS
forms.
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We abbreviate sequences as follows (for 1 ≤ i ≤ n + 1):

λk1,i.M
def
= λk1.λk2. · · ·λki.M

Mk1,i
def
= Mk1k2 · · · ki

Mθ1,i
def
= Mθ1θ2 · · · θi

Ck1,i.M
def
= C1k1.C2k2. · · · Ciki.M

We define a CPS translation from the source calculi λSn and λCn

(n ≥ 0) to pure lambda calculus. The translation is a composition
of n + 1 CPS translations, which takes n + 1 continuation variables
k1, · · · , kn+1 each introduced by the i-th CPS translation. Given a term
M and a value V in the source calculi, the translations [[ ]] and ∗ send
a term and a value, resp, to terms of pure lambda calculus, To avoid
clutter, we present an η-reduced version here.

[[V ]]
def
= λk1. k1V

∗

[[MN ]]
def
= λk1. [[M ]](λm.[[N ]](λn.mnk1))

[[〈M〉i]] def
= λk1,i+1. [[M ]]θ1,i(λy. θ0yk1,i+1)

[[Sic.M ]]
def
= λk1,i. [[M ]]{c := λyk′1,i+1. θ0yk1,i(λz.θ0zk′1,i+1)}θ1,i

[[Cic.M ]]
def
= λk1,i. [[M ]]{c := λyk′1,i. θ0yk1,i}θ1,i

x∗ def
= x

(λx.M)∗ def
= λx.[[M ]]

where 1 ≤ i ≤ n, the variables k1, · · · , ki+1, k
′
1, · · · , k′i+1 are fresh, and

θj
def
= λxkj+1. kj+1x (for 0 ≤ j ≤ n), The term θj is the image of

the empty evaluation context [ ]. Although all θj are equal as type-free
terms, we attach indices to distinguish its level.

Let us explain the extended CPS translation. Terms and values with-
out control operators are translated as usual. For the term 〈M〉i, the
reset operator installs identity continuations up to level i, and composes
continuations of up to level i with the level i + 1 continuation. The
operator Ci captures the current continuation up to level i and composes
them (as the term λyk′1,i. θ0yk1,i), and the variable c is bound to it. At
the same time, it installs i identity continuations. The CPS translation
of shift (Si) is slightly more complex than Ci, since it captures a non-
abortive delimited continuation so that we should compose k′1, · · · , k′i+1

with the captured continuation. Note that the result of the extended
CPS translation does not depend on n if it is defined.

main.tex; 12/07/2005; 23:57; p.14



15

Since the target terms of the extended CPS translation are in CPS,
they are evaluation-order independent, and we choose βη-equality as
its semantics. We can prove that the operational semantics in Section
3.2 is sound with respect to the CPS translation, namely, M →∗ N
implies [[M ]] = [[N ]].

As an example, let us CPS translate the function emit. To do this,
we assume that our source language contains nil and cons as values,
and we do not CPS translate primitive functions, that is, they are CPS
translated4 by:

nil∗ def
= nil

cons∗ def
= λxk. k(λyk′.k′(cons(x, y)))

Then by the extended CPS translation, emit is CPS translated as
follows5:

emit∗ ≡ (λn.S2c.cons(n, c(nil)))∗

→∗ λnkγ. ((λk.c(nil)(λx.k(cons(n, x))))θ1θ2)
{c := λxk′γ′δ′.kxγ(λy.k′yγ′δ′)}

→∗ λnkγδ. k(nil)γ(λy.δ(cons(n, y)))

The term emit∗ differs from emit-c2, since the former is the result of
3-CPS translation, while the latter is the result of 2-CPS translation.
If we translate emit-c2 (on the answer type only), we get emit∗.

To see how the layered control operators work, let p3 be a term
〈begin 〈emit(1)〉1; 〈emit(2)〉1 end〉2, and CPS translate it as follows:

[[p3]] →∗ λkγδ. [[emit(1)]]θ1(λ .[[emit(2)]]θ1θ2)(λx.kxγδ)
→∗ λk. k(cons(1, cons(2, nil)))

The calculation above does not work if all the occurrences of reset in
p3 have the same level.

For the CPS translation of a complete program (rather than a term),
we need to supply an identity continuation λa.a to its CPS translation
as a term. Since we iterate CPS translations (n+1) times, we need to
supply (n+1) identity continuations, and all but the last of these iden-
tity continuations are translated to θj by the successive CPS transla-
tions. For instance, the program p3 is CPS translated to [[p3]]θ1θ2(λa.a).
which βη-reduces to cons(1, cons(2, nil)) as expected.

Remark on Complete Programs: In their original article [9], Danvy
and Filinski had an implicit assumption that every complete program

4 We assume that cons is curryed.
5 We use k, γ, and δ for the continuation variables k1, k2, and k3 for readability.
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is implicitly enclosed by a reset of sufficiently high level. For instance,
a program S2c.c0 does not cause an error. Rather, it is executed as if it
were 〈S2c.c0〉2. This implicit assumption corresponds to the fact that
we supply a sufficient number of identity continuations to a complete
program.

In this article we will consider only terms (and values), but not
consider complete programs, since every equation over programs can be
deduced from equations over terms; in the calculus λSn, two complete
programs p and q are equal if and only if 〈p〉n and 〈q〉n are equal as
terms.

4.4. The Target Calculus

We define and analyze the target calculus λTn of the extended CPS
translation in detail.

The set of terms in λTn is the least set which contains all subterms
of the targets of the extended CPS translation, and is closed under the
βη-reductions. The grammar of the terms in λTn is defined by:

P, Q ::= x | ki | λx.P | λki.P | PQ for 1 ≤ i ≤ n + 1

where x is an ordinary variable (in the source calculi) and ki is a con-
tinuation variable introduced by the CPS translation. We assume that
the set of the ordinary variables and that of the continuation variables
do not overlap.

A type structure can be introduced to the target terms [9, 11] as
follows:

Expi
def
=

{
Conti+1 → Expi+1 for 0 ≤ i ≤ n
Ans for i = n + 1

Conti
def
= Value→ Expi for 1 ≤ i ≤ n + 1

Value
def
= Value→ Exp0

Again we need a recursive type for Value, but Ans can be an arbitrary
type, and in fact we can make the answer type parametric as in the
work by Thielecke [32]. Since we will use this type structure to define
a direct-style translation in Section 6.2, we present the typing rules in
detail.

A typing judgment is of the form Γ ` P : σ where P is a term, σ is a
type, and Γ is a set of variable-type pairs consisting of either x : Value
or ki : Conti. As usual, a variable may occur at most once in Γ. We
have the following eight type inference rules (1 ≤ i ≤ n + 1):

Γ ` W : Value Γ ` W ′ : Value
Γ ` WW ′ : Exp0

Γ, ki : Conti ` Ti : Expi

Γ ` λki.Ti : Expi−1

main.tex; 12/07/2005; 23:57; p.16



17

Γ ` Ti−1 : Expi−1 Γ ` Ki : Conti

Γ ` Ti−1Ki : Expi

Γ ` Ki : Conti Γ ` W : Value
Γ ` KiW : Expi

Γ, ki : Conti ` ki : Conti

Γ, x : Value ` Ti : Expi

Γ ` λx.Ti : Conti

Γ, x : Value ` x : Value
Γ, x : Value ` T0 : Exp0

Γ ` λx.T0 : Value

where Γ, x : σ means the set union Γ ∪ {x : σ}.
If we can prove Γ ` P : σ using the typing rules above, we say that

P is a term of type σ in λTn. For instance, the term λk1. k1x (≡ [[x]])
can be typed as follows:

x : Value, k1 : Cont1 ` k1 : Cont1 x : Value, k1 : Cont1 ` x : Value
x : Value, k1 : Cont1 ` k1x : Exp1

x : Value ` λk1. k1x : Exp0

A variable of type Conti is called a level-i continuation variable.
In addition to the type structure above, λTn enjoys the following

important property:

(Property-#) A target term of type Expn+1 or Contn+1 has exactly
one free occurrence of level-(n + 1) continuation variables, and a
target term of other types does not have any free occurrences of
level-(n + 1) continuation variables.

For example, the target term [[〈M〉n]] is of type Exp0 and has no free
occurrences of level-(n + 1) continuation variables, and it subterm
[[M ]]θ1,n(λx. θ0xk1,n+1) is of type Expn+1 and has one occurrence of
the level-(n + 1) continuation variable kn+1.

Property-# can be explained in this way: recall that we use (n+1)-
CPS translation for λSn and λCn. The first n CPS translations map
source terms to pure lambda terms, and the last, (n+1)-st CPS trans-
lation maps them to terms in CPS, which is therefore the standard
CPS translation. It is well known that the standard CPS translation for
pure lambda terms needs only one continuation variable, which leads to
Property-#. By this property it is possible to refine our type structure
as Expn = Contn+1 ( Expn+1 where ( is the linear implication [23].

Property-# does not hold for continuation variables of level≤ n, as
can be seen by the CPS translation of [[Sic.M ]] and [[Cic.M ]], where
terms which freely contains continuation variables k1,i are substituted
for c.

For the type structure with Property-#, we have the following the-
orem.
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THEOREM 1. Let Γ ` P : σ mean that we can derive Γ ` P : σ using
the type structure above, and also Property-# holds for any subterm of
the term P . Then we have the following three properties.

(1) Let M be a term and V be a value in λSn or λCn, and their free
variables be x1, · · · , xn. Then we have

x1 : Value, · · · , xn : Value ` [[M ]] : Exp0, and
x1 : Value, · · · , xn : Value ` V ∗ : Value.

(2) (Substitution Property) If Γ ` W : Value and Γ, x : Value ` P :
σ, we have Γ ` P{x := W} : σ. Similarly, if Γ ` Ki : Conti and
Γ, ki : Conti ` P : σ for 1 ≤ i ≤ n + 1, we have Γ ` P{ki := Ki} : σ.

(3) (Subject Reduction) If we have Γ ` P : σ, and P reduces to Q
by βη-reductions, then we have Γ ` Q : σ.

All properties can be proved straightforwardly, and their proofs are
omitted.

We introduce βη-equality in the target calculus, and write λTn ` P =
Q if P and Q are equal under βη-equality. Given the CPS transla-
tion and the target calculus λTn equipped with βη-equality, the source
calculus is given an induced semantics called CPS-semantics. The fun-
damental question addressed in this article is, what is the equality
theory that coincides with this CPS semantics, or equivalently, how to
axiomatize the CPS semantics in direct style.

5. Axioms for Shift and Reset

In this section we give axioms of the theories λSn and λCn, which will
be proved sound and complete with respect to the extended CPS trans-
lation, namely, two terms are equal in λSn (or λCn) if and only if they
are mapped to equal terms in λTn by the extended CPS translation.

We think that this kind of axiomatization (called Direct-Style Ax-
iomatization) is important and worth studying for the following rea-
sons.

− Reasoning about source terms (by humans) is usually much easier
than reasoning about CPS terms. It is true that we can reason
about a source program after CPS translating and βη-reducing
it. However, the CPS translation makes the resulting term longer
than the source term, and it often obscures the structure of the
source term since it is a global translation. If we have a direct-
style axiomatization, we do not have to CPS translate every term
to reason about its properties, and thus we would get a simpler
proof of properties of source programs.
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(λx.M)V = M{x := V } βv

λx. V x = V ηv, if x 6∈ FV(V )

(λx.E0[x])M = E0[M ] βΩ, if x 6∈ FV(E0)
〈V 〉i = V reset-value

〈(λx.M)〈N〉i〉j = (λx.〈M〉j)〈N〉i reset-lift

Figure 1. Common Axioms for λSn and λCn (1 ≤ j ≤ i ≤ n)

− More importantly, having a simple set of axioms helps us to un-
derstand the source calculus intuitively and formally, as has been
proved by several works in the literature, most notably, by Sabry
and Felleisen’s direct-style axiomatization of type-free lambda cal-
culus with and without callcc [29]. Their equational axiomatization
of the calculus without callcc is equivalent to Moggi’s compu-
tational lambda calculus [25], and consequently they essentially
gave (another) evidence that computational lambda calculus is the
canonical choice for the call-by-value setting. Their axioms have
another application in A-normal form translation [16].

We believe that studying direct-style axiomatization is the first
and solid step toward good understanding of control operators in
the source calculus.

5.1. Axioms

In this section we give the following three sets of axioms:

− common axioms for λSn and λCn (Figure 1),

− specific axioms for λSn (Figure 2), and

− specific axioms for λCn (Figure 3).

The theory λSn consists of the axioms in Figures 1 and 2, and the
theory λCn consists of those in Figures 1 and 3.

In the presentation of these axioms, we assume that the levels of
all control operators are equal to or less than n, namely, the indices i
and j range over the finite set {1, 2, · · · , n}. Recall that Ei is a level-

i evaluation context, 〈M〉0 def
= M , and Ai

def
= λx.Ci .x where is an

anonymous variable. Note also that i and j cannot be 0, but i− 1 and
j − 1 may be 0.

We shall explain axioms in Figure 1. The first three axioms βv,
ηv and βΩ are those for Moggi’s computational lambda calculus[25],
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or equivalently, Sabry and Felleisen’s axiomatization of pure lambda
calculus in call-by-value [29].

The axiom reset-value corresponds to the reduction rule E[〈V 〉i] →
E[V ].

The axiom reset-lift does not have a direct counterpart in the op-
erational semantics. To explain its role, let us abbreviate (λx.M)N as
let x be N in M , and consider under which condition the following
equation (called β-lift) holds:

let x be N in E[M ] = E[let x be N in M ] for x 6∈ FV(E).

This equation is useful to guarantee the correctness of certain kinds
of program transformations, for instance, closure conversion. Another
example is the let-insertion technique used in partial evaluation, one of
the successful applications of shift and reset.

In the absence of reset (more precisely, in the case when E is a level-0
evaluation context E0), the equation holds, as can be proved by:

let x be N in E0[M ] = let x be N in E0[let x be x in M ] by βv

= E0[let x be N in M ] by βΩ

In the presence of reset, however, the equation does not hold in general,
as can be seen by CPS translating both sides of the equation. More
intuitively, 〈(let x be S1c.c(c1) in 〈x〉1) + 5〉1 evaluates to 11, while
〈〈let x be S1c.c(c1) in x〉1 + 5〉1 evaluates to 6, so the two terms
let x be S1c.c(c1) in 〈x〉1 and 〈let x be S1c.c(c1) in x〉1 cannot be
equal even under contextual equivalence.

The axiom reset-lift partially recovers the equation β-lift under a
certain condition. Namely, we can prove the following equation by reset-
lift when i ≥ j:

let x be 〈N〉i in Ej [M ] = Ej [let x be 〈N〉i in M ] for x 6∈ FV(Ej).

In other words, we can lift a local binding (a β-redex) through an
evaluation context if the bound term (the above N) is enclosed by a
reset of “sufficiently” high level.

Besides the common axioms, there are three specific axioms for shift
and three for Ci shown in Figures 2 and 3, resp. The axiom S-reset is
a natural extension of its level-1 counterpart S1k.〈M〉1 = S1k.M . The
axiom S-elim is not quite the same as a natural extension of its level-1
counterpart S1k.kM = M (for k 6∈ FV(M)). In fact, Sik.kM = M is
not sound for i > 1. Danvy and Filinski stated in [9] that the current
formulation of shift/reset is not completely satisfactory since a natural
equality S2k.kM = M does not hold. We have found that the correct
extension of the level-1 equation is the axiom S-elim. By putting i =
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Sik.〈M〉i = Sik.M S-reset
Sik.k〈M〉i−1 = 〈M〉i−1 S-elim, if k 6∈ FV(M)

〈Ej−1[Sjk.M ]〉i = 〈M{k := λx. 〈Ej−1[x]〉j}〉i S-lift, if k 6∈ FV(Ej−1)

and x 6∈ FV(kEj−1)

Figure 2. Specific Axioms for λSn (1 ≤ j ≤ i ≤ n)

Cik.〈M〉i = Cik.M C-reset
Cik.k〈M〉i−1 = 〈M〉i−1 C-elim, if k 6∈ FV(M)

〈Ej−1[Cjk.M ]〉i = 〈M{k := λx. Aj〈Ej−1[x]〉j}〉i C-lift, if k 6∈ FV(Ej−1)

and x 6∈ FV(kEj−1)

Figure 3. Specific Axioms for λCn (1 ≤ j ≤ i ≤ n)

1 in S-elim, we obtain the level-1 S-elim axiom. The last axiom S-
lift is a direct equational formalization of the corresponding reduction
rule given in Section 3.2. The specific axioms for Ci can be explained
similarly.

We think that these axioms are natural and simple.
They are natural since many axioms have been obtained by replacing

reduction by equality in the operational rules, and the rest can be
understood by the operational semantics. Moreover if we put all i’s
and j’s to be 1 in λSn, we can obtain the axioms for level-1 shift and
reset [23]6.

They are simple since many existing works proposed a larger number
of more complex axioms for axiomatizing simpler control operators
than we use in our axiomatization. For instance, Sabry and Felleisen’s
axiomatization for callcc has 10 axioms [29], and our axiomatization
for level-2 delimited continuation operator has 14 axioms [22]. We
think that simplicity of our axioms partly comes from the conceptual
simplicity of the definition of shift and reset in terms of CPS translation.

Soundness of these axioms with respect to the extended CPS trans-
lation can be proved by calculating both sides of the equations. Com-
pleteness of λCn may be surprising, since one may think it lacks many
important equations which were included in our axiomatization of the

6 Strictly speaking, there is a slight difference, for the shift operator was
formulated as a constant in [23], which can be defined as λx.S1k.xk in λSn.
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level-2 delimited continuation operator C2 [22], such as:

〈〈M〉i〉l = 〈M〉max(l,i) reset-reset

〈(λx.M)〈N〉i−1〉i = 〈(λx.〈M〉j)〈N〉i−1〉i reset-lift-2, j ≤ i

〈Cik.M〉j = Cik.M reset-C, j < i

〈Cjk.M〉i = 〈M{k := Aj}〉i C-top, j ≤ i

(λx.C1k.M)N = C1k.(λx.M)N let-C1, k 6= x

Another seemingly missing axiom is an equation for lifting Ci over an
evaluation context, that is, E[Cik.M ] = M{k := N} for some appro-
priate N . In the next theorem we show that all these equations are
derivable.

From now on, we will mainly investigate λCn. After proving its
soundness and completeness, we will come back to λSn. The use of λCn

in our proof is not essential, and we can directly prove the completeness
for shift as well. The use of λCn is motivated by the fact that Ci has a
slightly simpler CPS translation, and its expressive power is the same
as that of Si.

5.2. Derivable Equations

THEOREM 2. The equations reset-C, C-top, reset-reset, reset-lift-2,
and let-C1 as well as the following equations are derivable in λCn where
k1, · · · , ki, x are fresh variables, and k is not bound in the context C in
C-abort.

Ej [Ai〈M〉i−1] = Ai〈M〉i−1 A-abort, j < i

Cik.C[Ej [kV ]] = Cik.C[kV ] C-abort, j < i

Ej [Cik.M ] = Ck1,i. M{k := N} telescope, j < i

where N is λx. ki〈ki−1 · · · 〈k1(Ej [x])〉1 · · ·〉i−1.
Proof. (C-top) Putting Ej−1 ≡ [ ] and i = j in C-lift and using

reset-value and ηv, we have C-top.
(reset-reset) By putting M ≡ x in reset-lift, we have 〈〈(λx.x)N〉i〉j =
(λx.〈x〉j)〈N〉i. Using reset-value and βΩ (in the form of (λx.x)L = L
for any L), we obtain 〈〈N〉i〉j = 〈N〉i for j ≤ i, which constitutes a half
of reset-reset.

We will prove the remaining half of reset-reset, namely, 〈〈N〉j〉i =
〈N〉i for j ≤ i. By putting Ej−1 ≡ (λx.N)[ ] and M ≡ kx in C-
lift, we have 〈(λx.N)(Cjk.kx)〉i = 〈(λy.Aj〈(λx.N)y〉j)x〉i. Using reset-
value, C-elim and βv, the lefthand side is equal to 〈N〉i, and using βv,
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the righthand side is equal to 〈Aj〈N〉j〉i. We can further rewrite the
righthand side as:

〈Aj〈N〉j〉i = 〈Cjk. k〈N〉j〉i by C-top
= 〈Cjk. k〈〈N〉j〉j−1〉i by the half of reset-reset
= 〈〈〈N〉j〉j−1〉i by C-elim
= 〈〈N〉j〉i by the half of reset-reset

where we used the already proved half of reset-reset. Hence we have
〈N〉i = 〈〈N〉j〉i for j ≤ i, proving the remaining half of the reset.
(reset-lift-2) We have the following derivation for 0 ≤ l ≤ i.

〈(λx.〈M〉l)〈N〉i−1〉i = 〈(λx.〈M〉l)(Cik.k〈N〉i−1)〉i by C-elim
= 〈(λy.Ai〈(λx.〈M〉l)y〉i)〈N〉i−1〉i by C-lift
= 〈(λx.Ai〈M〉i)〈N〉i−1〉i by βv, reset-reset

The final result does not depend on l, and by putting l = 0 and l = j,
we can obtain reset-lift-2.

For the remaining equations in Theorem 2, we prepare two key
equations. First, we derive by C-elim and C-reset:

N = C1k1.〈k1N〉1 = C1k1.C2k2.〈k2〈k1N〉1〉2
Iterating this process i-times we obtain:

N = Ck1,i.〈ki〈ki−1 · · · 〈k1N〉1 · · ·〉i−1〉i (key eq.-1)

For j < i, by putting N ≡ Ej [Cik.M ] in the key eq.-1 and using C-lift
and reset-reset, we obtain the following equation (k1, · · · , ki, x are fresh
variables):

Ej [Cik.M ] = Ck1,i.〈M{k := λx.Ai〈ki〈· · · 〈k1(Ej [x])〉1 · · ·〉i−1〉i}〉i
(key eq.-2, for j < i)

(reset-C) By putting Ej ≡ [ ] and Ej ≡ 〈[ ]〉j in the key eq.-2, we have
that the righthand sides of these two cases are equal by reset-value,
hence we obtain Cik.M = 〈Cik.M〉j .
(A-abort) We first note that, if j < i, we can derive Ej [(λx.N)〈M〉i−1] =
(λx.Ej [N ])〈M〉i−1 by reset-lift and βΩ. Also, if k 6∈ FV(M), then the
right-hand side of the key eq.-2 does not contain Ej , hence Ej [Ci .M ] =
Ci .M . Then we can compute as follows (for j < i):

Ej [Ai〈M〉i−1] ≡ Ej [(λx.Ci .x)〈M〉i−1]

= (λx.Ej [Ci .x])〈M〉i−1 by the above equation
= (λx.Ci .x)〈M〉i−1 by the key eq.-2
≡ Ai〈M〉i−1
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(C-abort) We compute as follows (where j < i):

Cik.C[Ej [kV ]]
= Ck1,i.〈(C[Ej [kV ]]){k := λx.Ai〈ki〈· · · 〈k1x〉1 · · ·〉i−1〉i}〉i

by the key eq.-2
= Ck1,i.〈C[Ej [Ai〈ki〈· · · 〈k1V 〉1 · · ·〉i−1〉i]]〉i by βv

= Ck1,i.〈C[Ai〈ki〈· · · 〈k1V 〉1 · · ·〉i−1〉i]〉i by A-abort

Since the final result does not contain Ej , we obtain C-abort.
(telescope) We first prove Ai〈M〉i−1 = Ai〈M〉i. In the following deriva-
tion, k1, · · · , ki are fresh variables.

Ai〈M〉i−1 = Ck1,i.〈ki〈· · · 〈k1(Ai〈M〉i−1)〉1 · · ·〉i−1〉i
by the key eq.-1

= Ck1,i.〈Ai〈M〉i−1〉i by A-abort
= Ck1,i.〈M〉i

The last equation has been derived in the proof of reset-reset. Similarly
we have Ai〈M〉i = Ck1,i.M , and hence Ai〈M〉i = Ai〈M〉i−1.

The righthand side of the key eq.-2 has a subterm Ai〈ki〈· · ·〉i−1〉i,
which is equal toAi〈ki〈· · ·〉i−1〉i−1 by the equation above. SinceAi〈[ ]〉i−1

is a level-(i− 1) evaluation context, we can apply C-abort to eliminate
it from the righthand side of the key eq.-2 (note that ki is bound by
Ciki in the the key eq.-2), and finally obtain the telescope axiom7:

Ej [Cik.M ] = Ck1,i. M{k := λx.ki〈ki−1 · · · 〈k1(Ej [x])〉1 · · ·〉i−1}

We also have Ai〈M〉i−1 = Ci .M from the above derivation and tele-
scope.
(let-C1) This equation is not needed in this article, and its verification
is left for the reader.

This finishes the proof of Theorem 2.

6. Completeness Proof

The main results of this article are that the theories λSn and λCn are
sound and complete with respect to the extended CPS translation into
λTn. In this section we give a proof for these results.

7 This is a generalized version of Murthy’s telescope axiom [26].
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6.1. Proof Methods for Completeness

We first review the proof methods for this kind of completeness pro-
posed in the literature, and then give an overview of our proof method.

A traditional way to prove completeness is to find an inverse † of
the CPS translation that satisfies the following two properties:

(1) For any source term M , we can prove [[M ]]† = M in the source
calculus.

(2) For any target terms T and T ′, if T = T ′ in the target calculus, we
can prove T † = T ′† in the source calculus.

In fact, Sabry and Felleisen used this strategy to prove the completeness
of their axioms for the calculus with callcc[29], and we used it for the
calculus with level-1 shift and reset [23].

Sabry proposed a new proof method to prove the completeness of
the calculus with level-1 shift and lazy reset [28]. Let us illustrate his
method by an example.

In the standard CPS translation, a source term of the form MN is
CPS translated to:

[[MN ]]
def
= λk.[[M ]](λm.[[N ]](λn.mnk)))

Sabry’s key observation is that, as long as the equality of the target
calculus is concerned, we do not have to use the ordinary lambda terms
to represent the CPS translation. Instead, we can represent it as:

[[MN ]]′ = get k.send(λm.send(λn.send(k,mn), [[N ]]′), [[M ]]′)

with two functions get and send that satisfy the following two equa-
tions corresponding to the β and η equations:

send(K, get k.P ) = P{k := K}
get k.send(k, T ) = T if k 6∈ FV(T ).

Note that, if [[M ]] = [[N ]] under βη-equality, then we have [[M ]]′ = [[N ]]′

under βη-equality with the two βη-like equations for send/get (this
property will be referred as Property (i)).

The generalized CPS translation is an abstract CPS translation that
can be interpreted in several ways:

− An interpretation in the target calculus is defined by send(K, T )
def
=

TK and get k.P
def
= λk.P , then [[M ]]′ is identical to the standard

CPS translation [[M ]].
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− We can interpret it in the source calculus by defining send(K,T )
def
=

KT and get k.P
def
= callcc(λk.P ). The notable feature of this im-

plementation is that the generalized CPS translation is the identity
on source terms, namely, [[M ]]′ = M under the direct-style axioms
(Property (ii)).

The completeness for the standard CPS translation follows from Prop-
erties (i) and (ii).

One may say that Sabry’s new method is merely a reformulation of
the traditional one, since the non-trivial implementation corresponds
to an inverse translation in the traditional method, and Properties (i)
and (ii) correspond to Properties (2) and (1), resp. However, we think
that his method is valuable, since finding a suitable inverse translation
from a huge search space is often very difficult, as was the case for our
axiomatization for level-1 shift and reset, and his method is a good
guide to this exploration.

Instead of directly following his method, we will use the type struc-
ture of the target calculus to reflect Sabry’s proof method. The use
of types has two benefits: first, we can capture the essence of Sabry’s
use of abstract datatypes. Second, it makes explicit hidden details in
Sabry’s proof. As we saw, Sabry replaced some occurrences of λ and ap-
plication by get and send, leaving others intact, but that this selective
replacement is harmless was not formally expressed nor proved in his
paper. Since our source calculus with layered control operators is much
more complex than his source calculus, we need a way to represent this
property explicitly. The subject reduction property of the type system
ensures the non-interference between them.

There is a subtle, but important reason for us not to follow Sabry’s
method directly (see below), hence we will use a traditional proof
method which defines an inverse translation (called a direct-style trans-
lation) and prove the two properties (1) and (2) (Theorems 5 and 3,
resp.). These two properties subsume the completeness of λSn.

6.2. Direct-Style Translation

We first define a direct-style (DS) translation † from the target calculus
λTn to the source calculus λCn. Later, we will prove that it is an inverse
of the extended CPS translation.

The following eight clauses correspond to the type inference rules in
Section 4.4. Note that, in λTn, the index i can be up to n + 1, that is,
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1 ≤ i ≤ n + 1.

(WW ′)† def
= W †W ′† (λki.Ti)

† def
=

{
Ciki.Ti

†, if i ≤ n

Ti
†, o.w.

(Ti−1Ki)
† def

= Ki
†〈Ti−1

†〉i−1 (KiW )† def
= Ki

†W †

ki
† def

=
{

ki, if i ≤ n
λx.x, o.w. (λx.Ti)

† def
=

{
λx.〈Ti

†〉i, if i ≤ n

λx.Ti
†, o.w.

x† def
= x (λx.T0)

† def
= λx.T0

†

where x, ki are variables of type Value and Conti, resp, and W,W ′, Ti,Ki

are terms of Value, Value, Expi, and Conti, resp.
Let us briefly explain how we obtained the DS translation above. As

in Sabry’s method, we generalize the following four terms in the target
calculus as:

λki.Ti is replaced by get1
i ki. Ti

Ti−1Ki is replaced by send1
i (Ki, Ti−1)

λx.Ti is replaced by get2
i x. Ti

KiW is replaced by send2
i (Ki,W )

for 1 ≤ i ≤ n + 1. The pair of functions (send1
i , get

1
i ) are interface

functions of the type Expi−1 = Conti → Expi, and (send2
i , get

2
i ) are

those of the type Conti = Value → Expi. Each of these pairs must
satisfy βη-like equations as before. We do not generalize other terms
such as terms of type Value = Value→ Exp0.

We then interpret these terms in the source calculus. Here we ig-
nore the case i = n + 1 for simplicity. One can see that the following
definitions can be obtained (after a few trial and errors8):

get1
i ki. Ti

def
= Ciki.Ti

send1
i (Ki, Ti−1)

def
= Ki〈Ti−1〉i−1

get2
i x. Ti

def
= λx.〈Ti〉i

send2
i (Ki,W )

def
= KiW

As one can see in the definition of get1
i (and (λki.Ti)

†), an abstraction
of a continuation variable is sent back to a control operator Ci. In other
words, the level-i continuation is explicitly grabbed by Ci in the result

8 There are other candidates, but since each pair of send/get must satisfy βη-like
equalities locally, our search space is rather limited.
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of the direct-style translation, which Sabry called continuation grabbing
style.

The DS translation is a simple reformulation of this interpretation
except that we have to treat the case i = n+1 separately. It is necessary
to avoid having the level-(n + 1) control operators in the image of the
DS translation. Note that we have level-(n + 1) continuation variables
in the target calculus, while our source calculus have level ≤ n control
operators.

For this purpose, the DS translation simply forgets about the level-
n+1 continuation variables, in that the abstraction by kn+1 is omitted
in (λki.Ti)

†, and the variable kn+1 is mapped to the identity function
λx.x. The forgetful translation works well thanks to Property-# of the
target calculus. Since the level-(n + 1) continuation variable is linear,
and moreover every subterm of a target term has at most one free
occurrence of such variables, we do not have to remember the variable
through the inverse translation.

This trick appeared in our completeness proof for level-1 shift and
reset [23], and in this article we generalize it to higher levels. A similar
technique appeared in Berdine, O’Hearn, Reddy, and Thielecke’s work
where they investigated linearity in the target calculus and the inverse
translation based on it [4].

Since the trick does not fit in Sabry’s proof method, it seems difficult
to present our proof as an instance of Sabry’s method, and it is the
reason why we chose the traditional proof method.

We also remark that, we can define an equivalent DS translation in
terms of shift and reset instead of Ci and reset. However, the results in
terms of shift are longer than those by Ci, and this is the (only) reason
why we chose to develop the theory for Ci rather than directly working
on the theory for shift.

In the next section, we prove that the DS translation enjoys Prop-
erties (1) and (2) mentioned at the beginning of Section 6.1.

6.3. Completeness Proof for λCn

We first prove Property (2), namely, † respects βη-equality in the
target calculus.

THEOREM 3. Let T0 and T ′0 be terms of type Exp0 in λTn. If λTn ` T0 =
T ′0, then λCn ` T0

† = T ′0
†.

This theorem is subsumed by the following general theorem by
putting i = 0 in the clause (1).
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THEOREM 4. Let 0 ≤ i ≤ n and 1 ≤ j ≤ n, Ti and T ′i be terms of
type Expi, Kj and K ′

j be terms of type Contj, and W and W ′ be terms
of type Value in λTn, and let M be a term in λCn. We have:

(1) If λTn ` Ti = T ′i , then λCn ` 〈Ti
†〉i = 〈T ′i †〉i.

(2) If λTn ` Kj = K ′
j, then λCn ` 〈Kj

†〈M〉j−1〉j = 〈K ′
j
†〈M〉j−1〉j.

(3) If λTn ` W = W ′, then λCn ` W † = W ′†.
Let Tn+1 and T ′n+1 be terms of type Expn+1, Kn+1 and K ′

n+1 be terms
of type Contn+1 in λTn, and let M be a term in λCn. We have:

(1’) If λTn ` Tn+1 = T ′n+1, then λCn ` Tn+1
† = T ′n+1

†.
(2’) If λTn ` Kn+1 = K ′

n+1, then λCn ` Kn+1
†〈M〉n = K ′

n+1
†〈M〉n.

In order to prove this theorem, we need three lemmas about sub-
stitution. The first one is for an ordinary variable (Lemma 1), and the
other two are for a continuation variable. As in the definition of the
DS translation, we divide the substitution property for a continuation
variable kl into two cases, namely, 1 ≤ l ≤ n and l = n + 1, which
correspond to Lemmas 2 and 3, resp.

LEMMA 1. For 0 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1, let X be a term
of type Expi, Contj, or Value, and W be a term of type Value in λTn.
Then we have:

λCn ` (X{x := W})† = X†{x := W †}

This lemma is proved by straightforward induction on X.

LEMMA 2. For 0 ≤ i ≤ n, 1 ≤ j ≤ n, and 1 ≤ l ≤ n, let Ti, Tn+1,
Kj, Kn+1, W and K ′

l be terms of type Expi, Expn+1, Contj, Contn+1,
Value and Contl, and kl be a continuation variable of type Contl, and
M be a term in λCn. Then we have:

λCn ` 〈(Ti{kl := K ′
l})†〉i = 〈Ti

†{kl := L}〉i
λCn ` (Tn+1{kl := K ′

l})† = Tn+1
†{kl := L}

λCn ` 〈(Kj{kl := K ′
l})†〈M〉j−1〉j = 〈(Kj

†{kl := L})〈M〉j−1〉j
λCn ` (Kn+1{kl := K ′

l})†〈M〉n = (Kn+1
†{kl := L})〈M〉n

λCn ` (W{kl := K ′
l})† = W †{kl := L}

where L = λx.Al〈K ′
l
†
x〉l

Proof. These equations can be proved by simultaneous induction on
the structure of Ti, Tn+1, Kj , Kn+1 and W . We prove only the third
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equation when j = l and Kj ≡ kl:

lefthand side = 〈Kj
†〈M〉j−1〉j

righthand side = 〈(λx.Aj〈Kj
†x〉j)〈M〉j−1〉j

= 〈(λx.〈Aj〈Kj
†x〉j〉j)〈M〉j−1〉j by reset-lift-2

= 〈(λx.〈Kj
†x〉j)〈M〉j−1〉j by (*)

= 〈(λx.Kj
†x)〈M〉j−1〉j by reset-lift-2

= 〈Kj
†〈M〉j−1〉j by βΩ

In the derivation of (*), we used 〈Aj〈N〉j〉j = 〈N〉j which was proved
during the proof of reset-reset in Theorem 2.

For the fourth equation when Kn+1 is a continuation variable, it
cannot be kl since their levels are different, hence the substitution is
vacuous and we can easily prove the equation.

The other cases of Lemma 2 can be proved similarly.

The next lemma is for the substitution of the level-(n + 1) continu-
ation variable kn+1, where we only have to treat Tn+1 and Kn+1, since
by Property-#, the continuation variable kn+1 occurs freely in these
terms only.

LEMMA 3. Let Tn+1, Kn+1 and K ′
n+1 be terms of type Expn+1 Contn+1

and Contn+1, resp., kn+1 be a continuation variable of type Contn+1,
and M be a term in λCn. Then we have:

λCn ` (Tn+1{kn+1 := K ′
n+1})† = K ′

n+1
†〈Tn+1

†〉n
λCn ` (Kn+1{kn+1 := K ′

n+1})†〈M〉n = K ′
n+1

†〈Kn+1
†〈M〉n〉n

Proof. This lemma is proved by induction on Tn+1 and Kn+1.
We only prove the second equation when Kn+1 = λx.T ′n+1 for some

T ′n+1 of type Expn+1 and leave other cases to the reader:

lefthand side ≡ (λx.(T ′n+1{kn+1 := K ′
n+1})†)〈M〉n

= (λx.K ′
n+1

†〈Tn+1
†〉n)〈M〉n by induction hypothesis

righthand side ≡ K ′
n+1

†〈(λx.Tn+1
†)〈M〉n〉n

On the other hand, we can prove (λx.L〈N〉n)〈M〉n = L〈(λx.N)〈M〉n〉n
(for x 6∈ FV(L)) using β-lift in Section 5.1 (which is in turn proved by
βΩ) and reset-lift. Consequently, we have that both sides of the second
equation are provably equal in λCn.
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Other cases can be proved similarly.

Proof of Theorem 4. This is proved by simultaneous induction on
the structure of Ti, Tn+1, Kj , Kn+1 and W .

Suppose λTn ` Ti = T ′i , λTn ` Tn+1 = T ′n+1, λTn ` Kj = K ′
j ,

λTn ` Kn+1 = K ′
n+1, and λTn ` W = W ′. It suffices to prove the

theorem when T ′i , T ′n+1, K ′
j , K ′

n+1 and W ′ are obtained by one-step-
reduction from the corresponding terms. There are several cases to
consider.
(Case 1: reduction of a subterm) This is the case when we reduce a
proper subterm of Ti etc. By careful inspection of the shape of the result
of the DS translation, we can show that the statement of Theorem 4 is
sufficient to make the whole induction go through.

For instance, suppose Ti = λki.T
′′ for 1 ≤ i ≤ n, and T ′i is ob-

tained by one-step reduction of a redex in T ′′, then we have: 〈Ti
†〉i ≡

〈Ciki.T
′′†〉i = 〈Ciki.〈T ′′†〉i〉i under λCn, hence we can apply the induc-

tion hypothesis on T ′′. Also all we need about a term Kj of type Contj

is the case when it appears in a subterm 〈Kj
†〈M〉i−1〉j , so the induction

hypothesis suffices.
(Case 2: the whole term is a β-redex or an η-redex which is being
contracted) There are six cases to consider.
(Case 2-β-1) 1 ≤ i ≤ n, Ti ≡ (λki.T )Ki, and T ′i ≡ T{ki := Ki}.

We can calculate as follows:

〈Ti
†〉i ≡ 〈Ki

†〈Ciki.T
†〉i−1〉i

= 〈T †{ki := λx.Ai〈Ki
†x〉i}〉i by C-lift,reset-value

= 〈T ′i †〉i by Lemma 2

(Case 2-β-2) Tn+1 ≡ (λkn+1.T )Kn+1, and T ′n+1 ≡ T{kn+1 := Kn+1}.
We can calculate as Tn+1

† ≡ Kn+1
†〈T †〉n = T ′n+1

† by Lemma 3.
(Case 2-β-3) Ti ≡ (λx.T )W and T ′i ≡ T{x := W} for 0 ≤ i ≤ n + 1.

This case can be proved using Lemma 1.
(Case 2-η-1) Ti ≡ λki+1.T

′
iki+1, 0 ≤ i ≤ n, and ki+1 6∈ FV(T ′i ).

If i ≤ n−1, then we have 〈Ti
†〉i ≡ 〈Ci+1ki+1.ki+1〈T ′i †〉i〉i = 〈〈T ′i †〉i〉i =

〈T ′i †〉i.
If i = n, then we have 〈Tn

†〉n ≡ 〈(λx.x)〈T ′n†〉n〉n = 〈T ′n†〉n
(Case 2-η-2) Ki ≡ λx.K ′

ix, 1 ≤ i ≤ n + 1, and x 6∈ FV(K ′
i).

Take any term M in λCn.
If i ≤ n, we have 〈Ki

†〈M〉i−1〉i ≡ 〈(λx.〈K ′
i
†x〉i)〈M〉i−1〉i, and by

reset-lift-2 and ηv, it is equal to 〈K ′
i
†〈M〉i−1〉i.

If i = n+1, we have Kn+1
†〈M〉n ≡ (λx.K ′

n+1
†x)〈M〉n = K ′

n+1
†〈M〉n.

(Case 2-η-3) W ≡ λx.W ′x and x 6∈ FV(W ′).
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This case is easily proved, completing the proof of Theorem 4.

The next theorem corresponds to Property (1), that is, † is a (left)
inverse of the extended CPS translation.

THEOREM 5. If M is a term in λCn, then λCn ` [[M ]]† = M .
Proof. We will prove λCn ` [[M ]]† = M and λCn ` V ∗† = V by

simultaneous induction on a term M and a value V in λCn. We list
proofs of a few interesting cases.
(Case: M = N1N2)

[[N1N2]]
† = C1k1.(λm.〈(λn.〈k1(mn)〉1)[[N2]]

†〉1)[[N1]]
†

= C1k1.(λm.〈(λn.〈k1(mn)〉1)N2〉1)N1 by induction hypothesis
= C1k1.〈λm.〈〈k1(mN2)〉1〉1N1〉1 by reset-lift-2,βΩ,C-reset
= C1k1.〈k1(N1N2)〉1 by reset-lift-2,βΩ,C-reset
= N1N2 by C-reset,C-elim

(Case: M = 〈N〉i) We can easily show θi
† = λx.x.

When 1 ≤ i ≤ n− 1, we have:

[[〈N〉i]]† = Ck1,i+1.(λx.〈ki+1〈ki · · · 〈k1x〉1 · · ·〉i〉i+1)

〈(λx.x)〈(λx.x) · · · (λx.x)〈[[N ]]†〉1 · · ·〉i−1〉i
= Ci+1ki+1.(λx.〈ki+1x〉i+1)〈[[N ]]†〉i by telescope, βΩ, reset-reset

= 〈[[N ]]†〉i by reset-lift-2, ηv, C-elim
= 〈N〉i by induction hypothesis

When i = n, we have:

[[〈N〉n]]† = Ck1,n.(λx.(λx.x)〈kn · · · 〈k1x〉1 · · ·〉n)

〈(λx.x)〈(λx.x) · · · (λx.x)〈[[N ]]†〉1 · · ·〉n−1〉n

and we can derive [[〈N〉n]]† = 〈N〉n in the same way as the previous
derivation.
(Case: M = Cic.N) Let L = λxk′1,i.θ0xk1,i. Then L is of type Value,
and we have

L† = λx.Ck′1,i.ki〈ki−1〈· · · 〈k1〈(λy.y)x〉1〉2 · · ·〉i−2〉i−1

= λx.Ck′1,i.(λx.ki〈ki−1〈· · · 〈k1〈x〉1〉2 · · ·〉i−2〉i−1)x by βΩ, βv
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Then we have:

[[Cic.N ]]† = Ck1,i.(λx.x)〈(λx.x)〈· · · 〈(λx.x)([[N ]]{c := L})†〉1 · · ·〉i−2〉i−1

= Ck1,i.([[N ]]{c := L})† by βΩ, reset-reset, C-reset
= Ck1,i.[[N ]]†{c := L†} by Lemma 1

= Cik.[[N ]]†{c := λx.Cik
′.kx} by telescope twice

= Cik.[[N ]]†{c := λx.Ai〈kx〉i−1} by (*)

= Cik.[[N ]]†{c := k} by C-abort, ηv

= Cic.N by induction hypothesis

For the derivation of (*), we used Ci .M = Ai〈M〉i−1, which has been
already derived in the derivation of telescope (in the proof of Theorem
2).

Now we can prove the completeness of λCn.

THEOREM 6 (Soundness & Completeness). Let M and N be terms
in λCn. Then we have:

λCn ` M = N if and only if λTn ` [[M ]] = [[N ]]
Proof. Soundness (the “only-if” direction) can be proved by calculat-

ing both sides of axioms in λCn. For completeness (the “if” direction),
suppose λTn ` [[M ]] = [[N ]]. Since [[M ]] and [[N ]] are of type Exp0, we
have λCn ` [[M ]]† = [[N ]]† by Theorem 3. Using Theorem 5, we conclude
that λCn ` M = N .

6.4. Completeness of λSn

We can also obtain soundness and completeness of λSn.

THEOREM 7 (Soundness & Completeness). Let M and N be terms
in λSn. Then we have:

λSn ` M = N if and only if λTn ` [[M ]] = [[N ]]
Proof. Soundness can be proved in the same way as for λCn. For

completeness, let φ be a translation from terms in λSn to terms in λCn

which replaces Si by its “definition” in Ci given in Section 3. Namely,

φ(Sik.M) = Cik
′.φ(M){k := λx.〈k′x〉i}

where k′ is fresh. φ is homomorphic on other term constructors. Simi-
larly let ψ be a translation from λCn to λSn defined by:

ψ(Cik.N) = Sik
′.ψ(N){k := λx.Si .k′x}
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where k′ is fresh. It suffices to prove the following three properties for
terms M and M ′ in λSn and terms N and N ′ in λCn:

1. λTn ` [[φ(M)]] = [[M ]].

2. λCn ` N = N ′ implies λSn ` ψ(N) = ψ(N ′).

3. λSn ` ψ(φ(M)) = M

The first property can be proved by calculation.
For the second property, we need to show that each of three specific

axioms in λCn is mapped to derivable equations in λSn by ψ. We only
show the case for C-lift, which can be shown as follows (we write E′ for
ψ(Ej−1) and M ′ for ψ(M)):

ψ(〈Ej−1[Cjk.M ]〉i) ≡ 〈E′[Sjc.M
′{k := λx.Sj .cx}]〉i

= 〈M ′{k := λx.Sj .〈E′[x]〉j}]〉i by S-lift

ψ(〈M{k := λx.Aj〈Ej−1[x]〉j}〉i) ≡ 〈M ′{k := λx.(λx.Sj .x)〈E′[x]〉j}〉i)

hence the remaining task is to prove Sj .〈N〉j = (λx.Sj .x)〈N〉j for any
N in λSn, which can be proved similarly as Cj .〈N〉j = (λx.Cj .x)〈N〉j .

To prove the third property, we have

ψ(φ(Sik.M)) ≡ Sik
′.ψ(φ(M)){k := λx.〈Si .k′x〉i}

= Sik
′.ψ(φ(M)){k := λx.k′x} by (*)

= Sik.ψ(φ(M)) by ηv

For the derivation (*), we need telescope in terms of shift in λSn, which
is proved similarly as in Theorem 2 for λCn.

This completes the proof of Theorem 7.

6.5. Type System for the Source Calculus

So far we have been studying type-free source calculi only. Introducing
a type structure into source calculi is an important problem, as most
modern programming languages have a built-in type system to enhance
the reliability of programs. Another motivation of introducing types is
that, in the presence of appropriate types, we can avoid the full ηv-
equality (λx.V x = V for x 6∈ FV(V )), which is inconsistent with the
presence of basic values such as natural numbers.
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We can introduce a simply typed structure to the source calculus
λSn with a set of basic types such as Nat, the type for natural numbers.
For control operators, the simplest choice of typing would be:

Γ ` M : τ0

Γ ` 〈M〉i : τ0

Γ, k : σ → τ0 ` M : τ0

Γ ` Sik.M : σ

where τ0 is a fixed type, and σ is an arbitrary type. We assume that
all shift and reset control operators use the same type for τ0. Then we
can prove that the extended CPS translation preserves typability if we
add the type information to the classes Exp0 and Value in the target
calculus. All the axioms and the equations in the proof of soundness and
completeness are typable, and our proof goes through for the simply
typed case.

The simply type system above suffices for Filinski’s implementation
of shift and reset [13], but it is too restrictive. Danvy and Filinski [8] and
Murthy [26] have proposed more liberal type systems for shift and reset,
both of which essentially assign types induced by the CPS translation
to source terms. Since the work presented in this article is orthogonal
to the type systems in the source calculus, it seems straightforward to
extend our axioms to the source calculi with these type systems.

Introduction of types to the source calculi makes explicit the con-
nection of the extended CPS translation and the double negation trans-
lation. If we take n = 1, then by the definition of types given in Section
4.4 we have Exp0 = (Value→ Ans) → Ans. If we take n = 2, then

Exp0 = (Value→ (Value→ Ans) → Ans) → (Value→ Ans) → Ans

Hence the type Ans in the n = 1 case (which corresponds to ⊥ in the
double negation translation) is CPS translated to (Value → Ans) →
Ans in the n = 2 case. Thus, we can say the extended translation rep-
resents an iterated double-negation translation. It seems an interesting
challenge to investigate the logical contents of iterated CPS translations
(or equivalently, iterated double-negation translations).

Recently Ariola, Herbelin and Sabry [1] gave a type-theoretic study
on control operators for delimited continuations. Their work is concep-
tually close to our earlier work [21] in that their purpose is to obtain a
logical view of these control operators through the type system. They
mainly studied direct-style calculi independently to a CPS translation.
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7. Conclusion

In this article, we have studied a family of control operators in the CPS
hierarchy. In particular, we have analyzed the image of the extended
CPS translation with type-theoretic machinery, and have obtained a
simple set of axioms which is sound and complete for all such control
operators. To our knowledge this work is the first such result about the
hierarchy of delimited continuation operators. Our axioms for level-n
shift/reset are a simple extension of those for level-1 shift/reset, and
the axioms for level-n C/reset are even simpler than those for level-2
C/reset.

The control operators in the CPS hierarchy have also been investi-
gated by Murthy [26], who gave an elaborate type system for level-n
shift and reset, and also gave a set of axioms for them. The difference
between his work and ours is that he only proved the soundness of the
axioms and did not state completeness, and also that his set of axioms
consists of many complex axioms such as the telescope axiom, while
ours consists of a small number of simple axioms, which can derive, for
instance, a generalized version of telescope axiom.

In another line of work, Danvy and Yang [11], Murthy [26], and
Biernacka, Biernacki and Danvy [5] studied an operational aspect of
the control operators in the CPS hierarchy, and derived an abstract
machine from the CPS translation, and also a set of reduction rules for
shift and reset. Their reduction rules are essentially the same as the
ones we gave as an operational semantics.

In the study of delimited continuations, there is a question about
which control operators are the best among many proposed ones [12, 19,
20, 21, 1]. Even recently, this question is the target of hot discussion
[31, 6]. It is difficult to answer this question if we only look at the
operational semantics. However, if we take the CPS translation as our
essential tool to write applications as well as studying foundations,
then shift and reset (and their relatives such as Ci and Di) are the
only control operators defined solely by (the iteration of) the standard
CPS translation among the proposed control operators. In recent years,
it has been shown that for the case of level-1 control operators for
delimited continuations, shift and reset are the standard choice, for
only shift and reset have found many applications in divergent areas.

For the case of higher level control operators where different delim-
iters (reset) exist in one program, things have not been settled, and
there are many conflicting views about their necessity and expressive-
ness. In this article, we have shown that the higher level shift and reset
can be axiomatized by a small set of concise axioms, whose sizes (as
terms) are almost the same as those for level-1 shift and reset. Thus, we
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believe that we can reinforce the claim that shift and reset are one of the
better choices for higher level control operators too. Also the existence
of several application programs and the correspondence between the
CPS hierarchy and layered monads [15] seem to give a positive answer
to this question. Recently Asai has studied partial evaluators using
shift and reset and its correctness using our axiomatization for level-1
shift and reset [2, 3]. If the source language contains shift and reset,
then one may need higher level shift and reset, and our direct-style
axiomatization in this article will be needed to guarantee its correct-
ness, since CPS translating the whole partial evaluator may result in a
rather complicated program which is difficult to reason about.

Future Work: There are several possibilities for future work on the
topics of this article.

First, while we have built an equational foundation for the control
operators in the CPS hierarchy there remains a question about the
application of our axioms. It is difficult to use them for automatic
verification because they require a degree of insight. Nevertheless, we
hope to use the axioms to prove the correctness of program translations.
In Section 5.1, we briefly mentioned how to use the axioms reset-lift to
show an equation which is useful in the let-insertion technique, but a
thorough investigation on this direction is yet to be done.

Secondly, it is interesting to see which reduction rules are sound and
complete with respect to the CPS translation rather than equations.
This question is theoretically interesting as well as practically impor-
tant in connection with operational semantics and abstract machines
of shift and reset. Still it is a hard question even for the case of callcc.

Finally and most importantly, in order to answer the basic question
about which higher level control operator is the best one, we need to
have more substantial applications using higher level shift and reset.
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