
Type-Safe Generation of Modules in
Applicative and Generative Styles
Yuhi Sato

yuhi@logic.cs.tsukuba.ac.jp
Department of Computer Science, University of Tsukuba

Tsukuba, Japan

Yukiyoshi Kameyama

kameyama@acm.org
Department of Computer Science, University of Tsukuba

Tsukuba, Japan

Abstract
The MetaML approach for multi-stage programming pro-

vides the static guarantee of type safety and scope safety

for generated code, regardless of the values of static param-

eters. Modules are indispensable to build large-scale pro-

grams in ML-like languages, however, they have a perfor-

mance problem. To solve this problem, several languages

proposed recently allow one to generate ML-style modules.

Unfortunately, those languages had the problems of limited

expressiveness, incomplete proofs, and code explosion.

This paper proposes two-stage programming languages

for module generation, which solve all the above issues. Our

languages accommodate two styles: first-class modules with

generative functors and second-class modules with applica-

tive functors. Module generation in both styles is shown to

have their own merits by concrete examples. We present

type systems, and type-preserving translations from our lan-

guages to plain MetaOCaml. We also show the results of

performance measurements, which confirms the effective-

ness of our languages.

CCS Concepts: • Software and its engineering→ Gen-
eral programming languages.

Keywords: Program Generation, Modules, Type Safety, Pro-

gram Transformation

ACM Reference Format:
Yuhi Sato and Yukiyoshi Kameyama. 2021. Type-Safe Generation

of Modules in Applicative and Generative Styles. In Proceedings
of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE ’21), October 17–
18, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3486609.3487209

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

GPCE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9112-2/21/10. . . $15.00

https://doi.org/10.1145/3486609.3487209

1 Introduction
Modules provide a high-level abstraction mechanism to pro-

gramming languages. They are indispensable to build large-

scale programs in ML-family languages, just like classes in

many object-oriented languages, and type classes in Haskell.

Coq
1
and MirageOS

2
are two successful examples of large-

scale applications in OCaml, a dialect of ML-family lan-

guages, both of which extensively use modules. While mod-

ules are useful as building blocks of large programs and allow

separate compilation, the independent nature of modules

sometimes has a performance problem, as a function call in

a different module needs indirection. Although each soft-

ware system including MirageOS solves this problem in its

own way, a uniform and natural solution is called for, and

several authors proposed to apply the program-generation

technique to modules to improve the performance.

Program generation, or multi-stage programming, is to

separate the execution of programs into two or more stages.

At the first stage, code is generated, and at the second stage,

the generated code is executed. The result of the second

stage may also be code, and the same pattern may continue

at the third and later stages. The generated code at earlier

stages can be specialized in some input data (static data).
The merit of this separation is that the specialized code with

the other input data (dynamic data) is expected to run faster

than the original, unspecialized code. Among various studies

on program generation, the MetaML approach [16, 19] uses

quasi-quotation to represent generated code, and focuses

on giving the static guarantee of type safety of any gener-

ated code. MetaOCaml
3
, a multi-stage extension of OCaml,

is one of the most successful languages in the MetaML-style

program generation [10, 17]. MetaOCaml allows the gener-

ation of terms only, since the foundational type theory for

MetaML-style languages [8, 18] targets them only.

This paper addresses the efficiency problem for ML-style

modules, and proposes two languages that allow genera-

tion of ML-style modules in a type-safe way. We are not

the first to propose such a language. Inoue et al. [9] were

the first to argue an imaginary extension of MetaOCaml

which allows generating code of modules. Later, Watanabe

et al. [20] and Sato et al. [15] proposed concrete languages

1https://coq.inria.fr
2https://mirage.io
3http://okmij.org/ftp/ML/MetaOCaml.html

https://orcid.org/0000-0002-5821-0321
https://orcid.org/0000-0002-2693-5133
https://doi.org/10.1145/3486609.3487209
https://doi.org/10.1145/3486609.3487209
https://coq.inria.fr
https://mirage.io
http://okmij.org/ftp/ML/MetaOCaml.html

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

for generating and manipulating code of modules as well as

implemented the language, and showed that applying pro-

gram generation to ML-style modules reduces the overhead

of modules for several examples. Sato et al. solved a code

explosion problem in Watanabe et al.’s study that the size of

generated code may increase exponentially in certain pro-

grams. Unfortunately, these proposals are premature, and

have several problems. First, they are implemented by trans-

lating to MetaOCaml, however, no formal properties on the

translations, such as type preservation, were proved. Hence,

it is not certain whether all terms in their languages are

translated. Second, while their languages can generate first-

class modules with generative functors, there exist examples

that need module generation with second-class modules and

applicative functors, which are the standard functors in the

current OCaml. Finally, several important features in modu-

lar programming such as abstract types and nested modules

are not supported by existing languages.

In this paper, we propose two programming languages

and study their type-theoretic foundation, which solve the

above problems. Namely, our languages allow one to gener-

ate ML-modules in the applicative style with second-class

modules, and in the generative style with first-class modules.

We show that there is a useful program which can be written

in the applicative style, but not in the generative style. We

formalize a type system for the language in the applicative

style, and show that a translation from it to plainMetaOCaml

preserves typing. The translation is implemented on top of

MetaOCaml, and our experiment shows that both the perfor-

mance problem bymodule separation and the code explosion

problem are resolved by our system.

Various works in the literature proposed languages for

generating high-level abstractions such as modules. Racket’s

module system with submodules [7] is one of the closest to
ours, which enables phase separation for language exten-

sions, and coexists with the hygienic macro system. Our

languages are hygine, and have nested modules and phase

separation, hence they share many features. A major differ-

ence between the two is that we take the purely generative
4

approach, which allows us to prove the static assurance of

type safety
5
for all generated code. In fact, types help a lot in

code generation, and abstract types are key for the abstrac-

tions byML-style modules. In this paper, we devote ourselves

to build a type-theoretic foundation of our languages to elim-

inate the problems above, and to our knowledge, this paper

gives the first type system for module generation, which

has a complete definition and a translation to MetaOCaml.

It is an interesting future work to investigate how our lan-

guages can be used for language extensions as studied in the

literature.

4
In the purely generative language, once code values are generated, they

cannot be inspected or analyzed.

5
Strictly speaking, type safety holds for our language without the run
primitive.

Our contribution is summarized as follows.

• We define two languages that allowmodule generation

in two stages. The first one has first-class modules and

generative functors as in the existing works, while the

second one has second-class modules and applicative

functors, which has never been studied as the target

of module generation in the literature.

• Our languages have important features in ML-style

modular programming such as abstract types and nest-

ed modules, which are missing in the earlier works.

• By concrete examples, we show that module gener-

ation in the applicative style is useful to eliminate

indirect calls beyond module boundaries.

• We formulate precise type systems for our languages.

The traditional type system for applicative functors

has involved typing rules to cope with paths, and we

successfully generalize it to the two-stage language for

module generation. We prove that translations from

our languages to plain MetaOCaml preserve typing.

• We implement the translations, and conduct the per-

formance measurements, which show that our two

languages can eliminate the overhead of functor appli-

cations and are free from code explosion.

The rest of this paper is organized as follows: Section

2 explains several important concepts about ML-modules.

Section 3 shows concrete examples written in our languages

and explains how our languages are useful in writing code

and improving efficiency. Section 4 formally introduces our

languages and their type systems, and Section 5 gives type-

preserving translations to plain MetaOCaml. Section 6 shows

the results of experiments on a microbenchmark. Section 7

states the related work, and Section 8 gives conclusion and

future work.

2 Background: ML-modules
Modules are a language feature in OCaml to package relevant

definitions and separate specifications and implementations,

which allow us to develop large-scale applications in a type-

safe way that achieves reusability and maintainability. This

section illustrates the basics and key features of modules by

examples.

2.1 Structures
Structures correspond to implementations of modules, which

are defined by a sequence of components. The components
consist of definitions of types, values, and modules.

Figure 1 shows an example of a structure that represents a

set of integers. The structure IntSet is defined by the expres-
sion struct ... end, and has two type components, elt_t and
set_t, that represent the type of the element and the type of

the set, respectively. In this case, the type elt_t is defined
as the type int, and the set_t is defined as the list of elt_t.

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

module IntSet =
struct

type elt_t = int
type set_t = elt_t list
let rec member elt set =

match set with
| [] → false
| hd :: tl → elt = hd

|| member elt tl
end

Figure 1. Structure for the Set Module

module type SET =
sig

type elt_t
type set_t
val member: elt_t→ set_t→ bool

end

Figure 2. Signature for the Set Module

In addition, it has the value component member which re-

turns whether the argument set contains the argument elt.
Components can be referenced from outside the structure

by the dot notation. For example, we write IntSet.member
to refer to the function member. Module structures may be

simply called modules.

2.2 Signatures
Signatures correspond to a specification, or an interface, of

modules. Signatures achieve data abstraction to eliminate

programs that depend on an implementation of modules.

Therefore, signatures make it easy to modify or replace an

implementation of modules, which improves the maintain-

ability of programs.

Continuing with the example in Figure 1, users of IntSet
should not know the implementation details. To hide the

fact that the set is implemented by the list, we can define the

signature SET for the structure IntSet as shown in Figure

2. The signature SET is defined by the expression sig ... end,
which contains a sequence of specifications for the compo-

nents in the IntSet. elt_t and set_t are abstract types that
hide an implementation of corresponding type components.

The function member takes values of types elt_t and set_t,
and returns a value of type bool.

A structure can be sealed in OCaml. For instance, by defin-

ing module IntSet’ = (IntSet : SET), the equivalence
IntSet’.elt_t = int does not hold.

2.3 Functors
Functors are modules parameterized by modules and corre-

spond to functions over modules, which achieve reusability.

Figure 3 shows an example of a functor that makes a module

module type EQ =
sig

type t
val eq: t → t → bool

end
module MakeSet (Eq: EQ): SET =

struct
type elt_t = Eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] → false
| hd :: tl → Eq.eq elt hd

|| member elt tl
end

Figure 3. Functor for Set

module IntEq: EQ =
struct

type t = int
let eq x y = Int.equal x y

end
module StringEq: EQ =

struct
type t = string
let eq x y = String.equal x y

end
module IntSet = MakeSet(IntEq)
module StringSet = MakeSet(StringEq)

Figure 4. Integer Set and String Set by Functor

of sets. The signature EQ has the type component t, and the

function eq, which is intended to be an equality function

over the type t. The functor MakeSet takes a module Eqwith
the signature EQ, and creates a SET module using Eq as the
elements of the set. Figure 4 re-defines the structure IntSet
in Figure 1 by applying the functor MakeSet to IntEq. IntEq
is a structure that contains the concrete components for in-

tegers, sealed with EQ. We can get another SET structure by

applying MakeSet to another structure with the signature

EQ. StringSet is obtained by applying MakeSet to a string

structure.

2.4 Modules vs Classes
ML-style modules provide a useful abstraction to programs,

just as classes in object-oriented languages do. However,

there are significant differences between the two.

The first, and most notable, difference is that classes can

have states, while modules without side effects cannot. In

ML, stateful objects should be created by another means.

Another difference is that the signature of a module can

have abstract types. The signature SET in Figure 2 has the

type components elt_t and set_t, which are left unspec-

ified. They can be used in SET as if they are actual types.

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

Abstract types make it possible to write many interesting

programs or programming patterns such as modular implic-

its [21], and tagless-final embedding [2].

2.5 Generative Functors vs Applicative Functors
Two semantics for functors have been studied in the liter-

ature [4]. Generative functors are standard in Standard ML:

for a functor 𝐹 and a module 𝑀 , applying 𝐹 to 𝑀 twice

(i.e. 𝐹 (𝑀) twice) would generate modules whose signatures

are not compatible. A canonical example for the usefulness

of this semantics is the functor SymbolTable in Figure 5,

which is taken from Dreyer’s thesis [4]. This example rep-

resents a symbol table implemented with a hash table. The

signature SYMBOL_TABLE hides a concrete type of the symbol
and an internal hash table, and exposes two components:

string2symbol and symbol2string to interconvert between
symbol and string. The generative functor SymbolTable
makes a structure sealed with SYMBOL_TABLE. The parenthe-
sis () is used to specify a generative functor in OCaml. The

components string2symbol and symbol2string access to

the internal hash table table. The notable point lies in the

implementation of symbol2string. The exception Failure
should never be raised while the symbol n is obtained by

string2symbol in the same structure, as the correspond-

ing string can be found in the table. In generative seman-

tics, type checking can guarantee that no exceptions will

be raised. For example, assuming the structures ST1 and

ST2 instantiated by the functor SymbolTable, ST1.symbol
is not equal to ST2.symbol. Thus, a symbol obtained by

ST2.string2symbol is never given to ST1.symbol2string.
On the other hand, applicative functors are standard in

OCaml: applying 𝐹 to𝑀 twice would always generate mod-

ules whose signatures are compatible. The functor MakeSet
in Figure 3 is appropriate for applicative semantics. For exam-

ple, assuming two structures generated by the same functor

application MakeSet(IntEq), since they have the same type

and equality function for integers, there is no reason to dis-

tinguish them.

2.6 First-Class Modules vs Second-Class Modules
In ML, the module language exists in a separate layer from

the core language for expressions, and hence modules are

second-class objects. There is an extension of ML that treats

modules as ordinary values, which are called first-class mod-
ules. First-class modules allow one to dynamically dispatch

a module with conditional expressions and define a function

that takes a module and returns it. Functions over first-class

modules need to have generative semantics in the sense that

the modules returned by applying such functions to first-

class modules must have fresh signatures, that cannot be

equal to other signatures.

OCaml (MetaOCaml) supports both first- and second-class

modules. Second-class modules are packed into first-class

modules and unpacked from first-class modules. OCaml uses

module type SYMBOL_TABLE =
sig

type symbol
val string2symbol: string→ symbol
val symbol2string: symbol→ string

end
module SymbolTable (): SYMBOL_TABLE =

struct
type symbol = int
let table =

(* allocate internal hash table
*)

Hashtbl.create initial_size
let string2symbol x =

(* lookup (or insert) x *)
let symbol2string n =

match Hashtbl.find table n with
| Some x → x
| None →

raise (Failure "bad symbol")
end

module ST1 = SymbolTable ()
module ST2 = SymbolTable ()

Figure 5. Symbol Table

the syntax (module m:S) to pack the module m with the

signature S into a value of type (module S), and the syntax

(val m) unpacks m to a module. Components inside first-

class modules can only be accessed via unpacked modules.

3 Examples of Module Generation
This section shows concrete examples of module generation

in the languages for applicative functors with second-class

modules, and the one for generative functors with first-class

modules. We will show different examples for each language,

which reveals the merits of each language.

3.1 Examples with Applicative Functors and
Second-Class Modules

We show examples in the language with applicative func-

tors and second-class modules, which is called 𝜆<𝐴> (𝐴 for

applicative).

Our first example is MakeSet, the standard example for

ML-modules. To manipulate and generate code of modules,

𝜆<𝐴> provides two multi-stage constructors in addition to

the constructors added to Watanabe et al.’s language. To il-

lustrate these constructors, we first give an example of the

MakeSet program in 𝜆<𝐴> (Figure 6). Following Watanabe et

al.’s language, our 𝜆<𝐴> provides a constructor $ to extract

code of a component from code of a module. For instance, if

Eq is code of a module that has a value component eq of type
𝜏 , then ($Eq).eq is the code of this value component of type

𝜏 code. Similarly, we can extract the type component: sup-

pose Eq is code of a module that contains a type component

t = int, ($Eq).t refers to the type int.

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

module MakeSet =
functor (Eq : EQ mcod) →
⟨⟨ (struct
type elt_t = $Eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] → false
| hd :: tl → ~($Eq.eq) elt

hd || member elt tl
end: SET) ⟩⟩

module IntEq =
⟨⟨ (struct
type t = int
let eq = (=)

end: EQ) ⟩⟩
module IntSet = Runmod(MakeSet(IntEq)

: SET)

Figure 6.MakeSet Functor in 𝜆<𝐴>

module MakeSet =
functor (Eq : EQ ') →
(struct
type elt_t = Eq.t
type set_t = elt_t list
let member = genlet

<let rec member elt set =
match set with
| [] → false
| hd::tl→ ~(Eq.eq) elt hd

|| member elt tl
in member >

end: SET ')
module IntEq =

(struct
type t = int
let eq = genlet <(=)>

end: EQ ')
module IntSet =

struct
module X = MakeSet(IntEq)
type elt_t = X.elt_t
type set_t = X.set_t
let member = Runcode.run X.member

end

Figure 7. MakeSet Translated from 𝜆<𝐴> to MetaOCaml

The key point in 𝜆<𝐴> is to distinguish code of modules

from code of core expressions to avoid expressions that can-

not be translated. To do so, we introduce a typemcod, brack-
ets ⟨⟨⟩⟩, and an escape ≈, for code of modules. For example,

assuming a structure𝑚 has the type 𝑀 , ⟨⟨𝑚⟩⟩ has the type
𝑀 mcod. Furthermore, if 𝑋 is bound to ⟨⟨𝑚⟩⟩, then 𝑋 can

be spliced into other code of a module such as ⟨⟨...(≈ 𝑋)...⟩⟩.
Continuing with the example in Figure 6, MakeSet has the
type functor(Eq: EQ mcod) -> SET mcod, and IntEq has

the type SET mcod. The result of the functor application

MakeSet(IntEq) is given to Runmod, then IntSet has the

type SET.
Figure 7 shows a program translated from Figure 6, where

the definitions of SET’ and EQ’ are omitted. Through the

translation, constructors for module generation are elimi-

nated as the genlet primitive is inserted into the body of the

component member. The role of genlet in the latest Meta-

OCaml
6
is to perform let-insertion to share generated code.

Sato et al. [15] proposed to use genlet to avoid code explo-

sion.

Our second example shows the usefulness of applicative

functors. We borrow an example from Leroy’s paper [11],

which implements dictionaries by a functor MakeDict:

module type DICT =
sig

type key
type 'a dict
val empty: 'a dict
val add: key→ 'a→ 'a dict→ 'a

dict
val find: key→ 'a dict→ 'a

end
module MakeDict =

functor(Key: EQ) →
(struct

type key = Key.t
type 'a dict = (key*'a) list
...

end: DICT)

The parameter Key of MakeSet is the key of this dictionary.

We can extend the functor with the operation domain that
returns the set of keys of a dictionary. The simplest way

is to make a module for the set of keys inside the functor

MakeDict using the functor MakeSet:

module MakeDict =
functor(Key: EQ) →
(struct

...
module KeySet = MakeSet(Key)
let domain dict =.. KeySet.member ..

end: DICT)

To eliminate the abstraction overhead of functor applications,

we can rewrite the above program in 𝜆<𝐴> as follows:

module MakeDict =
functor(Key: EQ mcod) →
⟨⟨ (struct
...
module KeySet= ≈ (MakeSet(Key))
let domain dict =.. KeySet.member ..

end: DICT) ⟩⟩

6http://okmij.org/ftp/ML/MetaOCaml.html

http://okmij.org/ftp/ML/MetaOCaml.html

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

Suppose functors are given the generative semantics, then

the set of keys returned from domain cannot be used with

other sets obtained by applying MakeSet to the same module

for an element type. The types of their sets are incompatible.

For example, we consider a functor MakePrioQueue imple-

menting priority queues that use sets in the same way as

MakeDict.

module MakePrioQueue =
functor(Elt: EQ mcod) →
⟨⟨ (struct

type elt = Elt.t
type queue = elt list
module EltSet= ≈ (MakeSet(Elt))
let contents queue =
(* set of elements in queue *)
...

end: PRIOQUEUE) ⟩⟩

Then, we give the module IntEq to the two functors:

module IntDict =
Runmod(MakeDict(IntEq): DICT)

module IntPrioQueue =
Runmod(MakePrioQueue(IntEq):

PRIOQUEUE)

IntDict and IntPrioQueue contain the same set of integers,

but the types of their sets are not compatible. Therefore, the

following expression causes a type error.

IntDict.domain d =
IntPrioQueue.contents q

A possible solution to this problem is to hoist MakeSet
from MakeDict and MakePrioQueue, and to share the func-

tor application MakeSet(IntEq). In this case, MakeDict and
MakePrioQueue take an extra argument for the set hoisted

out, in addition to the argument Key (or Elt). Unfortunately,
this solution has some problems:

• All programs that use MakeDict or MakePrioQueue
require modifications to the functor arguments, even

if some programs do not use the operations on the

sets.

• Hoisting the functor application MakeSet(IntEq) to
a common point requires a non-local program trans-

formation.

In applicative semantics, there are no such problems. There-

fore, we think that applicative functors are useful for mod-

ule generation. Besides the above merit, since applicative

functors and second-class modules are common in OCaml,

existing OCaml programs can be staged with a little cost if

one works in 𝜆<𝐴> .

3.2 Examples with Generative Functors and
First-Class Modules

In this subsection, we show examples that use generative

functors and first-class modules. We call the language as

𝜆<𝐺>
(𝐺 for generative), which is a refined version of our

predecessors [15, 20]. The most useful aspect of 𝜆<𝐺>
is that

a program can choose code of modules. Figure 8 shows a

program where an implementation of a logger is dynam-

ically dispatched to the main application depending on a

command-line argument. In this example, there are only two

choices: consoleLogger for printing logs to a console, or

fileLogger for writing logs to a file.

For this setting, we may be able to generate the main

application inlined for all possible combinations at compile-

time, such as consoleLogApp and fileLogApp. In general,

however, applications have many runtime parameters such

as command-line arguments, and due to combinatorial ex-

plosion, it is difficult to generate all possible combinations

at compile time. Hence, generating code of modules at run-

time is useful for specializing applications which have many

parameters.

Another aspect to be noted is that the abstraction overhead

can be eliminated from programs suitable for generative

functors such as the example of SymbolTable in Section 2.5.

Functors represented as ordinary functions return modules

with fresh abstract types.

𝜆<𝐺>
provides two multi-stage constructors for modules

in addition to Watanabe et al.’s $ and run_module. One is
the type mcod for code of modules. The other is brackets

⟨⟨⟩⟩ for modules. Note that escapes for modules are not in-

troduced because the syntax becomes too complex. Since

traditional MetaOCaml can generate code of expressions,

one might think that a language for generating first-class

modules can be implemented as a lightweight extension to

MetaOCaml. Unfortunately, it is not the case for Watanabe et

al.’s translation and ours, since code of ordinary expressions

and code of modules have different semantics, and they need

to be distinguished.

Figure 9 shows the MakeSet functor expressed in 𝜆<𝐺>
. It

is translated to the program in Figure 10 by our translation.

There is a trade-off between 𝜆<𝐴> and 𝜆<𝐺>
. In the lan-

guage 𝜆<𝐴> , the dictionary example in the previous section

can be expressed. However, it does not allow a program that

dynamically selects a module to be specialized, since depen-

dencies between second-class modules are solved statically.

𝜆<𝐺>
is opposite to 𝜆<𝐴>. OCaml supports the two styles

in a single language, and this paper is the first to propose a

language extension of module generation for both styles.

4 Proposed Languages
We propose two languages for module generation. Due to

space limitations, we present the language 𝜆<𝐴> here. Read-

ers are encouraged to refer to the full version of this paper
7
.

The language 𝜆<𝐴> is a two-stage language as an exten-

sion of core MetaOCaml plus module generation. It has ordi-

nary simply-typed lambda terms, second-class modules, and

7http://logic.cs.tsukuba.ac.jp/~yuhi

http://logic.cs.tsukuba.ac.jp/~yuhi

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

module type LOG =
sig

val info: string → unit
val error: string → unit

end
let consoleLogger =
⟨⟨ (module struct
let print level msg =

Printf.printf "[%s] %s\n" level
msg

let info msg = print "INFO" msg
let error msg = print "ERROR" msg

end: LOG) ⟩⟩
let fileLogger =
⟨⟨ (module struct
...

end: LOG) ⟩⟩
let makeApp (logger: (module LOG)

mcod) =
⟨⟨ (module struct
let start () =
~($logger.info) "Start app";
...

end: APP) ⟩⟩
let () =

let logger =
if Sys.argv .(1) = "console" then

consoleLogger
else fileLogger in

let app = makeApp logger in
let module App = (val (run_module

app: APP)) in
App.start () ;;

Figure 8. Choosing Logger Depending on Runtime Options

let makeSet (eq: (module EQ) mcod)=
⟨⟨ (struct
type elt_t = $eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] → false
| hd::tl→ ~($eq.eq) elt hd

|| member elt tl
end: SET) ⟩⟩

module IntSet = (val (run_module
(makeSet ⟨⟨ (module struct

type t = int
let eq = (=)

end: EQ) ⟩⟩)))

Figure 9. MakeSet Functor in 𝜆<𝐺>

multi-stage constructors for code generation. The design of

the language is based on Leroy’s applicative-functor calculus

[11], the classic type system 𝜆◦ [3], and Watanabe et al.’s

calculus [20]. We confine ourselves to a minimal language to

express our results. Extending our language by more features

let makeSet (eq: (module EQ ')) =
(struct

module Eq = (val eq)
type elt_t = Eq.t
type set_t = elt_t list
let member = genlet

<let rec member elt set =
match set with
| [] → false
| hd::tl→ ~(Eq.eq) elt hd

|| member elt tl
in member >

end: SET ')
module IntSet = (val

(module struct
module S =

(val (makeSet (module struct
type t = int
let eq = genlet <(=)>

end: EQ ')))
type elt_t = S.elt_t
type set_t = S.set_t
let member=run S.member

end: EQ))

Figure 10.MakeSet Translated from 𝜆<𝐺>
to MetaOCaml

such as sharing constraints and computational effects is left

for future work.

4.1 Syntax
Figure 11 defines the syntax for terms in 𝜆<𝐴>. We use

metavariables𝑚 for module expressions, 𝑠 for a sequence of

structure components, 𝑐 for structure components, 𝑝 for ac-

cess paths, 𝑒 for core expressions, and 𝑃 for programs. Also,

𝑥 , 𝑡 , and 𝑋 are names for values, types, and modules, respec-

tively. Duplicate component names are prohibited by typing

rules. In this language, base types and primitives are unspec-

ified. Complete programs 𝑃 are sequences of structure com-

ponents. For simplicity, we sometimes omit prog and end
in program examples.

We introduce brackets ⟨⟨⟩⟩, an escape ≈, and Runmod,
for module expressions. Since the module expressions are

second class, which means that they exist on a different layer

than that of the terms. the multi-stage constructors for them

should be distinguished from those for terms, which are

<>, ∼, and run. Following Watanabe et al.’s calculus, we

introduce the $ constructor to extract a component contained

in code of a module as code. For example, $𝑝.𝑥 extracts the

value component 𝑥 as code from code of a module accessed

with the path 𝑝 , and its code can be spliced into other code.

$𝑝.𝑥 reads $(𝑝).𝑥 . A functor definition and a restriction by a

signature are defined by functor (𝑋 : 𝑀) →𝑚 and (𝑚 : 𝑀),
respectively. They use unfamiliar syntax for Camel users, but

OCaml supports them. The key to applicative functors is that

the access paths include a path application 𝑝1 (𝑝2), which

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

𝑚 ::= 𝑋 | 𝑝.𝑋 | struct 𝑠 end | (𝑚 : 𝑀) | 𝑚 (𝑝)
| functor (𝑋 : 𝑀) →𝑚

| ⟨⟨𝑚⟩⟩ | ≈𝑚 | Runmod (𝑚 : 𝑀) | $𝑝.𝑋
𝑠 ::= 𝜖 | 𝑐 𝑠
𝑐 ::= let 𝑥 : 𝜏 = 𝑒 | type 𝑡 = 𝜏 | module 𝑋 =𝑚

𝑝 ::= 𝑋 | 𝑝.𝑋 | 𝑝1 (𝑝2) | $𝑝.𝑋
𝑒 ::= 𝑥 | 𝑝.𝑥 | < 𝑒 > | ∼ 𝑒 | run 𝑒 | $𝑝.𝑥
| fun 𝑥 → 𝑒 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒

Figure 11. Syntax of terms

𝑀 ::= sig 𝑆 end | functor (𝑋 : 𝑀1) → 𝑀2 | 𝑀 mcod
𝑆 ::= 𝜖 | 𝐶 𝑆

𝐶 ::= val 𝑥 : 𝜏 | type 𝑡 | type 𝑡 = 𝜏 | module 𝑋 : 𝑀

𝜏 ::= 𝑡 | 𝑝.𝑡 | 𝜏 → 𝜏 | 𝜏 code | $𝑝.𝑡

Figure 12. Syntax of types

is needed to test type equality among modules obtained by

functor applications. Along with this, the syntax of a functor

application𝑚(𝑝) is restricted to a path argument only.

4.2 Type System
Figure 12 defines the syntax of types. The syntax of types

is standard except the following. We use metavariables 𝑀

for module types, 𝑆 for a sequence of signature components,

𝐶 for signature components, and 𝜏 for types of core expres-

sions. We introduce the type𝑀 mcod to distinguish code of

modules from code of core expressions. The signature com-

ponents include an abstract type component (type 𝑡) and
a manifest type component (type 𝑡 = 𝜏). The $𝑝.𝑡 refers

to the type component 𝑡 within code of a module specified

with the path 𝑝 . Our language has no explicit syntax for

embedding types to code of a module, which is contrasting

to Watanabe et al.’s language.

The typing environment 𝐸 is a possibly empty sequence

of signature components 𝐶 annotated with a level 𝑙 . Since

𝜆<𝐴> is a two-stage language, 𝑙 is either 0 or 1. The other

typing environment Δ is a subsequence of 𝐸. It is used in the

translation only, and explained later.

The first group of typing judgment consists of ⊢ 𝑃 wt
for well typedness of 𝑃 , and 𝐸;Δ ⊢𝑙 𝑀 wf, 𝐸;Δ ⊢𝑙 𝑆 wf,
𝐸;Δ ⊢𝑙 𝐶 wf, and 𝐸;Δ ⊢𝑙 𝜏 wf for well formedness. They

claim that the target types or expressions are well typed or

well formed under the assumptions 𝐸;Δ at the stage 𝑙 . We

omit the definition in this paper.

The second group of judgements consist of 𝐸;Δ ⊢𝑙 𝑒 : 𝜏

for an expression 𝑒 of type 𝜏 , 𝐸;Δ ⊢𝑙 𝑚 : 𝑀 for a module

expression 𝑚 of module type 𝑀 , and 𝐸;Δ ⊢𝑙 𝑠 : 𝑆 for a

structure 𝑠 with signature 𝑆 . Most typing rules to derive a

judgment 𝐸;Δ ⊢𝑙 𝑒 : 𝜏 are standard in the type systems for

MetaML-like languages [1, 18]. Nevertheless, we explain the

rules for basic multi-stage constructs < 𝑒 >, ∼ 𝑒 , and run 𝑒

shown below.

𝐸;Δ ⊢1 𝑒 : 𝜏
(E-C)

𝐸;Δ ⊢0 < 𝑒 > : 𝜏 code
𝐸;Δ ⊢0 𝑒 : 𝜏 code

(E-E)

𝐸;Δ ⊢1 ∼ 𝑒 : 𝜏

The rule E-C assigns the type 𝜏 code to the code expression

< 𝑒 > if 𝑒 has type 𝜏 . The levels of judgments are used to

distinguish level-1 expressions, such as 𝑒 in this rule, from

level-0 expressions, such as < 𝑒 >. The rule E-E is opposite
to E-C; the ’escape’ expression ∼ 𝑒 splices the code value of
𝑒 into another code. For example, we can derive

·; · ⊢0 let 𝑥 = < 3 > in <∼ 𝑥 + 7 > : int code

assuming that integer constants and addition are added,

We did not introduce environment classifiers [18] to keep

our type system compact. As a drawback, the scope-extrusion

problem may occur; the run-expression may receive an open

code as the value of 𝑒 , causing a runtime error. However, it

should not be difficult to include environment classifiers in

our type system.

The judgment for module expressions 𝐸;Δ ⊢𝑙 𝑚 : 𝑀 has

the following typing rules for multi-stage constructors:

𝐸;Δ ⊢1 𝑚 : 𝑀
(M-C)

𝐸;Δ ⊢0 ⟨⟨𝑚⟩⟩ : 𝑀 mcod
𝐸;Δ ⊢0 𝑚 : 𝑀 mcod

(M-E)

𝐸;Δ ⊢1 ≈𝑚 : 𝑀

The rule M-C assigns a type to code of a module ⟨⟨𝑚⟩⟩, and the
rule M-E to a splice of a module ≈𝑚. They are quite similar

to the counterpart rules E-C and E-E for core expressions.

The following rule M-R assigns a type to a run expression

for modules:

𝐸;Δ ⊢0 𝑚 : 𝑀 mcod
(M-R)

𝐸;Δ ⊢0 Runmod (𝑚 : 𝑀) : 𝑀

Our type system has a few involved rules.

The first one is the typing rule for the $-operator:

𝐸;Δ ⊢0 𝑝 : (sig 𝑆1 (val 𝑥 : 𝜏) 𝑆2 end) mcod
(E-DotCode)

𝐸;Δ ⊢0 $𝑝.𝑥 : 𝜏 ′ code

To understand the rule, assume 𝜏 ′ = 𝜏 . Then, the rule says

that given 𝑝 of a module-code type and 𝑥 has type 𝜏 in the

module, $𝑝.𝑥 has the type 𝜏 code. This reflects our intention
that the $-operator converts code of a module to a module

consisting of code values. In the precise formulation, 𝜏 ′ is
𝜏 [𝑧 ← $𝑝.𝑧 | 𝑧 ∈ Dom(𝑆1)] code which involves a substitu-

tion; see Leroy’s calculus [11].

The second involved rule is the rule M-Strengthening

to derive the equivalence of module types:

𝐸;Δ ⊢0 𝑝 : 𝑀
(M-Strengthening)

𝐸;Δ ⊢0 𝑝 : 𝑀/𝑝0

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

The strengthening operation replaces abstract type com-

ponents with manifest type components with a path. For

instance, assuming a module A has type sig type t end,
this operation translates its type to sig type t = A.t end.
Also, assuming the result type of functor application (path

application) F(A) is sig type t end, its strengthened type

is sig type t = F(A).t end. Intuitively, this operation
gives a module type an identity. We use a notation 𝑀/𝑝𝑙 ,
which is based on Leroy’s style [11], to strengthen the mod-

ule type𝑀 with the path 𝑝 at the level 𝑙 . The level 𝑙 in𝑀/𝑝𝑙
is for the operation / rather than the path 𝑝 , which plays the

role of a flag that indicates whether it is inside mcod.
We emphasize that strengthening is needed for the ap-

plicative semantics only, which complicates the formal de-

velopment, compared with the generative semantics. In the

multi-stage languages, we need to consider the case when

the path 𝑝 contains the $-operator.

4.3 Examples of Typing Derivation
We explain how the types for the modules and the functor

in Figure 6 is derived.

Let 𝐸 = (Eq : EQmcod)0 where EQ is the signature defined
in Figure 3. The $-operator turns code of a module (EQ) to a

module consisting of code, hence we have:

𝐸; · ⊢0 Eq : EQmcod
𝐸; · ⊢0 $Eq.eq : (𝑡 → 𝑡 → bool) code
𝐸; · ⊢1∼ ($Eq.eq) : 𝑡 → 𝑡 → bool

.

.

.

.

𝐸; · ⊢1 member : elt_t → elt_t list → bool

In the last step of the above derivation, we used several

standard typing rules for terms. We also have all the type

components of MakeSet are suitably typed, and together

with the above derivation, we can derive the following type:

𝐸; · ⊢1 struct type elt_t = $Eq.t... end : SET

𝐸; · ⊢1 (struct type elt_t = $Eq.t... end : SET) : SET
𝐸; · ⊢0 ⟨⟨(struct type elt_t = $Eq.t... end : SET) ⟩⟩ : SETmcod

Then, we can derive ·; · ⊢0 MakeSet : EQ_SET_FUN where
EQ_SET_FUN is functor (Eq : EQmcod) → SETmcod.

Similarly, we can derive the type for IntEq in Figure 6 as

·; · ⊢0 IntEq : EQ mcod. By combining them, we can derive

the type for IntSet as follows:

·; · ⊢0 MakeSet : EQ_SET_FUN 𝐸; · ⊢0 IntEq : EQmcod
·; · ⊢0 MakeSet(IntEq) : SET mcod

·; · ⊢0 Runmod (MakeSet(IntEq) : SET) : SET

5 Translation to MetaOCaml
We define a translation from 𝜆<𝐴> to plain MetaOCaml,

while we omit the one from 𝜆<𝐺>
to plainMetaOCaml, which

is much simpler than the former.

We first show an example of the translation. Consider the

following program written in 𝜆<𝐴> .

module A = ⟨⟨ struct
type t = int
let x:t = 1
module B = struct

val y:t = 2
end

end ⟩⟩
module A' = Runmod(A : sig

type t = int
val x:t
module B: sig

val y:t
end

end)

They are translated as follows:

module A = struct
type t = int
let x:t code = <1>
module B = struct

val y:t code = <2>
end

end
module A' = struct

module X = A
type t = X.t
let x:t = run X.x
module B = struct

module Y = X.B
let y:t = run Y.y

end
end

In the translation, code of a module is translated to a mod-

ule, and the type of its value components such as x translates
to a code type, for instance, int is translated to int code.
On the other hand, the type components do not change, for

instance, the abstract type t is equal to int before and after

the translation. The translation is applied recursively if code

of a module being translated has nested modules (e.g. B).
For Runmod(𝐴 : 𝑆), our translation expands all the compo-

nents of 𝐴, and re-constructs a new module 𝐴′ by collecting

them after adding the run-primitive to the value components

such as run X.x.

5.1 Translation Rules
We explain the key rules of our translation. For a type 𝜏 and

a level 𝑙 , the translated type [[𝜏]]𝑙 is defined as follows:

[[𝑡]]𝑙 = 𝑡

[[𝑝.𝑡]]𝑙 = [[𝑝]]𝑙 . 𝑡
[[𝜏1 → 𝜏2]]𝑙 = [[𝜏1]]𝑙 → [[𝜏2]]𝑙

[[𝜏 code]]0 = [[𝜏]]0 code

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

[[$𝑝.𝑡]]𝑙 = [[𝑝]]𝑙 . 𝑡

Essentially, types remain the same through the translation

except that the symbol $ is eliminated (in the last rule).

The translation for terms is denoted by [[·]]𝑙Δ, which is

parameterized by the level 𝑙 (for 𝑙 = 0, 1) and the environ-

ment Δ explained later. The key rule for value components

is shown below:

[[let 𝑥 : 𝜏 = 𝑒]]1Δ
= let 𝑥 : [[𝜏]]1 code = genlet < [[𝑒]]1Δ >

A value component at the level 1 is in a code of a module,

hence we change its type to a code type, and add the genlet
primitive to avoid the code-duplication problem.

For expressions, the translation is homomorphic for most

cases except the following rules:

[[𝑥]]1Δ =

{
∼ 𝑥 (𝑥 ∈ Dom(Δ))
𝑥 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

[[𝑝.𝑥]]1Δ =

{
∼ ([[𝑝]]1. 𝑥) (head(𝑝) ∈ Dom(Δ))
[[𝑝]]1 . 𝑥 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

[[$𝑝.𝑥]]0Δ = [[𝑝]]0. 𝑥

In the first rule, Δ is the set of variables bound in the same

module (which appears as a code of the module), hence we

must add an escape (splice) to the variable after the trans-

lation. Similarly for the second rule. In the last rule, we

unconditionally eliminate $ from the paths.

The rules for [[𝑚]]𝑙Δ for a module expression𝑚 is given

as follows:

[[⟨⟨𝑚⟩⟩]]0Δ = [[𝑚]]1Δ
[[≈𝑚]]1Δ = [[𝑚]]0Δ

[[Runmod (𝑚 : sig 𝑆 end)]]0Δ = struct

module 𝑋 = [[𝑚]]0Δ
𝑆 � 𝑋

end

[[$𝑝.𝑋]]0Δ = [[𝑝]]0 . 𝑋

The first rule translates code of a module to a module,

but the stage is raised to 1, reflecting the fact that𝑚 is in

the code. The next rule eliminates the escape for code of

a module. The third rule translates a runmod-term which

is complicated. Its result depends on the signature 𝑆 of the

target module since we need to build a new module. The

new module contains a nested module with a fresh name

and components. The expression 𝑆 � 𝑋 when 𝑆 is a value

component is defined as:

((val 𝑥 : 𝜏) 𝑆) � 𝑋 = (let 𝑥 : 𝜏 = run 𝑋 .𝑥) 𝑆 � 𝑋

which retrieves the 𝑥-component from the module 𝑋 , runs

it, and binds 𝑥 (in the new module) to its result. The run-
primitive is propagated to nested modules shown below:

((module 𝑋 ′ : 𝑀) 𝑆) � 𝑋

= (module 𝑋 ′ = [[Runmod (𝑋 .𝑋 ′ : 𝑀)]]0𝜖) 𝑆 � 𝑋

Other module expressions are kept intact and the environ-

ment Δ is not important for now. We omit the other clauses

of the translation.

5.2 Translation Preserves Typing
We can prove that the following form of simple type preser-

vation holds for the translation. If 𝐸;Δ ⊢0 𝑒 : 𝜏 is derivable

in our type system, then [[𝐸]]Δ ⊢0 [[𝑒]]0Δ : [[𝜏]]0 is
derivable. We assume the following two: First, the target

language is a subset of MetaOCaml, which is the same as

our language without multi-stage constructors for modules.

However, the type system in the target language is defined

without the second environment Δ, which is obtained by

simply removing Δ from our type system. Second, the target

type system has a typing rule for genlet. The typing rule for

genlet is defined below.

𝐸 ⊢0 𝑒 : 𝜏 code
𝐸 ⊢0 genlet 𝑒 : 𝜏 code

Theorem 5.1. If 𝐸;Δ ⊢𝑙 𝑒0 : 𝜏0 is derivable in 𝜆<𝐴> , then
[[𝐸]]Δ ⊢𝑙 [[𝑒0]]𝑙Δ : [[𝜏0]]𝑙 is derivable.

The proof is obtained by simply applying the standard

technique of proving type preservation. The most difficult

part is to formulate the typing rules and translation rules cor-

rectly in the presence of applicative functors and generation

of code and modules.

6 Implementation and Performance
Although the main purpose of this paper is to give a solid

type-theoretic foundation to the languages for module gen-

eration, the performance of our language is not irrelevant,

as the main objective of module generation is to eliminate

the overhead of functor applications (or module boundary).

We have implemented our languages using the transla-

tions in the previous section and compared the performance

of our implementation with those of the existing work. We

take a benchmark program used in existing studies such

as Watanabe et al. [20]. It implements simplification rules

for arithmetic expressions in a domain-specific language

(DSL). The DSL is embedded in OCaml by the tagless-final

embedding [2], which extensively uses the module system.

Simplifications for DSL expressions such as 0 + 𝑛 → 𝑛 and

0 · 𝑛 → 0 are expressed by functors, and it is desirable to

remove the overhead of functor applications.

The following functor Simp implements one of simplifica-

tions:

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 20 40 60 80 100

ti
m

e
 f
o

r
c
o

d
e

 g
e

n
e

ra
ti
o

n
 [
s
]

the number of functor applications

λ
<M>

 (Watanabe et al.’s)

λ
<A>

 (proposed)

λ
<G>

 (proposed)

Figure 13. Time for Code Generation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 0 20 40 60 80 100

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

the number of functor applications

naive (no code generation)

λ
<M>

 (Watanabe et al.’s)

λ
<A>

 (proposed)

λ
<G>

 (proposed)

Figure 14. Execution Time for Generated Code

module Simp= functor(M : S mcod)→
⟨⟨ (struct
type int_t = $M.int_t * bool
let add n1 n2 =
match (n1, n2) with
(x1,b1),(x2,b2) →
if b1&&b2 then (~($M.int)0,true)
else if b1 then (x2,false)
else if b2 then (x1,false)
else (~($M.add) x1 x2,false)

...
end : S) ⟩⟩

The argument of Simp is code of a structure M, which ex-

presses arithmetic expressions before simplification. The

functor Simp simplifies an addition expression when at least

one of its arguments is zero. To do this, the type M.int_t is in-
terpreted as a pair of an arithmetic expression and a boolean

flag to indicate the expression is zero or not. Since M has the

type S mcod,$M.add refers to the code of the add-component

of M correctly, which is spliced into the resulting code, and

the overhead of an indirect function call eliminated. Our

test program applies the functor Simp to a structure many

times such as Simp(Simp(...(M)...)), and we measured

the performance of the resulting module.

0.000

0.010

0.020

0.030

0.040

0.050

 0 2 4 6 8 10 12 14 16

e
x
e
c
u

ti
o

n
 t

im
e

 [
s
]

the number of functor applications

λ
<M>

 (Watanabe et al.’s)

λ
<A>

 (proposed)

λ
<G>

 (proposed)

Figure 15. Execution Time for Generated Code (zoomed)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 20 40 60 80 100

s
iz

e
 o

f
c
o

d
e

 [
K

B
]

the number of functor applications

λ
<M>

 (Watanabe et al.’s)

λ
<A>

 (proposed)

λ
<G>

 (proposed)

Figure 16. Size of Generated Code

We have measured the performance of the following four

variations:

• a naïve OCaml program (no code generation).

• a MetaOCaml program with Watanabe et al.’s transla-

tion.

• a MetaOCaml program in 𝜆<𝐺>
with our translation.

• a MetaOCaml program in 𝜆<𝐴> with our translation.

We did not include the result by Sato et al.’s translation, since

for this benchmark the resulting program by their translation

is identical to the one in 𝜆<𝐺>
with our translation.

We have conducted the experiments on Ubuntu 18.04 LTS,

Xeon E3-1225 v6@3.3GHz, Memory 32GB, BER MetaOCaml

N107 (OCaml 4.07.1), byte code compiler, and all the results

are the average of 10 trials. For these programs, we have

measured the time for code generation and compilation (Fig-

ure 13), the execution time of generated code (Figure 14 and

15), and the size of generated code (Figure 16) where the size

of code is the file size in bytes,

The results can be summarized as follows. First, all ap-

proaches based on module generation outperform the naïve

program (Figure 14), thus we confirmed that it eliminates the

overhead of functor applications. Second, both of our two

languages have slightly better performance in the execution

time than Watanabe et al.’s work, while ours outperform

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Yuhi Sato and Yukiyoshi Kameyama

theirs in the other factors (the code-generation time and the

size of generated code). Third, in all experiments, the gener-

ative and applicative styles have quite similar performance.

Hence, and we can select a suitable style depending on our

applications without worrying about the loss of performance.

7 Related Work
In this section, we compare several closely related works

with our work.

One can say that our work provides a means to inline func-
tor applications based on the programmer’s control. There

are fully automatic tools or systems to inline functor appli-

cations including Flambda [6] and MLton
8
. By aggressively

inlining functor applications, they can eliminate redundant

indirections. While automatic tools are easier to use than

human-controlled tools, we think the former does not al-

ways subsume the latter, just like fully automatic partial

evaluation does not always subsume programmer-controlled

program generation. In particular, when we want to inline

functor applications conditionally, based on domain-specific

knowledge, or when we want to control the number of inlin-

ing (how much we inline the functor applications), human

intervention is needed.

Squid [13] is a multi-stage programming framework for

Scala, and guarantees that generated code is well-typed and

well-scoped. Parreaux and Shaikhha [12] proposed a library

for class generation built on top of the Squid and gave prac-

tical use cases. Unfortunately, it is difficult to simply apply

their use cases to our approach. First, classes can have states,

but modules without side effects cannot. Second, their library

provides a way to dynamically generate fields of classes, but

our language cannot. Achieving them in a type-safe way and

giving large-scale practical use cases are left for future work.

The MetaML-style approach taken in this work is purely
generative. Many studies take opposite approaches based on

introspection or reflection which allow the inspection or

decomposition of generated code. One of such approaches is

Racket’s module system [7] mentioned in Section 1. Another

related work is SugarJ [5], which provides a library-based

approach to module systems for model-driven development.

Although their motivation is quite different from ours, there

is some technical similarity in that their modules provide

phase separation, and they consider transformers over mod-

ules just like functors over modules in our case.

8 Conclusion
In this paper, we have studied typed two-stage programming

languages for generating and manipulating code of mod-

ules. We have designed two languages that allow generating

modules in different styles, given a precise type-theoretic

formulation, and defined a type-preserving translation to

8http://www.mlton.org

plain MetaOCaml. We have also implemented program trans-

lators based on our translations and shown that despite the

complexity of the language and the type system, the module

generation with applicative functors and second-class mod-

ules has almost identical performance compared with the

existing studies based on generative functors and first-class

modules. Thus, a programmer can choose the style without

worrying about the performance.

One may wonder if realistic programs use deeply nested

functor applications as is used in our benchmark program,

but there exist such cases. For instance, MirageOS contains

many functor applications, and its web service has functor

applications of depth up to 10 [14]. The actual MirageOS may

contain more indirections than this, hence we can expect

that the benefit of module generation would be even greater.

There are many directions for future work. First, we want

to make our languages more expressive to cover polymor-

phism, computational effects, and sharing constraints inmod-

ules. Second, FLambda is a fully automatic inlining system

that works for functor applications, too. While we believe

that human-controlled generation of modules and terms such

as our work can outperform the former, unifying these ap-

proaches is doable and will be interesting from the practical

aspect. Finally, ML-style modules are not the only high-level

abstractions for programming languages, and there are many

works in the literature that investigated the generation of

high-level abstractions such as classes. By comparing our

work and others, we want to improve our languages and also

help improve other works.

Acknowledgments
We would like to thank the anonymous reviewers and the

PC members of GPCE 2021 for their valuable comments.

The second author is supported in part by Grant-in-Aid for

Scientific Research (B) No. 18H03218.

References
[1] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. 2004. ML-Like

Inference for Classifiers. In Programming Languages and Systems, 13th
European Symposium on Programming, ESOP 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings (Lecture
Notes in Computer Science), David A. Schmidt (Ed.), Vol. 2986. Springer,

79–93. https://doi.org/10.1007/978-3-540-24725-8_7
[2] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

tagless, partially evaluated: Tagless staged interpreters for simpler

typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[3] Rowan Davies. 1996. A Temporal-Logic Approach to Binding-Time

Analysis. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996.
184–195. https://doi.org/10.1109/LICS.1996.561317

[4] Derek Dreyer. 2005. Understanding and Evolving the MLModule System.

Ph.D. Dissertation. USA. AAI3166274.

[5] Sebastian Erdweg and Klaus Ostermann. 2017. A Module-System

Discipline for Model-Driven Software Development. Art Sci. Eng.

http://www.mlton.org
https://doi.org/10.1007/978-3-540-24725-8_7
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1109/LICS.1996.561317

Type-Safe Generation of Modules in
Applicative and Generative Styles GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Program. 1, 2 (2017), 9. https://doi.org/10.22152/programming-journal.
org/2017/1/9

[6] Xavier Leroy et al. 2019. Chapter 21. Optimisation with Flambda. The

OCaml system release 4.09. https://caml.inria.fr/pub/docs/manual-
ocaml/flambda.html

[7] Matthew Flatt. 2013. Submodules in racket: you want it when, again?.

In Generative Programming: Concepts and Experiences, GPCE’13, Indi-
anapolis, IN, USA - October 27 - 28, 2013, Jaakko Järvi and Christian

Kästner (Eds.). ACM, 13–22. https://doi.org/10.1145/2517208.2517211
[8] Yuichiro Hanada and Atsushi Igarashi. 2014. On Cross-Stage Per-

sistence in Multi-Stage Programming. In Functional and Logic Pro-
gramming - 12th International Symposium, FLOPS 2014, Kanazawa,
Japan, June 4-6, 2014. Proceedings (Lecture Notes in Computer Science),
Michael Codish and Eijiro Sumii (Eds.), Vol. 8475. Springer, 103–118.

https://doi.org/10.1007/978-3-319-07151-0_7
[9] Jun Inoue, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Staging

beyond terms: prospects and challenges. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. 103–108.
https://doi.org/10.1145/2847538.2847548

[10] Oleg Kiselyov. 2014. The Design and Implementation of BER Meta-

OCaml - System Description. In Functional and Logic Programming -
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6,
2014. Proceedings. 86–102. https://doi.org/10.1007/978-3-319-07151-
0_6

[11] Xavier Leroy. 1995. Applicative Functors and Fully Transparent Higher-

Order Modules. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Francisco,

California, USA) (POPL ’95). Association for Computing Machinery,

New York, NY, USA, 142–153. https://doi.org/10.1145/199448.199476
[12] Lionel Parreaux and Amir Shaikhha. 2020. Multi-Stage Programming

in the Large with Staged Classes. In Proceedings of the 19th ACM SIG-
PLAN International Conference on Generative Programming: Concepts
and Experiences (Virtual, USA) (GPCE 2020). Association for Comput-

ing Machinery, New York, NY, USA, 35–49. https://doi.org/10.1145/
3425898.3426961

[13] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid:

type-safe, hygienic, and reusable quasiquotes. In Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALA@SPLASH

2017, Vancouver, BC, Canada, October 22-23, 2017, Heather Miller,

Philipp Haller, and Ondrej Lhoták (Eds.). ACM, 56–66. https://doi.org/
10.1145/3136000.3136005

[14] Gabriel Radanne, Thomas Gazagnaire, Anil Madhavapeddy, Jeremy

Yallop, Richard Mortier, Hannes Mehnert, Mindy Preston, and David J.

Scott. 2019. Programming Unikernels in the Large via Functor Driven

Development. CoRR abs/1905.02529 (2019). arXiv:1905.02529 http:
//arxiv.org/abs/1905.02529

[15] Yuhi Sato, Yukiyoshi Kameyama, and Takahisa Watanabe. 2020.

Module generation without regret. In Proceedings of the 2020 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion, PEPM@POPL 2020, New Orleans, LA, USA, January 20, 2020,
Casper Bach Poulsen and Zhenjiang Hu (Eds.). ACM, 1–13. https:
//doi.org/10.1145/3372884.3373160

[16] Tim Sheard. 1998. Using MetaML: A Staged Programming Language.

InAdvanced Functional Programming, Third International School, Braga,
Portugal, September 12-19, 1998, Revised Lectures (Lecture Notes in
Computer Science), S. Doaitse Swierstra, Pedro Rangel Henriques,

and José Nuno Oliveira (Eds.), Vol. 1608. Springer, 207–239. https:
//doi.org/10.1007/10704973_5

[17] Walid Taha. 2003. A Gentle Introduction to Multi-stage Programming.

InDomain-Specific ProgramGeneration, International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003, Revised Papers. 30–50. https:
//doi.org/10.1007/978-3-540-25935-0_3

[18] Walid Taha and Michael Florentin Nielsen. 2003. Environment Classi-

fiers. SIGPLAN Not. 38, 1 (Jan. 2003), 26–37. https://doi.org/10.1145/
640128.604134

[19] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming. In

Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), Amsterdam, The Netherlands, June
9-11, 1997, Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman

(Eds.). ACM, 321. https://doi.org/10.1145/258948.258990
[20] Takahisa Watanabe and Yukiyoshi Kameyama. 2018. Program genera-

tion for ML modules (short paper). In Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, Los Angeles,
CA, USA, January 8-9, 2018. 60–66. https://doi.org/10.1145/3162072

[21] Jeremy Yallop. 2016. Staging generic programming. In Proceedings of
the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016.
85–96. https://doi.org/10.1145/2847538.2847546

https://doi.org/10.22152/programming-journal.org/2017/1/9
https://doi.org/10.22152/programming-journal.org/2017/1/9
https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1007/978-3-319-07151-0_7
https://doi.org/10.1145/2847538.2847548
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/199448.199476
https://doi.org/10.1145/3425898.3426961
https://doi.org/10.1145/3425898.3426961
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3136000.3136005
https://arxiv.org/abs/1905.02529
http://arxiv.org/abs/1905.02529
http://arxiv.org/abs/1905.02529
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1007/10704973_5
https://doi.org/10.1007/10704973_5
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1145/640128.604134
https://doi.org/10.1145/640128.604134
https://doi.org/10.1145/258948.258990
https://doi.org/10.1145/3162072
https://doi.org/10.1145/2847538.2847546

	Abstract
	1 Introduction
	2 Background: ML-modules
	2.1 Structures
	2.2 Signatures
	2.3 Functors
	2.4 Modules vs Classes
	2.5 Generative Functors vs Applicative Functors
	2.6 First-Class Modules vs Second-Class Modules

	3 Examples of Module Generation
	3.1 Examples with Applicative Functors and Second-Class Modules
	3.2 Examples with Generative Functors and First-Class Modules

	4 Proposed Languages
	4.1 Syntax
	4.2 Type System
	4.3 Examples of Typing Derivation

	5 Translation to MetaOCaml
	5.1 Translation Rules
	5.2 Translation Preserves Typing

	6 Implementation and Performance
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

