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Abstract
Staging allows a programmer to write domain-specific, cus-
tom code generators. Ideally, a programming language for
staging provides all necessary features for staging, and at
the same time, gives static guarantee for the safety prop-
erties of generated code including well typedness and well
scopedness. We address this classic problem for the language
with control operators, which allow code optimizations in a
modular and compact way. Specifically, we design a staged
programming language with the expressive control oper-
ators shift0 and reset0, which let us express, for instance,
multi-layer let-insertion, while keeping the static guarantee
of well typedness and well scopedness. For this purpose, we
extend our earlier work on refined environment classifiers
which were introduced for the staging language with state.
We show that our language is expressive enough to write
interesting code generation techniques, and that it enjoys
type soundness. We also mention a type inference algorithm
for our language under reasonable restriction.

CCS Concepts • Theory of computation → Type the-
ory; • Software and its engineering → Functional lan-
guages;

Keywords code generation, language design, program trans-
formation, generative programming, staging, type system
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1 Introduction
Program generation is one of the leading approaches to
achieve high-level abstraction and high performance in a sin-
gle framework. Multi-stage Programming Languages such
as MetaML [18] are statically typed languages with lexical
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binding for program generation, with the static safety assur-
ance that all generated code is well scoped and well typed.
Today we find several successful full-blown languages in this
approach such as MetaOCaml [9, 17], where a programmer
easily convert an unstaged code to a code generator and the
type checker does a good job of ensuring the safety of all
code possibly generated by the generator. Scala Lightweight
Modular Staging (LMS) [16] is another successful full-blown
language for staging in the same spirit.
Despite the success of these languages in many practical

domains and applications, there still remains an issue of
static safety guarantee when the language has some sort of
computational effects, which are necessary to express many
optimizations at the generation time. We address this classic
problem for a simple calculus with lexical binding, in the
presence of the very powerful control operators shift0 and
reset0, and give a solution to the problem.

Taha and Nielsen introduced environment classifiers (clas-
sifiers, for short) which represent a typing context (such as
x : int,y : bool) abstractly [17]. Compared with the pio-
neering type system λ2 [4] and λ⃝ [3], the type system
with classifiers successfully achieved open code manipula-
tion while allowing the ’run’ primitive in a type-safe manner.
An important problem in their approach is that the underly-
ing theory guarantees type safety only for purely functional
subcalculus; no computational effects are allowed in their lan-
guage. In the MetaML-style multi-stage programming, com-
putational effects are indispensable to express, for instance,
exchanging the order of loops, memoizing once-generated
code, and let-insertion. It is a challenging research topic to
extend the target calculus to cover necessary computational
effects while keeping the static guarantee of safety.
Let us see a few examples where computational effects

are needed at the code-generation time.
The first example is code motion beyond binders. Suppose

we have the following generator (we use OCaml-like syntax
when we write code):

for 0 n (fun i →

Array.set a i <some_computation>

)

where the size of the array a is n+1, for is a constant to gen-
erate the for-expression if supplied with three arguments as
the initial and final values of the for-loop, and the body of the
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loop abstracted by the loop variable (i in this example). The
for primitive generates (code for) a for-loop (with possibly
unrolling the loop). The constant Array.set generates (code
for) an Array.set expression, which assigns a value to an
array at the specified index. These underlined primitives for
code generation are called code combinators in this paper.
The bracket expression <...> represents a code value.

The above code evaluates to the following code value:
<for i = 0 to n do
a.(i) <− some_computation

done>

where a.(i) is the i-th element of the array a.
Suppose some_computation is code for a time-consuming

computation, then we may want to generate the following
code:

<let x = some_computation in
for i = 0 to n do
a.(i) <− x

done>

Thus some_computation moves beyond the binder for the
variable i. This is a very simple example of code motion at
the code generation time, and we need some kind of compu-
tational effects:1 we can use either mutable variables to store
code, or control operators to move code fragments explicitly.

The code motion beyond binders is subtle and sometimes
dangerous, as the code may contain free variables. In the
above code snippet, if some_computation contains the vari-
able i freely, moving it above the for-loop would generate
code with an unbound variable (the scope extrusion problem).
Things would become more complicated if we combine code
motion with other optimizations such as loop exchange or
another code motion.

Next, we consider the following example with nested for-
loops.
for 0 n (fun i →

for 0 m (fun j →

let idx = i * m + j in
Array.set a idx <e1>;

Array.set b idx <e2>

)

)

Suppose the variable i occurs freely in e2 but not in e1 while
j does not occur freely in e1 nor e2. Then, the code we wish
to generate is:

<let x1 = e1 in
for i = 0 to n do
let x2 = e2 in

1 If we are allowed to manipulate the code after it is generated, code motion
is easily achieved. However, code manipulation breaks semantic coherence
of the multi-stage programming language. For instance, if our language
allows to extract e from the code <fun x → e>, the variable x may appear
freely, and the lexical-scope discipline (hygiene) is lost.

for j = 0 to m do
let idx = i*m+j in

a.(idx) <− x1;

b.(idx) <− x2

done
done>

The result shows that the code <e1> moves to the topmost
position, while the code <e2> moves to the intermediate
place, and we cannot do it the other way around, since i
occurs in e2 freely. In summary, the destination of code
motion should depend on the expression to be moved.
Our third example is code sharing by let-insertion. We

borrow the Gibonacci example from our earlier paper [6].
let rec gib n x y =

if n = 0 then x

else if n = 1 then y

else (gib (n−2) x y) + (gib (n−1) x y)

The Gibonacci function is a generalization of the Fibonacci
function. Suppose we want to generate code for a fixed n,
while leaving x and y dynamic. As in the case for the Fi-
bonacci function, a naive code generator for Gibonacci would
produce an inefficient code as follows (we assume n = 5):
<fun x→ fun y→ (y+(x+y))+((x+y)+(y+(x+y)))>

A more efficient code should be:
< fun x → fun y →

let g2 = x + y in
let g3 = y + g2 in
let g4 = g2 + g3 in
let g5 = g3 + g4 in

g5 >

where the code contains many let expressions for sharing
code. The point here is to share the results of computa-
tion between independent function calls (gib (n−2) x y) and
(gib (n−1) x y), which needs the mechanism of memoization.
The literature [8] shows that this particular program can be
generated without moving open code across binders, but in
general, we need to do it.
All the above examples need some computational effects

in program generators, and each of them has been shown to
be expressible in some existing work: Kameyama et al. [8]
use the control operator shift and reset to cover the first and
the third examples above, and Kiselyov et al. [12] use global
reference cell to mimic the first and the second examples.
However, to our knowledge, no existing work in the litera-
ture can solve all the problems above in a single framework.
Combining global mutable cells with control operators in
a multi-stage language would be daunting in the sense of
guaranteeing type safety and scope safety, because of its
vast complexity. Although control operators shift and reset
can express dynamically-bound variables (thus, the third
example is expressible), existing work on combining control
operators with multi-stage language severely limit the power
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of control operators, to obtain type safety property, which
leads to inability to express even the first example.

This paper solves all the above cases using the control op-
erators shift0 and reset0 in a type-safe manner. To our knowl-
edge, this paper is the first to use shift0 and reset0 in multi-
stage programming. The difference between shift0/reset0
and shift/reset is subtle but important in this study, as the
former can express code motion beyond nested delimiters
(reset0), while the latter cannot. By using shift0 and reset0
instead of shift and reset, we can truly move possibly open
code beyond binders and share its value across different
branches of function calls.
It should be noted that there are two proposals which

provide different solutions to the same problem above.
The first one is the one by the second author of the present

paper and others [7], who proposed StagedHaskell, a meta-
programming library on top of Haskell. This library allows
arbitrary monadic effects in multi-stage programming, but
they did not give any type system (other than the implemen-
tation in Haskell) and it is rather difficult to predict when
a program typechecks. We can say that the present paper
formalizes a type system which corresponds to some intelli-
gible subset of the library, but the precise relation between
these two works is yet to be studied.
Another closely related work is the ’genlet’ primitive

[11] implemented in BER MetaOCaml, the latest version of
MetaOCaml. It is a built-in facility to insert let automatically,
and the language system automatically (and dynamically)
decides an ’optimal’ destination of let insertion. Although
this approach is very useful in practice, there remains a prob-
lem in determining the optimal destination. Assume that we
use genlet in the following code generator:
if <e1> then (genlet <big_computation>) + <

e2> else <e3>

For this term, there are two possible destination for the let-
insertion, and each gives a different result as follows:
(1) <if e1 then let x = big_computation in x

+ e2' else e3>

(2) <let x = big_computation in if e1 then x

+ e2' else e3'>

where x is a fresh variable, and e2' and e3', resp. are obtained
by replacing big_computation in e2 and e3, resp. by x.

The current implementation of BER MetaOCaml chooses
(2) as the result, which is sufficient for many cases, but not all.
There are situations where (1) is more preferred than (2). For
instance, computing the value of big_computation may be
meaningful only when the condition e1 is true. This happens
if e1 is the expression i >= 0 and big_computation uses the
value of a.(i), for example. Then running the code (2) may
raise an exception while (1) may not. Also, the performance
of (1) is sometimes better than (2) when the computation of
e3 does not need the value of big_computation and the test
e1 is false.

This simple analysis indicates that deciding the optimal
destination of let insertion is not easy if possible at all, and
there is little hope for a language system to find it in the
cleverest way for all cases. Staging, by definition, gives the
programmers the full control over generated code, and we
want our multi-stage language to let the programmer choose
the best solution by herself. In this sense, each of our ap-
proach and the ’genlet’ approach has its own merit. It is
interesting to study the relationship between the two and
how we can combine them in a single language, which is left
as a future work.
This paper proposes a calculus for multi-stage program-

ming with control operators which allows safe let-insertion
in multiple levels. For this purpose, we design a type system
which has a refined notion of environment classifiers, and
prove its type soundness. We demonstrate relatively small
examples to show how multiple-level let-insertion can be
safely done in our calculus. We also briefly mention type
inference for our calculus.

The contribution of this paper is summarized as follows:
• We show how the control operators shift0 and reset0
are useful in the context of multi-stage programming
by examples. To the best of our knowledge, this is the
first such study.
• We design a type system for our calculus and prove
its soundness, which gives the static safety guarantee
for all code generated by typable code generators.
• We argue the design space of the MetaML style lan-
guages with computational effects.

This paper is organized as follows: Section 2 explains
the problem and our ideas using examples and informal ar-
guments. Section 3 introduces the language of our study, a
two-stage programming language with the control operators,
and Section 4 introduces our type system in detail, which
is the core of our study, and Section 5 gives a few examples
of type derivations. Section 6 explains the type soundness
property of our type system. Section 7 briefly mentions a
type inference algorithm for our type system under a cer-
tain reasonable assumptions. Section 8 states conclusion and
related work.

2 Our solution, informally
This section informally explains our key ideas in this study.
A formal treatment is given in subsequent sections.

2.1 Control Operators shift0 and reset0
Control operators in functional programs provide control
abstraction to contribute modular programming. In the liter-
ature, one of the most intensively studied control operators
are shift and reset proposed by Danvy and Filinski [2] with
the following reduction rule:

reset (E [shift k → e])

; reset (e {k := fun x → reset (E[x])})
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where E is an evaluation context2, and e is a term. The nota-
tion {k:= ...} denotes the standard, capture-avoiding substitu-
tion. The above reduction rule shows that shift captures the
evaluation context delimited by the closest reset.
Let-insertion for code motion and code sharing can be

implemented by shift and reset. Suppose we generate code
for E[let x = e1 in e2] while moving the fragment ’let x=e1
in’ past E. We only have to add control operators to this term
as follows:

reset (E [shift k →

let x = e1 in throw(k,e2) ]

where reset represents the destination. The code fragment
between shift and throw is moved to the destination, and
the result is reset (let x = e1 in reset(E[e2])). In this example
(and subsequent examples) we use the throw primitive, but
readers may regard throw(k,e) as simple application k e.

The above program does not really do let insertion, since
let expression is evaluated. But it can be turned into a code
generator which does let insertion, as follows:

reset (E' [shift k →

let x = <e1> in throw(k,<e2>) ]

where E' is a code-level evaluation context.
The control operators shift and reset are expressible enough

for small examples, but we soon see their limitation for large
examples. In the previous section, we saw a code genera-
tor for nested for-loop where we want to insert two let-
expressions to two different places in code. Since shift can
never escape from the inner-most reset, we can only insert a
let-expression to the closest reset, and not to another reset.

In this study we use the control operators shift0 and reset0
to remedy this problem. As the name suggests, they are
similar, but have slightly different semantics than shift and
reset:

reset0 (E [shift0 k → e])

; e {k:= fun x → reset0 (E[x])})

Notice the absence of the outermost reset. This small differ-
ence makes shift0 and reset0 more powerful than shift and
reset. To see it, let us pick up a slightly complicated example:

reset0 (E2[ reset0 (E1 [

shift0 k1 → shift0 k2 →

let x = e1 in throw(k2,throw(k1,e2))])])

which evaluates to

reset0 (E2[ shift k2 →

let x = e1 in throw(k2,reset0 (E1[e2]))])

and then to

let x = e1 in reset0 (E2[reset0 (E1[e2])])

2Precisely speaking, E must not contain another shift which surrounds the
hole of the context.

The final program shows that we can insert let past two
reset0s, by repeating the operator shift0 twice in the source
term. Put differently, shift0 can reach at the second (and
further) closest reset0, and thus can achieve the multi-level
let-insertion.

Note that shift and reset are macro-expressible3 by shift0
and reset0, and therefore, all the programs which use shift
and reset can be written with shift0 and reset0 instead of
them. The following encoding is sufficient:

reset e := reset0 e

shift k → e := shift0 k → reset0 e

Recently, Materzok and Biernacki [13, 14] intensively stud-
ied shift0 and reset0 to give a type theory, a CPS translation
and equational axiomatization. In this paper we use their
type system as the basis of our type system.

2.2 Environment Classifiers and their Refinement
First, we briefly review classic environment classifiers and
refined one before stating our extension.

In their original form [17], an environment classifier (clas-
sifier for short) is an abstract representation of a set of free
code-level variables. For instance, the expression <x + y>
has two code-level variables x and y, and by associating a
classifier α to {x,y} , the expression is typed as

(x : int )α , (y : int )α ⊢ <x + y> : ⟨int⟩α

where (x : int )α shows that x is a code-level variable as-
sociated with the classifier α . ⟨int⟩α is the type of integer
code associated with α . The above typing judgment tells that
the term <x+y> is open with respect to α , since its typing
context contains a variable associated with α . The classifier
α is abstract like a variable, and will never be instantiated
with concrete expressions such as constants. Rather, it is a
’name’ for the typing environment x : int ,y : int , and is used
to distinguish one typing environment from another.

One can derive the judgment:

⊢ <λx .λy.x + y> : ⟨int → int → int⟩α

which means that this term is closed with respect to α . We
can run this term in the language by:

⊢ run(<λx .λy.x + y>) : int → int → int

Thus, a classifier is used to judge if a term contains no free
code-level variables associated with the classifier, and after
that, we can safely run the code with no risk of running
open code. Later, Calcagno, Moggi and Taha [1] proposed
a polymorphic calculus for classifiers λi , which forms the
basis of the first version of MetaOCaml.4

3The precise definition of macro-expressivity is given by Felleisen [5].
4The latest version of MetaOCaml is Kiselyov’s BER MetaOCaml [10] which
does not use environment classifiers, and does dynamic checking of free
variables in generated code. He eliminated classifiers from the language in
order to make its maintenance easier.
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Recently, Kiselyov et al. proposed refined environment clas-
sifiers to give a type system for a two-stage language with
mutable cells [12]. Their study introduced a finer structure
for classifiers than Taha and Nielsen’s. The set of classifiers
in their calculus is a partially ordered set, and the lexical
scope (no scope extrusion) is enforced by the rule similar to
the eigen-variable condition in the natural deduction style
logic.
Consider the example <λx .λy.x + y> again. Kiselyov et

al.’s calculus associates one classifier to each code-level vari-
able; x is associated with a classifier γ1 and y with γ2. The
partial order is determined by the lexical scope of variables
with the reverse inclusion order; here x has a larger lexical
scope than y does, hence we write γ2 ≥ γ1.5 The following
typing rule for code-level abstraction is a simplified version
of their typing rule:

Γ, γ1 ≥ γ , x : ⟨t1⟩γ1 ⊢ e : ⟨t2⟩γ1
Γ ⊢ λx .e : ⟨t1 → t2⟩

γ (γ1 is eigen variable)

The classifier outside of the term is γ and the classifier cor-
responding to this x is γ1. The assumption γ1 ≥ γ means
that the scope of γ has a larger lexical scope than γ1. Fur-
thermore, the side condition says that γ1 must not appear in
the conclusion of this rule. Kiselyov et al. have successfully
designed a type system for a two-level language with global
mutable cells using the above rule.
In this paper, we extend the refined environment classi-

fiers to accommodate control operators. The problem to be
solved is that control operators can move code, and the lexi-
cal scope of generated code is not preserved during the code
generation.
Let us illustrate the problem by a simple example as fol-

lows:

let u = · · · in <e0> +

reset0 (let x = · · · in <e1> +

shift0 k → let y = · · · in <e2> +

throw(k,<e3>))

which evaluates to the following code value:

⟨let u = · · · in e0+

(let y = · · · in e2+

(let x = · · · in e1 + e3))⟩

In this example we used the code combinator let to gener-
ate code of a let-expression. let x = e1 in e2 is macro-defined
by (λx .e2) @ e1 where @ is a code combinator for generating
application. Assuming that all bound variables have different
names, we have that (0) e0 may not contain x ,y free and (0’)
e1 may not contain y free. (We ignored the variable k since
it is a present-stage variable.)
If e2 contains the variable x free, the result of the above

evaluation would produce an ill-scoped code; the notorious
5For historical reasons, we write γ2 ≥ γ1 if γ1 has a larger lexical scope.

scope extrusion problem. To avoid it, we require that (1) e2
may contain u and y free, but not x , and (2) e3 may contain
u, x , and y.

Fig. 1 illustrates the set of free variables for each term
under the conditions (0), (0’),(1), and (2) where arrows show
the set inclusion order. (The classifiers γi in the figure shall
be explained shortly.)

Figure 1. Lattice of environment classifiers

We want to represent the above conditions (1) and (2)
in terms of environment classifiers. For this purpose, we
associate the environment classifiers γ1,γ2,γ3, resp., to the
code variables u, x , and y, resp. and let γ0 be the classifier
associated with the top level of the above term. Then the four
classifiers must form the partially order set, or lattice, shown
in Fig. 1. The important point here is that, even though the
scope for x is larger than y, we should not have γ2 ≥ γ1
because of the condition (1). Also, the scope of γ3 must be
smaller than other classifiers, namely, γ3 ≥ γi should hold
for i = 0,1,2 because of the condition (2). In other words,
γ3 is an upper bound of γ1 and γ2, and since there are no
other classifiers between them, we can actually regard γ3
as the least upper bound of γ1 and γ2 (or their join). This
is contrast to Kiselyov et al.’s work [12] where the set of
environment classifiers forms a tree, reflecting the inclusion
order of scopes.
In general, we do not need the lattice structure, but an

upper semi-lattice6 suffices; To represent the semi-lattice
structure, we introduce the join operator ∪ to the classifiers,
which is our key innovation in this paper. We write the join
of γ1 and γ2 as γ1 ∪γ2 to emphasize the intuition of set union.

Adding the join operator to the set of classifiers is a simple
extension, but it turned out to be very powerful. In the sub-
sequent sections, we will show that a type-safe calculus for
the two-stage language with shfit0 and reset0 can be given
based on this semi-lattice structures of classifiers.

6 An upper semi-lattice is a partially order set where the least upper bound
(join) of two elements always exist.
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3 Language
In this section, we present a calculus for two-stage program-
ming with the control operators shift0 and reset0. A type
system for the calculus will be given in the next section.

3.1 Syntax
Our language is the simply typed lambda calculus with the
primitives for integer arithmetic, conditional, code genera-
tion and control operators.

c ::= i | b | int | + | @ | + | if

v ::= x | c | λx .e0 | <e1>

e0 ::= v | e0 e0 | if e0 then e0 else e0

| λx .e0 | λu .e0

| reset0 e0 | shift0 k → e0 | throw(k,v )

e1 ::= u | c | λu .e1 | e1 e1 | if e1 then e1 else e1

Figure 2. Constants, values, and level-0 and level-1 terms

Figure 2 defines the syntax of the language. Constants
(c) include basic constants of integer (i) and boolean (b),
primitive operators (+), and code combinators such as int
and @. Code combinators are primitives to generate a code
value. For instance, int 5 evaluates to the code value <5>.
We sometimes write %e instead of int e . Although we did
not include the let-expression, the fixpoint operator and the
corresponding code combinators, they can be added to our
language in the standard way.

A value (v) is either a variable (x ), a constant (c), a lambda
abstraction, or a code value <e1>. Unlike the calculi in the
literature such as λα [17], an expression in the form <e1>
in our calculus is always a value, since we do not have the
’escape’ primitive for splicing. (Recall that we are using the
code-combinator style rather than the quasi-quotation style.)
Terms are classified into level-0 terms (e0) and level-1

terms (e1). We use u for level-1 variables (code-level vari-
ables). We have restricted our attention to two-level calculi.
This is an important restriction from λα , which allows an
arbitrarily high level, thus code like <<1+2>> can be written
in λα but not in our calculus. Since level-2 or higher terms
rarely appear in practical code generators, and higher-level
terms would complicate the formulation, we restrict our at-
tention in this paper to two-level calculi. We anticipate that
relaxing this restriction is not too difficult, but it is left for
future work. A level-0 term (e0) is either a value v , applica-
tion e0 e0, conditional, terms built with code combinators
λx .e0, λu .e0, or terms built with control operators reset0 e0,
shift0 k → e0, throw(k,v ). We have restricted the argu-
ment of the throw expression to be a value v , but this is not

significant, as we can represent throw(k,e ) (for an arbitrary
expression e) by let x = e in throw(k,x ).
Level-0 variables (x) are bound by lambda-abstraction

λx . · · · and code-level lambda abstraction λx .· · ·, and level-1
variables (u) are bound by another code-level abstraction
λu .· · ·, which will be explained later. Continuation variables
(k) are bound by shift0. We identify α-equivalent terms in
the usual sense, and rename bound variables if necessary.
Note that our language has the standard lexical scopes.

3.2 Operational Semantics
We define the call-by-value small-step operational semantics
; in the evaluation-context style by E[r ] ; E[l] if r → l ,
where E is an evaluation context defined in Fig. 3, and the
reduction relation→ is defined in Fig. 4.

E ::= [ ] | E e0 | v E

| if E then e0 else e0 | reset0 E | λu .E

Figure 3. Evaluation Context

(λx .e ) v → e{x := v}
if true then e1 else e2 → e1

if else then e1 else e2 → e2

λx .e → λu .(e{x := <u>})

λu .<e>→ <λu .e>

reset0 v → v

reset0(E[shift0 k → e]) → e{k ⇐ E}

where u is fresh in the fourth rule and E must not capture
shift0 in the last rule.

Figure 4. Reduction Rules

Let us explain the reduction rules in Fig. 4. The first rule is
the call-by-value β rule where e{x := v} denotes the capture-
avoiding substitution for the variable x in e . The second and
third rules are the standard one for conditional expressions.
The next two rules define the behavior of code-level abstrac-
tion λx .e . Given this term, we first change the level-0 variable
x by <u> where u is a level-1 variable (code variable). Note
that a code variable is bound by doubly underlined lambda
as λu .e . Then we evaluate its body e and when it gets to a
code value <e ′>, we replace the whole expression by <λu .e ′>.
The last two rules are the rules for evaluating an expres-

sion reset0 e. If e is already a value, then the delimiter reset0
is discarded (the second to last rule). If e takes the form
E[shift0 k → e] then this shift0 captures the continuation
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up to reset0, namely E, and substitutes E for the continua-
tion variable k. The substitution for a continuation variable
is defined in Fig. 5 below.

(throw(k,v )){k ⇐ E} ≡ reset0(E[v])
(throw(k ′,v )){k ⇐ E} ≡ throw(k ′, (v{k ⇐ E}))

if k , k ′

Figure 5. Substitution for continuation variables

The expression e{k ⇐ E} denotes the result of substituting
an evaluation context E for a continuation variable k in a
term e . The substitution commutes with most constructors
and the only interesting case is when e ≡ throw(k,v ), which
is shown on the first line above. In this case, the continuation
variable k is replaced by the captured context E, but during
this computation, we need to add one reset0 above E. This
may be seen as a strange behavior, but it is essential to obtain
the semantics of the delimited-control operator shift0 (and
also shift). See the papers on control operators [2, 13] for
details. The substitution is capture avoiding in the sense that
(λx .e ){k ⇐ E} is defined only when x does not occur free in
E.

Finally we give reduction rules for constants. Reductions
for the standard constants such as integer-addition are given
in the standard way, and omitted. Fig. 6 gives the reduction
rules for code combinators, which work at the present stage,
but manipulate code values.

int n → <n>

<e1> @ <e2>→ <e1 e2>

<e1> + <e2>→ <e1 + e2>

if <e1> <e2> <e3>→ <if e1 then e2 else e3>

Figure 6. Evaluation Rules for Code Combinators

3.3 Examples
We give a simple example of evaluation in our calculus.

Let e1 be the following term:

e1 = reset0 (let x = %3 in
shift0 k → let y = %7 in
throw(k,x + y)))

Then its evaluation under the above semantics goes in the
following way:

e1 =reset0 ((λx .

shift0 k → let y = %7 in
throw(k, x + y)) @ %3)

;∗reset0 ((λx ′.

shift0 k → let y = %7 in
throw(k, (<x ′> + y)) @ %3)

;let y = %7 in
reset0 ((λx ′.<x ′> + y) @ <3>)

=(λy.reset0 ((λx ′.<x ′> + y) @ <3>)) @ %7

;(λy ′.reset0 ((λx ′.<x ′> + <y ′>) @ <3>)) @ %7

;(λy ′.reset0 ((λx ′.<x ′ + y ′>) @ <3>)) @ %7

;(λy ′.reset0 (<(λx ′.x ′ + y ′) 3>))@ %7

;∗<(λy ′.(λx ′.x ′ + y ′) 3) 7>

The result is equivalent to

<let y ′ = 7 in let x ′ = 3 in x ′ + y ′>

as desired. The let-binding for y ′ (which was y in the source
term) moves upward then the let-binding for x ′ (which was
x in the source term).

Similarly, let e2 be the following term:

e2 = reset0 (let x1 = %3 in
reset0 (let x2 = %5 in
shift0 k2 → shift0 k1 → let y = %7 in
throw(k1 ,throw(k2,x1 + x2 + y))))

Then we can evaluate it to the code:

e2 ;<(λy ′.(λx ′1.(λx
′
2.x
′
1 + x

′
2 + y

′) 5) 3) 7>

which is equivalent to

<let y ′ = 7 in let x ′1 = 3 in let x ′2 in x ′1 + x
′
2 + y

′>

as desired.
These examples show that our calculus is capable of in-

serting let to multiple points (multi-layer let-insertion).
We do not show the examples of expressing code sharing,

as it is well studied in the literature [7, 8] in depth, using
shift and reset. As we have seen in Section 2, every program
expressible with shift and reset is expressible with shift0 and
reset0.

4 Type System
We introduce a type system for two-level staged language
with control operators shift0 and reset0. Our type system
is based on roughly two source of type systems with some
new ideas. First, it is based on the type system with refined
environment classifiers while we extended to include the join
operator. Second, our type system is based on effect typing
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for shift0 and reset0, which is a simplified type system of
Materzok and Biernacki’s.

4.1 Our Type System
We define basic type (b) and environment classifier γ as
follows:

b ::= int | bool

γ ::= γx | γ ∪ γ
L ::= · | γ

Figure 7. Basic Type, Classifier, and Level

In this figure, γx is a classifier-variable, and ∪ is the join
operator for two classifiers. We use γ for classifiers.
The level · denotes the present stage, and the level γ de-

notes the future (next) stage corresponding to the classifier
γ . (It is abuse of notation to use γ for a level, too, but there
should be no confusion.) For instance, Γ ⊢L e : t ; σ is a
present-stage judgment if L = ·, and a future-stage judgment
if L = γ . The symbol for the present stage · is often omitted.
Fig. 8 defines a level-0 type t0, a level-1 type t1, a level-0

type sequence σ , and a level-0 continuation type κ .

t0 ::= b | t0
σ
→ t0 | ⟨t1⟩γ

t1 ::= b | t1 → t1

σ ::= ϵ | t0,σ

κ0 ::= ⟨t1⟩γ
σ
⇒ ⟨t1⟩γ

Figure 8. Type, Effect Type and Continuation Type

In the definition of σ , the first item ϵ denotes the empty
sequence. A level-0 function type t0

σ
→ t0 is accompanied

with a sequence σ , which represents the types for computa-
tional effects during the computation of the function body.
More concretely, it is the sequence of answer types for shift0.
As we explained earlier, shift0 can access beyond multiple
occurrences of reset0, the type system must be aware of n
answer types where n is the number of layers reachable from
the term being typed. Thus the effect type in the typing judg-
ment needs n answer types and we write it as a sequence
σ . Unlike Materzok and Biernacki’s type system, σ in our
calculus is a simple list of types, since we do not need an-
swer type modification in our calculus. Interested readers
are encouraged to refer to their work [13].

Control operators in our calculus do not appear in the code
value, and thus, level-1 function types do not have the effect
types. As we only use shift0 and reset0 for codemanipulation,
the type for continuations is the function type from a code

Γ |= γ1 ≥ γ1 Γ,γ1 ≥ γ2 |= γ1 ≥ γ2

Γ |= γ1 ≥ γ2 Γ |= γ2 ≥ γ3
Γ |= γ1 ≥ γ3

Γ |= γ1 ∪ γ2 ≥ γ1 Γ |= γ1 ∪ γ2 ≥ γ2

Γ |= γ3 ≥ γ1 Γ |= γ3 ≥ γ2
Γ |= γ3 ≥ γ1 ∪ γ2

Figure 9. Rules for Classifier Ordering

type to a code type. We treat continuation types differently
from ordinary function types for technical reasons.

Typing judgments take either of the following two forms:

Γ ⊢L e : t ; σ
Γ |= γ ≥ γ

where a typing context Γ is defined as follows:

Γ ::= ∅ | Γ, (γ ≥ γ ) | Γ, (x : t ) | Γ, (u : t )γ

We now introduce typing rules. First, we give the rules
for the typing judgment Γ |= γ ≥ γ in Fig. 9.

The derivation rules determine the semi-lattice structure
of classifiers with ∪ being the join operator. The ordering of
classifiers are either derived by the context Γ, or the semi-
lattice rules7.
We then give the type derivation rules for Γ ⊢L e : t ; σ .

We first give simple cases of the level-0 rules in Fig. 10.
All rules in Fig. 10 are standard except that we have levels,

and function spaces are annotated with effect types σ , and
also the judgments are annotated similarly. The rule for
constants (c) assumes that their types (tc ) are already given
in some way. For instance, t17 = int and t+ = ⟨int⟩γ

σ
→

⟨int⟩γ
σ
→ ⟨int⟩γ . The codo-combinator for application has

a complicated type: t@ = ⟨t1 → t2⟩
γ σ
→ ⟨t1⟩

γ σ
→ ⟨t2⟩

γ .

Γ ⊢γ e : t1;σ
Γ ⊢ <e> : ⟨t1⟩γ ;σ

Γ, γ1 ≥ γ , x : ⟨t1⟩γ1 ⊢ e : ⟨t2⟩γ1 ;σ
Γ ⊢ λx .e : ⟨t1 → t2⟩

γ ; σ
(γ1 is eigen variable)

Figure 11. Typing rule for code

Fig. 11 lists the rules for code-value and code-level ab-
straction. The first rule is the standard code construction
rule found in the literature [17]. The second rule in Fig. 11 is
7We omit the anti-symmetric law, which is not necessary to derive γ1 ≥ γ2.
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Γ,x : t ⊢ x : t ; σ Γ, (u : t )γ ⊢γ u : t ; ϵ

Γ ⊢L c : tc ; σ

Γ ⊢γ e1 : t2 → t1; ϵ Γ ⊢γ e2 : t2 ; ϵ
Γ ⊢γ e1 e2 : t1; ϵ

Γ ⊢ e1 : t2
σ
→ t2; σ Γ ⊢ e2 : t2; σ
Γ ⊢ e1 e2 : t1; σ

Γ, x : t1 ⊢ e : t2 ; σ

Γ ⊢ λx .e : t1
σ
→ t2 ; σ ′

Γ, (u : t1)γ ⊢γ e : t2 ; ϵ
Γ ⊢γ λu .e : t1 → t2 ; ϵ

Γ ⊢L e1 : bool; σ Γ ⊢L e2 : t ;σ Γ ⊢L e3 : t ;σ
Γ ⊢L if e1 then e2 else e3 : t ; σ

Figure 10. Rules for Γ ⊢L e : t ; σ (simple cases)

the key rule in Kiselyov et al.’s work [12], and we use it in
our type system. The side-condition means that γ1 must not
appear in the conclusion Γ ⊢ λx .e : ⟨t1 → t2⟩

γ ; σ .

Γ ⊢ e : ⟨t⟩γ ; ⟨t⟩γ ,σ
Γ ⊢ reset0 e : ⟨t⟩γ ; σ

Γ, k : ⟨t1⟩γ1
σ
⇒ ⟨t0⟩

γ0 ⊢ e : ⟨t0⟩γ0 ;σ Γ |= γ1 ≥ γ0
Γ ⊢ shift0 k → e : ⟨t1⟩γ1 ; ⟨t0⟩γ0 ,σ

Γ |= γ2 ≥ γ0

Γ, k : ⟨t1⟩γ1
σ
⇒ ⟨t0⟩

γ0 ⊢ v : ⟨t1⟩γ1∪γ2 ; σ

Γ, k : ⟨t1⟩γ1
σ
⇒ ⟨t0⟩

γ0 ⊢ throw(k,v ) : ⟨t0⟩γ2 ; σ

Figure 12. Rules for Control Operators

Fig. 12 introduces the rules for control operators. The
reset0 rule is the standard one (see the literature [2, 14])
except that the argument of reset0 must be of code type.
Namely, in our calculus control operators are restricted to
code combinators which receive code values, and return
code values, and may not be used in ordinary computation
or in the generated code. We stress that this is not a severe
restriction; we can introduce the ’standard’ control operators
whose arguments are not necessarily of code types, in which
case we do not have to worry about classifiers. Such typing
rules are standard and well studied, so we did not include
them to avoid clutter.

Γ ⊢ e : ⟨t⟩γ1 ;σ Γ |= γ2 ≥ γ1
Γ ⊢ e : ⟨t⟩γ2 ;σ

Γ ⊢γ1 e : t ; ϵ Γ |= γ2 ≥ γ1
Γ ⊢γ2 e : t ; ϵ

Γ ⊢ e : t ; ⟨t ′⟩γ1 ,σ Γ |= γ2 ≥ γ1
Γ ⊢ e : t ; ⟨t ′⟩γ2 ,σ

Γ ⊢L e : t1; σ
Γ ⊢L e : t1; σ ,t2

Figure 13. Subsumption rules

The shift0 rule is complicated, but by ignoring code types,
it is the standard typing rule in [14]. The noticeable point
here is that the body of the shift0 expression e in the rule
has the code type of level γ0 such that γ1 ≥ γ0. While all
other rules enforce that a subterm’s classifier must be larger
than the superterm’s classifier, this single rule enforces an
opposite order.
The throw rule is also complicated, and we do not give

detailed account here, but the point is that the body of throw
expression v has the code type with the classifier γ1 ∪ γ2,
indicating that this is a join point of two separated (by the
shift0 rule) lines of classifier ordering.
As auxiliary rules, we have the rules for subsumption

in Fig. 13. The first three rules can be understood in the
following way: γ2 ≥ γ1 means that the context (the set of
available free variables) of γ2 is a superset of that of γ1, hence
all terms typable at γ1 are also typable at γ2. The last rule is
a subsumption for effect-types; intuitively, it means a non-
effectful term may be regarded as an effectful term, which is
natural and standard.

5 Examples of Type Derivation
Here we show a few examples of type derivation.

5.1 Single-layer Let-insertion
Consider the following term which performs let-insertion
using shift0 and reset0.

e = let x1 = e1 in
reset0( let x2 = e2 in
shift0 k → let y = 2 in
throw(k,y))

where 2 is to be filled with some term. The expression e
inserts the let-expression with e2 to the destination specified
by reset0, hence it should be typable if 2 = int 7 or 2 = x1,
but not for 2 = x2. Fig. 14 shows a type derivation for e .
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Γ1, k : ⟨t ⟩γ2
ϵ
⇒ ⟨t ⟩γ1, γ3 ≥ γ2, y : ⟨t ⟩γ3 ⊢ y : ⟨t ⟩γ2∪γ3 ; ϵ

Γ1, k : ⟨t ⟩γ2
ϵ
⇒ ⟨t ⟩γ1, γ3 ≥ γ2, y : ⟨t ⟩γ3 ⊢ throw(k, y ) : ⟨t ⟩γ3 ; ϵ

(∗1)
Γ1, k : ⟨t ⟩γ2

ϵ
⇒ ⟨t ⟩γ1 ⊢ 2 : ⟨t ⟩γ1 ; ϵ

(∗2)

Γ1, k : ⟨t ⟩γ2
ϵ
⇒ ⟨t ⟩γ1 ⊢ let y = 2 in throw(k, y ) : ⟨t ⟩γ1 ; ϵ

Γ1 = γ1 ≥ γ0, x1 : ⟨t ⟩γ1, γ2 ≥ γ1, x2 : ⟨t ⟩γ2 ⊢ shift0 k → let y = 2 in throw(k, y ) : ⟨t ⟩γ2 ; ⟨t ⟩γ1

γ1 ≥ γ0, x1 : ⟨t ⟩γ1 ⊢ let x2 = e2 in shift0 k → let y = 2 in throw(k, y ) : ⟨t ⟩γ1 ; ⟨t ⟩γ1

γ1 ≥ γ0, x1 : ⟨t ⟩γ1 ⊢ reset0 (let x2 = e2 in shift0 k → let y = 2 in throw(k, y )) : ⟨t ⟩γ1 ; ϵ
⊢ e = let x1 = e1 in reset0 (let x2 = e2 in shift0 k → let y = 2 in throw(k, y )) : ⟨t ⟩γ0 ; ϵ

Figure 14. Example of Type Derivation (Single-layer let-insertion)

Let us check the inference marked with (*1). The typing
rule for throw requires γ3 ≥ γ1, but it is derivable from the
context Γ1, k : ⟨t⟩γ2

ϵ
⇒ ⟨t⟩γ1 ,γ3 ≥ γ2. We also have to show

y : ⟨t⟩γ3 ⊢ y : ⟨t⟩γ2∪γ3 ; ϵ , but it is also derivable.
In the inference marked with (*2), 2 must have the type

⟨t⟩γ1 , which means that 2 may have the variables associated
with γ1 or smaller, but not other variables. We analyase by
cases:

When 2 = int 7
int 7 is typed under any classifiers, so the term is
typable.

When 2 = x1
x1 : ⟨t⟩γ1 ⊢ x1 : ⟨t⟩γ1 holds and typable.

When 2 = x2
The classifier associated with x2 is γ2, and we cannot
derive γ1 ≥ γ2 from the context, so e is not typable.

5.2 Multi-layer Let-insertion
Let us consider a more interesting example for multi-layer
let-insertion as follows:

e ′ = reset0 (let x1 = e1 in
reset0 (let x2 = e2 in
shift0 k2 → shift0 k1 → let y = 2 in
throw(k1,reset0 (throw(k2,y)))))

To achieve two-layer let-insertion, the term e ′ has two oc-
currences of shift0 and throw, and the outer shift0 captures
the continuation up to the inner reset0, and the inner shift
captures the continuation up to the outer reset0. Iterating
throw0 twice is necessary to install the two captured contin-
uation. Here we need an extra occurrence of reset0 between
two throws, which is superfluous in the computation, but is
necessary in our calculus due to the restriction of our simple
type system. It is annoying but may be hidden by providing
macros for representing let insertion.

When we run the term e ′, let for the variable y is inserted
at the topmost position of e ′. Hence it should be typable if
2 = int7, but not be typable if 2 = x2 or 2 = x1.
Let us see the inference marked with (#1) in Fig. 15. The

type of k2 is ⟨t⟩γ2
⟨t ⟩γ0
⇒ ⟨t⟩γ1 and the effect type (the σ -part) of

the whole expression is ⟨t⟩γ1∪γ3 , and by applying the throw-
rule, we can derive Γ3 |= γ1 ∪ γ3 ≥ γ0.

The inference marked with (#2) shows that the term filled
in to 2 should have type ⟨t⟩γ0 under the context Γ2 = γ2 ≥

γ1, x2 : ⟨t⟩γ2 , γ1 ≥ γ0, x1 : ⟨t⟩γ1 ,k2 : ⟨t⟩γ2
⟨t ⟩γ0
⇒ ⟨t⟩γ1 , k1 :

⟨t⟩γ1
ϵ
⇒ ⟨t⟩γ0 . By the same reasoning as before, we conclude

that x1 and x2 cannot be filled into this 2 and the term is not
typeable for these cases.
Thus our type system can distinguish a safe expression

from dangerous ones where scope extrusion may occur.

6 Type Soundness
A fundamental property of a typed system (or a typed calcu-
lus) is type soundness; type preservation and progress.

Theorem 6.1. If Γ ⊢ e : t ; σ is derivable and e ; e ′ holds,
then we can derive Γ ⊢ e ′ : t ; σ .

This theorem can be proved in the standard way. We first
need a few lemmas.

Lemma 6.2. Suppose Γ1,γ2 ≥ γ1 ⊢ e : t1 ; σ is derivable
and γ2 does not appear in Γ1,e,t1,σ . Then Γ1 ⊢ e : t1 ; σ is
derivable.

Lemma 6.3. Suppose Γ1 ⊢ v : t1 ; σ is derivable. Then so is
Γ1 ⊢ v : t1 ; σ ′.

Lemma 6.4 (Substitution lemma). If Γ1,Γ2,x : t1 ⊢ e : t2 ; σ
and Γ1 ⊢ v : t1 ; σ are derivable, then so is Γ1,Γ2 ⊢ e{x := v} :
t2 ; σ .

We need one more technical lemma as follows.

Lemma 6.5. Let E be an evaluation context which does not
have reset0 surrounding the hole, x be a variable, Γ = (u1 :
t1)

γ1 , · · · , (un : tn )γn and Γ |= γ0 ≥ γi is derivable for i =
1, · · · ,n. If Γ,x : ⟨t0⟩γ

′

⊢ E[x] : ⟨t1⟩γ0 ; σ then we can derive
Γ,x : ⟨t0⟩γ

′∪γ ⊢ E[x] : ⟨t1⟩γ0∪γ ; σ for a fresh γ .

Using these lemmas, we can prove the subject reduction
property (Theorem 6.1).

We also have the progress property.

Theorem 6.6 (Progress). If ⊢ e : t ; ϵ is derivable, namely,
e is a typable term and does not have free variables and free
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Γ3 ⊢ y : ⟨t ⟩γ2∪γ1∪γ3 ; ϵ Γ3 |= γ1 ∪ γ3 ≥ γ0
Γ3 ⊢ throw(k2, y ) : ⟨t ⟩γ1∪γ3 ; ⟨t ⟩γ1∪γ3

(#1)

Γ3 ⊢ reset0(throw(k2, y )) : ⟨t ⟩γ1∪γ3 ; ϵ
Γ3 = Γ2, γ3 ≥ γ0, y : ⟨t ⟩γ3 ⊢ throw(k1, (reset0(throw(k2, y )))) : ⟨t ⟩γ3 ; ϵ Γ2 ⊢ 2 : ⟨t ⟩γ0 ; ϵ

(#2)

Γ2 = Γ1, k2 : ⟨t ⟩γ2
⟨t ⟩γ0
⇒ ⟨t ⟩γ1, k1 : ⟨t ⟩γ1

ϵ
⇒ ⟨t ⟩γ0 ⊢ let y = 2 in · · · : ⟨t ⟩γ0 ; ϵ

Γ1, k2 : ⟨t ⟩γ2
⟨t ⟩γ0
⇒ ⟨t ⟩γ1 ⊢ shift0 k1 → · · · : ⟨t ⟩γ1 ; ⟨t ⟩γ0

Γ1 = γ2 ≥ γ1, x2 : ⟨t ⟩γ2, γ1 ≥ γ0, x1 : ⟨t ⟩γ1 ⊢ shift0 k2 → shift0 k1 → · · · : ⟨t ⟩γ2 ; ⟨t ⟩γ1, ⟨t ⟩γ0

γ1 ≥ γ0, x1 : ⟨t ⟩γ1 ⊢ let x2 = e2 in · · · : ⟨t ⟩γ1 ; ⟨t ⟩γ1, ⟨t ⟩γ0

γ1 ≥ γ0, x1 : ⟨t ⟩γ1 ⊢ reset0 let x2 = e2 in · · · : ⟨t ⟩γ1 ; ⟨t ⟩γ0

⊢ let x1 = e1 in reset0 let x2 = e2 in · · · : ⟨t ⟩γ0 ; ⟨t ⟩γ0

⊢ e′ : ⟨t ⟩γ0 ; ϵ

Figure 15. Example of Type Derivation (Multi-layer let-insertion)

effects, then e is either a value or there exists a term e ′ such
that e ; e ′.

The proof is straightforward and so omitted.
By subject reduction and progress, we conclude that our

calculus is type sound.

7 Type Inference
Our type system is admittedly very complicated to be used
as a type system for programming languages without type
inference. To remedy this problem, we have developed a type
inference algorithm for our type system under the following
assumption: we do not allow implicit effect subtyping.

Let us explain it. Suppose Γ ⊢ e : τ ; · is derivable, namely,
e is a pure term with no free effects (which intuitively means
that all shift0’s in e are surrounded by some reset0). Then we
want to use e in an effectful context, too, namely, we expect
to have Γ ⊢ e : τ ; σ for an arbitrary σ . This is what we call
(implicit) effect subtyping. This is semantically admissible,
and in fact it is allowed in the type system by Materzok and
Biernaki.
However, we found that if the length of the effect part σ

can silently change by implicit effect-subtyping, our type
inference algorithm would have a trouble in performing uni-
fication for the effect part. At present, we do not know if
there is a decision procedure for this unification problem,
and we have excluded the implicit effect-subtyping, and pro-
grammers are asked to explicitly annotate the term with this
subtyping, namely, when we the length of the effect part
increases.

Under this restriction, type inference for our type system
boils down to a satisfiability problem of a boolean combi-
nation of inequalities for classifiers. Since the semi-lattice
of classifiers has finitely many elements, the satisfiability
problem is decidable. The final answer of a successful type
inference will be a type with a constraint represented by
boolean combination of inequalities for classifiers.

8 Conclusion
We have proposed a core calculus of two-stage programming
language in the MetaML style which has control operators
shfit0 and reset0 to express sophisticated manipulation of
generated code, while keeping the static safety guarantee of
the code, Our work is based on environment classifiers [17]
and refined environment classifiers [12]. We have extended
them to include a semi-lattice structure to the set of classifiers
to reflect the behavior of control operators. As far as we
know, this is the first study to use shift0 and reset0 [13] in
the area of program generation. They allow multi-layer let-
insertion in a modular and compact way, without having
to introduce more involved control operators such as multi-
prompt control operators.

We briefly compare our work to other approaches to rep-
resenting let insertion in a more general context.

The first approach is to use a CPS translation to eliminate
control operators. This approach works if we are only con-
cerned with efficiency and can ignore well typedness and
well scopedness, since by CPS translating code generators,
we may possibly obtain open code, hence guaranteeing well
scopedness in this approach would be much more difficult
than our case.
The second one is to do let-insertion automatically such

as Keiselyov’s ’genlet’ primitive discussed in Section 1 of
the present paper. Let-insertion was originally studied in
partial evaluation, where let-insertion is done automatically.
The pros and cons of this approach in the context of stag-
ing is mostly the same as those of ’genlet’; if we insert let
aggressively (beyond conditional statements), we may un-
expectedly change the semantics of the program, and if we
insert let conservatively (not beyond conditional statements),
we would obtain less efficient code than expected. We think
that, in multi-stage programming, programmers want to
have a full control over the strategy of let-insertion, and we
want to provide a language where various control strategies
are expressible in a single framework.
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Scala LMS [16] also takes an automation approach for
let-insertion, and has made a great success in providing high-
performance code with very small burden for human inter-
vention for staging. Although it shares the spirit (abstraction
without guilt or regret) with the MetaML-style languages,
it has the same pros and cons as the partial-evaluation ap-
proach to let-insertion.

Scope graphs [15] are an expressive formalization for spec-
ifying binding structures in programming languages. It is a
general framework and provides theoretical basis and useful
algorithms for name resolution facility for various languages,
hence it is interesting to see if our language may be express-
ible using scope graphs.

Finally, we mention several future works. The first one is
a more thorough investigation of type inference algorithm in
particular effect subtyping, as it is unknown to us if the type
system without restriction has a decidable type inference
algorithm or not. We also want to study how the result of
type inference (which ought to contain constraints on classi-
fiers) may be shown in an intelligible way. Also our language
should be extended to cover let-polymorphism, which would
need another investigation on type inference algorithm. An-
other direction of study is the relationship with the ’genlet’
primitive. Clearly ’genlet’ is easier to use for programmers
than ours but we think that ours may be useful in several
cases, so combining them in a single language is an interest-
ing topic. Finally, we should test if our language is usable for
a large, practical application of code generation, and if our
type system is effective in the sense that all or most typical
errors in code generators may be detected by type inference.
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