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t. The notion of meta-variable plays a fundamental role whenwe de�ne formal systems su
h as logi
al and 
omputational 
al
uli. Yet ithas been usually understood only informally as is seen in most textbooksof logi
. Based on our observations of the usages of meta-variables intextbooks, we propose two formal systems that have the notion of meta-variable.In both 
al
uli, ea
h variable is given a level (non-negative integer), whi
h
lassi�es variables into obje
t variables (level 0), meta-variables (level 1),metameta-variables (level 2) and so on. Then, simple arity systems areused to ex
lude meaningless terms like a meta-level fun
tion operatingon the metameta-level. A main di�eren
e of the two 
al
uli lies in thede�nitions of substitution. The �rst 
al
ulus uses textual substitution,whi
h 
an often be found in de�nitions of quanti�ed formulae: when aterm is substituted for a meta-variable, free obje
t-level variables in theterm may be 
aptured. The se
ond 
al
ulus is based on the observationthat predi
ates 
an be regarded as meta-level fun
tions on obje
t-levelterms, hen
e uses 
apture-avoiding substitution.We show both 
al
uli enjoy a number of properties in
luding Chur
h-Rosser and Strong Normalization, whi
h are indispensable when we usethem as frameworks to de�ne logi
al systems.Keywords : meta-variable, logi
al framework, 
ontext, �-
al
ulus1 Introdu
tionThe notion of meta-variable is a fundamental notion both in logi
 and 
omputers
ien
e. It is be
ause both logi
 and 
omputer s
ien
e mainly deal with linguisti
obje
ts su
h as formulas, proofs, programs et
., and whenever we make a generalstatement about these obje
ts we use meta-variables to refer to these obje
ts.For example, if we look at any book of logi
, most variables we see are meta-variables. Meta-variables are also known as metamathemati
al variables [7℄ andsynta
ti
al variables [12℄. However, it seems that, so far, only a very few attempts



have been made to formalize the notion of meta-variable. One reason for thismay be that we have to go to metameta-level to do so.In this paper, we present two new formalizations of the 
on
ept of the meta-variable. These formalizations are based on our observations of the usages ofmeta-variables in text books and te
hni
al papers on logi
.The �rst observation is from Shoen�eld [12℄ and Kleene [7℄. In these books, we�nd the following senten
e as one of the indu
tive 
lauses whi
h de�ne formulas.(We have slightly modi�ed notations from the originals.)If x is a variable and A is a formula, then 9x A is a formula.In the above senten
e, both `x' and `A' are meta-variables, and when we usethe senten
e as a rule whi
h is used to 
onstru
t a 
on
rete formula, we mustinstantiate these meta-variables by 
on
rete linguisti
 obje
ts of the obje
t lan-guage. Thus, for example, we may instantiate x by a 
on
rete variable x and Aby a 
on
rete formula x = x. Then, by applying the instantiated rule, we havethat 9x x = x is a formula. Here, it is important to remark that the pro
essof instantiation we just des
ribed is a form of substitution, but, unlike ordinarysubstitutions, the variables being substituted are meta-variables. There is an-other subtle point in this substitution pro
ess. To see this, we analyze the aboveinstantiation pro
ess in two steps. Namely, we assume that the meta-variable`x' is �rst instantiated and then, in the se
ond step, the meta-variable `A' isinstantiated. Then, after the �rst step, we get the following senten
e.If x is a variable and A is a formula, then 9x A is a formula.In the se
ond step, we substitute x = x for A in the above senten
e, and we getthe fully instantiated senten
e:If x is a variable and x = x is a formula, then 9x x = x is a formula.We note here that, unlike ordinary substitution, we have substituted x = x forA in 9x A without following the usual 
onvention of renaming the name of thebinding variable (x in this 
ase) to avoid the 
apture of free variables.The se
ond observation we now make is also a very 
ommon one. Often in theliterature, notation like A(x) is used to indi
ate a formula where free o

urren
esof x in A(x) is impli
itly understood. Thus, if t is a term, then A(t) stands fora formula whi
h is obtained from A(x) by substituting t for x in A(x). In thisusage, `x', `t' and `A' are all meta-variables and the �rst two meta-variables rangeover variables and terms in the obje
t language. As for the third meta-variable`A' it is possible to interpret its range in two ways.The �rst interpretation is to regard `A' as ranging over fun
tions whi
h, whenapplied to terms, will yield formulas. In this interpretationA(t) denotes the resultof applying the meta-level fun
tion A to a term t. So, in this interpretation, A isa metameta-variable, sin
e its denotation is not a linguisti
 obje
t of the obje
tlanguage but it is a fun
tion in the meta language.The se
ond interpretation is to regard `A' as ranging over abstra
ts of theobje
t language whi
h 
an be instantiated to formulas by supplying terms of the2



obje
t language. This interpretation is possible only if the obje
t language 
on-tains su
h abstra
ts as its formal entities. Higher-order abstra
t syntax employedby, e.g., Edinburgh LF [5℄ is based on this interpretation.In this paper, we will introdu
e two typed 
al
uli �M and �m, whi
h arerespe
tively designed based on the above two observations. In �M and �m, withea
h variable a non-negative integer, whi
h we 
all the level of the variable, isasso
iated. We 
onsider level 0 as the obje
t-level, level 1 as the meta-level, level2 as the metameta-level and so on.In these formalizations, we believe that we 
an take virtually any formalsystem as the obje
t-level of our systems. However, for the sake of 
on
retepresentation, we take as the obje
t-level a system of symboli
 expressions weintrodu
ed in Sato [10℄ whi
h is simple but powerful enough to represent syntaxof many of the 
ommonly used formal systems su
h as the �-
al
ulus and pred-i
ate 
al
ulus. Both �M and �m will be 
onstru
ted on top of this obje
t-levelsystem by adding higher-level stru
tures, and we will show that these 
al
ulienjoy ni
e properties su
h as 
on
uen
e and strong normalizability. We will alsoshow that the 
al
ulus �M 
an represent the notion of 
ontext naturally sin
ea 
ontext, whi
h is an expression 
ontaining some holes in it, is inherently alinguisti
 obje
t in the meta-level and not in the obje
t-level.Due to la
k of spa
e, we have omitted some lemmas and details of proofs. Afull version of this paper with proofs is a

essible athttp://www.sato.kuis.kyoto-u.a
.jp/~masahiko/index-e.html.2 Informal Introdu
tion to the Cal
uliIn this se
tion we informally explain the two 
al
uli �M and �m whi
h we pro-pose in this paper. We assume our obje
t language 
ontains 
onstants, abstra
-tion ((x)[M℄), and pair (hM;Ni). Abstra
tion and appli
ation in the meta-levelare denoted by �X:M and MN . (We often use 
apital letters for meta-variablesin examples, although both obje
t- and meta-level variables belong to the samesynta
ti
 
ategory in the formal de�nition.)2.1 The Cal
ulus �MThe �rst 
al
ulus �M is based on the �rst observation in Se
tion 1. Let us
onsider the �rst observation again and assume that we have just 
ompleted the�rst step. Then, we have the expression 9x A. We 
an represent this expressionby h090; (x0)[A1℄i using a 
onstant 090. On the shoulder of a variable, we write anatural number to indi
ate its level, although we often omit the level if it is 
learfrom the 
ontext. So, we simply write x for x0 and it 
orresponds to the 
on
reteobje
t-level variable x. In �M, the instantiation pro
ess of the meta-variable Aby the obje
t-level formula x = x 
an be represented as the redu
tion pro
ess ofthe following �-redex: (�A: h090; (x)[A℄i)h0=0; hx; xii:3



In the redu
tion, as pointed out in Se
tion 1, non-standard substitution is per-formed and we get: h090; (x)[h0=0; hx; xii℄iwhi
h represents the formula 9x x = x as expe
ted. Note that the obje
t-levelvariable x is 
aptured through the substitution.The non-standard (textual) substitution we have just introdu
ed gives riseto the following two te
hni
al problems.The �rst one is the non-
on
uen
e of the 
al
ulus. As argued in the litera-ture on 
ontext 
al
uli [8, 6, 11℄, 
al
uli that have textual substitution 
annot be
on
uent unless we restri
t the evaluation order. For instan
e, letM be the term(�X2: (�x1: X2)y0)x1. Depending on the evaluation-order, we will get di�erentresults y0 and x1. Our solution to this problem is (roughly) that, a redex maynot be redu
ed if it 
ontains variables of higher levels than the level of the re-dex1. In this example, the inner redex has level-1, so its redu
tion is postponeduntil the variable X2 disappears.The se
ond problem in formulating �M is that, sin
e we restri
t the evaluation-order, some redu
tions may get stu
k. Consider the terms (�X2: �x1: X2)y0z0,and (�x1: �X2: X2)y0z0. The �rst term redu
es to y0, while the se
ond term
annot be redu
ed. Sin
e we do not 
onsider terms like the se
ond one meaning-ful, we introdu
e arities to rule out su
h terms. For instan
e, �x1: X2 : 0 !1 0signi�es that this term denotes a level-1 fun
tion from obje
ts to obje
ts. Sim-ilarly we have �X2: �x1: X2 : 0!2 (0 !1 0). On the other hand, �x1: �X2: X2would have arity 0 !1 (0 !2 0), and it would denote a level-1 fun
tion whi
hreturns a level-2 fun
tion. We will ex
lude su
h a term by de�ning arity properly,and show that the evaluation in �M does not get stu
k (Theorem 4).Although �M has non-standard substitution, we need the standard 
apture-avoiding substitution as well, when the variable being substituted for and onebeing 
aptured are of the same level. Let us see the following redu
tion:(�X2: �Y 2: �z1: X2)(Y 2z1)! �W 2: �z1: Y 2z1in whi
h the variable z1 is 
aptured, while the variable Y 2 is not 
aptured sin
eits level is the same as that of the variable X2.2.2 The Cal
ulus �mThe se
ond 
al
ulus �m formalizes the �rst interpretation2 of the se
ond obser-vation in Se
tion 1.The formula A(t) 
an be represented as A2(t1) using the level-2 variable A2of arity 0 !1 0, and the level-1 variable t of arity 0 in �m. The existentialformula 9x A(x) is represented as:h090; (x0)[A2(x0)℄i);1 The level of the redex (�Xi:M)N is i.2 In this paper, we do not formalize the se
ond interpretation in whi
h A in A(t) rangesover abstra
ts of the obje
t language. It should be a straightforward extension ofthis work, but details are left for future work.4



and the substitution of �x1 : 0: h0=0; hx1; x1ii for A2 is realized by �-redu
tion,but this time we do not use the non-standard substitution. Hen
e, the term:(�A2 : 0!1 0: h090; (x0)[A2(x0)℄i)(�x1 : 0: h0=0; hx1; x1ii)redu
es (using standard substitution) toh090; (x0)[h0=0; hx0; x0ii℄ias expe
ted.3 The Cal
ulus �MIn this se
tion, we give a formal de�nition of the �rst 
al
ulus �M. The se
ond
al
ulus �m will be introdu
ed in the next se
tion.3.1 Arities and TermsWe de�ne arity (�) and its level (j�j) as follows:1. 0 is an arity and j0j = 0.2. If � and � are arities, 0 < i, j�j < i, and j�j � i, then � !i � is an arityand j�!i �j = i.Note that the side 
ondition of the se
ond 
lause re
e
ts the intended notion oflevel introdu
ed in Se
tion 1. Intuitively, the arity �!i � is for level-i fun
tionsfrom terms of arity � to terms of arity �, thus j�j < i and j�j < i must besatis�ed. The restri
tion on � is relaxed to j�j � i to allow 
urrying.We assume that, for ea
h natural number i and arity �, there are in�nitelymany variables, and the sets of variables of ea
h level and arity are mutuallydisjoint. For a variable x of level i and arity �, we sometimes write it as xi. Theset of all variables is denoted by V. A (variable) de
laration is an expression ofthe form xi : �, where � is an arity and either j�j < i or j�j = i = 0. We saythe level of this de
laration is i. A hypothesis sequen
e is a �nite sequen
e ofde
larations. A judgment is an expression of the form � ` M : � where � is ahypothesis sequen
e and � is an arity.We have the following rules that are used to derive judgments.The �rst rule introdu
es variables for ea
h i and �, where we assume x is avariable of level i and arity �. xi : � 2 �� ` xi : � (var)The next two rules introdu
e abstra
tion and appli
ation for level-i (i > 0).�; xi : � `M : � j�j � i� ` �xi:�:M : �!i � (abs) � `M : �!i � � ` N : �� `MN : � (app)5



Note that, in the rule (abs), the level of the variable xi and that of the arity� !i � should agree, and the side-
ondition j�j � i is needed to form a (well-formed) arity � !i �. Note also that we may not 
onstru
t a term like �x1 :0: �X2 : 0: X2.The last group of rules are those for the level-0, the obje
t language.
 is a 
onstant� ` 
 : 0 (
onst0) �; x0 : 0 `M : 0� ` (x0)[M℄ : 0 (abs0)� `M : 0 � ` N : 0� ` hM;Ni : 0 (pair0)An expressionM is said to be a term if a judgment of the form � `M : � isderivable for some � and �. We sometimes just write �xi:M for �xi:�:M whenthe arity � of xi is irrelevant.The s
ope of �x: and free o

urren
es of variables in a term are de�ned asusual. For a term M , the set of free variables in M is denoted by FV(M). Thelevel of a term M , denoted by jM j, is the maximum level of variables in M ,or 0 if there is no variable in M . Note that we take all variables (even variableo

urren
es in the s
ope of �) into a

ount|for instan
e, j(�x2:�: x2)y1j = 2.Note also that jM j is not ne
essarily equal to the level of its arity. The level of ahypothesis sequen
e � , denoted by j� j, is the maximum level of variables in � ,or 0 if � is the empty sequen
e.3.2 �-equivalen
eIn the 
al
ulus �M, we need spe
ial 
are to de�ne �-equivalen
e: o

urren
esof a variable x in the s
ope of �x: { usually 
alled bound o

urren
es { may ormay not be subje
t to renaming sin
e textual substitution does not 
ommutewith naive variable renaming. For instan
e, we may identify �x1: y2(�z1: x1z1)with �x1: y2(�u1: x1u1), but not with �w1: y2(�z1: w1z1). To see its reason, letus substitute x1 for y2 in these terms. Sin
e the level of y2 is higher than x1 andw1, the textual substitution is used, and the �rst and the third terms be
ome�x1: x1(�z1: x1z1), and �w1: x1(�z1: w1z1), resp., whi
h do not have the samedenotational meaning. Hen
e, we let an abstra
tion �xi: e be �-
onvertible onlywhen no variable at a level higher than i o

urs in its s
ope.We de�ne the �-equivalen
e after a few auxiliary de�nitions. A renamingof variables is a partial fun
tion from V to V whi
h is inje
tive and satis�esjf(xi)j = i for all xi in the domain of the partial fun
tion. For a partial fun
tionf , its domain is denoted by dom(f). For a renaming f and a variable xi (whi
hmay not be in dom(f)), f # xi is a renaming of variables su
h that dom(f #xi) = dom(f)� fxig, and f # xi agrees with f on its domain.For a renaming f and terms M and N in �M, we derive a judgment of theform f `M ' N by the following inferen
e rules:f(xi) = yif ` xi ' yi f `M 'M 0 f ` N ' N 0f `MN 'M 0N 06



f `M 'M 0f ` �xi : �:M ' �xi : �:M 0 (f(xi) = xi)f `M 'M 0g ` �xi : �:M ' �yi: �:M 0� jM j � i; jM 0j � i;f(xi) = yi; g # xi = f # xi�The last rule 
an be applied only when both M and M 0 are of level less than orequal to i. Otherwise, the term �xi:M 
ontains (not ne
essarily free) o

urren
esof meta-variables whi
h have higher levels than i, and we 
annot rename thebound variable xi. In this 
ase we 
an still apply the se
ond last rule, sin
eit does not rename the bound variable xi. For brevity, we omit the inferen
erules for terms 
onstru
ted by the rules (
onst0), (abs0), and (pair0), whi
h aresimilarly de�ned. For instan
e, a term (x0)[M℄ has the same rules as the term�xi : �:M .Let id be the identity fun
tion on V. If id `M ' N is derived by the rulesabove, we say M is �-equivalent to N (written by M �� N). It is easy to showthe relation �� is a 
ongruen
e on terms.3.3 Substitution and Redu
tionThe notion of redu
tion in the 
al
ulus �M is the union of those in the obje
tlanguage (whi
h we do not spe
ify) and the following �-redu
tion:(�) (�xi:M)N ! [xi := N ℄M if jM j � i and jN j � iin whi
h [xi := N ℄M denotes the (non-standard) substitution de�ned below. Wewrite �! for the re
exive and transitive 
losure of !.For a level i > 0, a level-i variable xi, and termsM and N su
h that jM j � iand jN j � i, we de�ne [xi := N ℄M as follows:1. [xi := N ℄xi 4= N2. [xi := N ℄yj 4= yj if yj 6� xi3. [xi := N ℄(M1M2) 4= ([xi := N ℄M1)([xi := N ℄M2)4. [xi := N ℄(�yj :M) 4= �yj : [xi := N ℄M if j < i5. [xi := N ℄(�yi:M) 4= �yi: [xi := N ℄M if yi 62 FV(N) and xi 6� yi6. [xi := N ℄
 4= 
7. [xi := N ℄(y0)[M℄ 4= (y0)[[xi := N ℄M℄8. [xi := N ℄hM1;M2i 4= h[xi := N ℄M1; [xi := N ℄M2iThe �rst three 
lauses are standard. For the fourth line, if the level of yj isstri
tly less than that of xi, the substitution behaves like textual repla
ement,that is, free variables may get 
aptured through this substitution. For the �fthline, the bound variable yi has the same level as xi that is being substituted,in whi
h 
ase the substitution is the standard 
apture-avoiding one, hen
e theside-
onditions yi 62 FV(N) and xi 6� yi must be satis�ed. (The se
ond side-
ondition x 6� y is not needed for the fourth 
lause be
ause variables at di�erent7



levels are assumed to be di�erent.) This side-
ondition 
an be always satis�edby taking an �-equivalent term. The last three 
lauses deal with the level 0 in astraightforward manner, ex
ept textual substitution.For brevity, we identify �-equivalent terms in the following. Under this 
on-vention, we simply have that [xi := N ℄M is de�ned if and only if max(jM j; jN j) �i. The obje
t-level may 
ontain other redi
es than the �-redi
es in the aboveform, and to distinguish these two, we say that a redex (�xi : �:M)N is a meta-redex. A term is meta-normal if it does not have meta-redi
es and a redu
tionis 
alled a meta-redu
tion if its redex is a meta-redex.3.4 Repla
ing Level-0 LanguagesOur level-0 language here is a simplest possible language, whi
h has no notionof types or even 
omputation. We have adopted su
h a language be
ause it issimple but expressible enough to represent expressions that appear in typi
allogi
al systems. It would be possible, however, to adopt other languages su
h asuntyped and simply typed �-
al
uli as the level-0 language.For example, for untyped �-
al
ulus, we 
ould introdu
e another term 
on-stru
tor M1 �M2 by the rule� `M : 0 � ` N : 0� `M �N : 0 (app0)and a redu
tion rule (x0)[M℄ � N ! [x0 := N ℄M (if jM j = jN j = 0) wherethe level-0 substitution would be de�ned as expe
ted. It would be also straight-forward to substitute the simply typed �-
al
ulus for the level-0 language, byextending the base arities from 0 to the set of simple types.4 The Cal
ulus �mAs dis
ussed in the previous se
tions, the se
ond 
al
ulus �m is based on the se
-ond observation dis
ussed in the introdu
tion. It is obtained from �M by repla
-ing the de�nition of substitution with the standard 
apture-avoiding one. Also,we need to use the standard de�nition of �-equivalen
e to identify �x1:y2(�z1:x1z1)with �w1:y2(�z1:w1z1), whi
h are not �-equivalent in �M. Sin
e the other def-initions of arities, rules to derive judgments, �-redu
tion remain the same, weavoid repeating de�nitions and just show 
hanges to be made.For �-equivalen
e, we repla
e the third and fourth rules to derive f `M ' Nwith the following one:f `M 'M 0g ` �xi : �:M ' �yi : �:M 0 (f(xi) = yi; g # xi = f # xi)Noti
e that there is no restri
tion on the levels of the bodies M and M 0 of�-abstra
tion. Similarly, the de�nition of substitution will be as follows.8



For a level i > 0, a level-i variable xi, and terms M and N su
h thatjM j � i and jN j � i, [xi := N ℄M is de�ned by:1. [xi := N ℄xi 4= N2. [xi := N ℄yj 4= yj if yj 6� xi3. [xi := N ℄(M1M2) 4= ([xi := N ℄M1)([xi := N ℄M2)4. [xi := N ℄(�yj :M) 4= �yj : [xi := N ℄M if yj 62 FV(N) and xi 6� yj5. [xi := N ℄
 4= 
6. [xi := N ℄(y0)[M℄ 4= (y0)[[xi := N ℄M℄ if y0 62 FV(N)7. [xi := N ℄hM1;M2i 4= h[xi := N ℄M1; [xi := N ℄M2iNoti
e that the �rst three 
lauses are the same as before and the fourth 
lauseis now a familiar one that avoids variable 
apturing.5 ExamplesIn this se
tion, we show a few examples of �M and �m.5.1 Representing FormulasIn earlier se
tions, we informally explained how the formula x = x is substitutedfor the meta-variable A in 9x A. Here we 
onsider this pro
ess formally in �M.The arity of the 
orresponding term is inferred in �M as follows:x0 : 0; A1 : 0 ` 090 : 0 x0 : 0; A1 : 0; x0 : 0 ` A1 : 0x0 : 0; A1 : 0 ` (x0)[A1℄ : 0x0 : 0; A1 : 0 ` h090; (x0)[A1℄i : 0x0 : 0 ` �A1 : 0: h090; (x0)[A1℄i : 0!1 0 ....x0 : 0 ` h0=0; hx0; x0ii : 0x0 : 0 ` (�A1 : 0: h090; (x0)[A1℄i)(h0=0; hx0; x0ii) : 0Note that, the variable x0 o

urs free in the term of the 
on
lusion, as indi
atedby the hypothesis sequen
e.We 
an 
ompute this term as:(�A1 : 0: h090; (x0)[A1℄i)(h0=0; hx0; x0ii)! [A1 := h0=0; hx0; x0ii℄h090; (x0)[A1℄i� h090; [A1 := h0=0; hx0; x0ii℄(x0)[A1℄i� h090; (x0)[h0=0; hx0; x0ii℄iNote that non-standard (textual) substitution is applied in the last step, sin
ethe level of A1 is higher than that of x0. As a result, the free o

urren
es of x0get bound, and x0 does not o

ur free in the resulting term, whi
h representsthe formula 9x x = x. 9



We also informally explained how the same example 
an be written in �m.Its formal 
ounterpart 
an be written as follows3:A2 : 00 ` 090 : 0 � ` A2 : 00 � ` x0 : 0� ` A2(x0) : 0A2 : 00 ` (x0)[A2(x0)℄ : 0A2 : 00 ` h090; (x0)[A2(x0)℄i : 0` �A2 : 00: h090; (x0)[A2(x0)℄i : 00!2 0 ....y1 : 0 ` h0=0; hy1; y1ii : 0` �y1 : 0: h0=0; hy1; y1ii : 00` (�A2 : 00: h090; (x0)[A2(x0)℄i)(�y1 : 0: h0=0; hy1; y1ii) : 0where we put an arity 00 = 0 !1 0 and � = A2 : 0 !1 0; x0 : 0 Note that werepla
ed the meta-variable A1 in �M by an appli
ation term A(x), and to ensurethis appli
ation is resolved in a meta-level, the arity of A should be 0!1 0, hen
ethe level of the variable A must be 2 (or higher).We omit the 
omputation of the term here, sin
e it is essentially the same asthe standard �-redu
tion.5.2 Representing ContextsContexts 
an be represented in �M using meta-variables naturally. Let M bea term, C be a 
ontext in the obje
t language, i.e., a term with a hole [ ℄ in it,and C[M ℄ be the result of the hole-�lling operation. In �M, the 
ontext C isrepresented as a term C � (�X1:0: C[X1℄), and C[M ℄ as an appli
ation (CM),whi
h redu
es to C[M ℄ by the textual substitution in �M.Let us take an example from Hashimoto and Ohori's 
ontext 
al
ulus [6℄.Consider the 
ontext C � (�u: (�x: [ ℄)u+y)3 and the termM � (�z: C[x+ z℄)xin lambda 
al
ulus. They 
an be written in �M (using our notation for obje
tlanguage) as: C � �X1:0: (u0)[((x0)[X1℄ � u0) + y0℄ � 3M � (z0)[C (x0 + z0)℄ � x0We 
an redu
e M as:M ! (z0)[[X1 := x0 + z0℄((u0)[((x0)[X1℄ � u0) + y0℄ � 3)℄ � x0� (z0)[(u0)[((x0)[x0 + z0℄ � u0) + y0℄ � 3℄ � x0�! 3 + x0 + y0Note that, by the side-
ondition of the �-redu
tion, we 
annot redu
e the outer-most level-0 redex �rst. If it would be redu
ed �rst, we would get 3+x0+x0 as aresult, so the Chur
h-Rosser property would be broken. Hashimoto and Ohori's
ontext 
al
ulus has a similar restri
tion that the �-redu
tion is prohibited whenthe redex 
ontains a hole.3 We 
hanged the level-1 variable x1 to y1 for readability. Formally this renaming isjusti�ed by the �-equivalen
e. 10



A good point of our representation of 
ontexts is that, sin
e 
ontexts arefun
tions, they 
an be 
omposed, in other words, we 
an �ll a 
ontext in another
ontext. As a simple example, let C and D be the 
ontexts �x: [ ℄ and �y: [ ℄ inlambda 
al
ulus, and 
onsider hole-�lling of D in C, i.e. C[D℄. The 
ontexts Cand D are represented in �M as C � �X1: (x0)[X1℄ and D � �X1: (y0)[X1℄,then we 
an 
ompose them in the same way as 
omposition of two fun
tions:C ÆD � �X1: C (D X1)C ÆD redu
es to �X1: (x0)[(y0)[X1℄℄ whi
h represents the 
ontext �x: �y: [ ℄.It should be noted that, in several existing 
ontext 
al
uli in
luding Hashimoto-Ohori's and our previous work [11℄, 
ontexts 
annot be 
omposed, sin
e these
al
uli keep tra
k of possible bound variables in a hole.6 Properties of �M and �mWe have a number of desirable properties for the 
al
uli �M and �m, that is,they enjoy subje
t redu
tion, 
on
uen
e, and strong normalization properties.In the following, we fo
us on the properties of �M, but the modi�
ation for �mis straightforward.We 
an prove the subje
t redu
tion property in the standard way.Theorem 1 (Subje
t Redu
tion Property). If � ` M : � is derived andM �! N , then � ` N : � 
an be derived.Note that even if � ` (�xi:M)N : � is derived, [xi := N ℄M is not ne
essarilyde�ned. But we 
an prove from Theorem 2 and 3 that if j� j � i then there existterms M 0 and N 0 su
h that M �!M 0, N �! N 0, and [xi := N 0℄M 0 is de�ned.Lemma 1. Suppose � `M : � is derived and the highest level of the redi
es ofM is i. Then, any redu
tion sequen
e that redu
es only level-i redi
es leads to aterm that does not have redi
es of level-i or higher.We 
an prove this lemma by redu
ing it to the strong normalizability of thesimply typed �-
al
ulus. We translate �M to the simply typed �-
al
ulus bymapping a level-i abstra
tion �xi:M to an abstra
t of the simply typed �-
al
ulus and a level-j (j < i) abstra
tion �xj :M to a pair of xj and M . Sin
ewe prove a stronger property in Theorem 6, we omit the details here.Note that, we 
annot simply map �-abstra
tions of �M to those of the sim-ply typed �-
al
ulus, sin
e the textual substitution 
annot be simulated by the
apture-avoiding substitution in the standard 
al
uli.Theorem 2. If � `M : � is derived, then M has a meta-normal form.Proof. By repeatedly using Lemma 1. utTheorem 3. If � ` M : � is derived and M is meta-normal, then jM j �max(j� j; j�j). 11



Proof. Suppose M is a meta-normal term. We prove the theorem by indu
tionon M .If M is (�xi:�1: N0)N1 � � �Nn for some i � 0; xi; �1; n � 0; N0; � � � ; Nn, thenthe arity of N0 should be 
 � �2 !j2 � � � !jn �n !i � where �k is the arity ofNk for k = 2; � � � ; n. Sin
e N0 is meta-normal, we have jN0j � max(j� j; i; j
j) byindu
tion hypothesis, and j
j � i by the side-
ondition of rule (abs). Therefore,we have j�xi:�1: N0j = max(i; jN0j) � max(i; j� j). Now, we have two 
ases.1. n = 0. jM j � max(i; j� j) = max(j�1 !i 
j; j� j).2. n > 0. We have, by indu
tion hypothesis, jNkj � max(j� j; j�kj) for 1 � k �n. Hen
e jN1j � max(j� j; i). Sin
e M is meta-normal, max(jN0j; jN1j) > i.Hen
e j� j > i. Sin
e j
j � j�kj, we have jNkj � j� j for 1 � k � n. Hen
ejM j � j� j.We omit the proof of the 
ase whereM is of the form xiN1 � � �Nn and we 
aneasily prove the 
laim in other 
ases (M is a 
onstant 
, (x0)[N0℄, or hN0; N1i)by indu
tion hypothesis. utThe following theorem ensures that meta-level evaluation in �M does notget stu
k.Theorem 4 (Normal Form Property). Suppose � ` M : � is derived andM is meta-normal. (1) If j� j = j�j = 0, then jM j = 0. (2) If j� j < j�j, then Mis a �-abstra
tion.Proof. (1) Clear from Theorem 3. (2) If M is not a �-abstra
tion, then it mustbe of the form xiN1N2 � � �Nn or (�xi:
:N0)N1N2 � � �Nn for n � 0. In the former
ase, j�j � jxij � j� j. Contradi
tion. In the latter 
ase, let � be the arity of N0.From Theorem 3, j(�xi : 
:N0)N1j � j�j. By the side-
ondition of rule (abs),j�j � i. Hen
e jN0j � i and jN1j � i, whi
h implies (�xi:
:N0)N1 is a redex.Contradi
tion. utWe 
an prove the 
on
uen
e and strong normalizability of �M. The 
on
u-en
e 
an be proved using the standard te
hnique (parallel redu
tion), but thestrong normalizability is not trivial. Sin
e spa
e is limited, we just give the ideaof the proof here. For the detailed proof, see the full version of this paper.Lemma 2 (Substitution Lemma). Let xi and yi be distin
t variables, jM0j �i, jM1j � i, and jN j � i. Then we have[xi := N ℄[yi :=M1℄M0 � [yi := [xi := N ℄M1℄[xi := N ℄M0Theorem 5 (Con
uen
e). The meta-redu
tion is 
on
uent.Theorem 6 (Strong Normalizability). If � ` M : � is derived, then M isstrongly normalizable with respe
t to the meta-redu
tion.Proof. (idea) We 
an prove this theorem by using the redu
ibility method, but we
annot follow the standard way be
ause substitution operations 
an be appliedonly when the level restri
tion is satis�ed. In other words, we 
annot express thelemma, whi
h is usually 
laimed in proof by the redu
ibility method, that12



If � ` M : � is derived, then a term that is obtained by substitutingredu
ible terms for free variables in M is redu
ible.To deal with this diÆ
ulty, we extend �M so that it has `postponed substitu-tions', that is, we de�ne an extended judgment of the form �1; xi := N : �; �2 `M and give a redu
tion rule that substitutes N for x in �2 or M under some
onditions. Then, we de�ne redu
ibility sets that 
onsist of extended judgmentsand prove lemmas similar to the ones in the 
ase of simply typed lambda 
al
u-lus. utWe remark that, for many obje
t languages su
h as the simply typed lambda
al
ulus, these theorems still hold if we repla
e the meta-redu
tion by the unionof the meta-redu
tion and the redu
tions in the obje
t language.7 Related Work and Con
lusionWe have proposed two formal systems �M and �m that formalize the notionof meta-variable, motivated by the observations how meta-variables are used intextbooks of logi
.Edinburgh Logi
al Framework (LF) [5℄ gives a typed framework by whi
h we
an de�ne various logi
al systems as obje
t 
al
uli. Unlike LF and its des
en-dants, we 
learly distinguish the meta-levels from the obje
t-level. The textualsubstitution in �M is another 
hara
teristi
 feature.Geuvers and Jogjov [3℄ have introdu
ed the notion of meta-variable into theproof assistant system, so that they 
an des
ribe open proofs. Their motivationis similar to ours, so they have also en
ountered the problem that free variablesare 
aptured when a meta-variable is instantiated. Their solution to this problemis similar to the one in our work on the 
al
ulus of 
ontext [11℄.Re
ently mu
h e�ort has been devoted to formalize the notion of 
ontextin lambda 
al
uli, and various 
al
uli of 
ontext have been proposed. In thework of Tal
ott [13℄ and Mason [8℄, the notion of 
ontexts are formalized outsideof the obje
t language, be
ause 
ontexts are meta-level obje
ts in nature andshould be 
hara
terized independently of the obje
t language. In other work su
has Dami [1℄, Hashimoto-Ohori [6℄, Sands [9℄, and Sato-Sakurai-Kameyama [11℄,
ontexts are built into the system, so that 
ontext manipulations and obje
t-level 
al
ulations 
an be 
arried out in the same framework. By representing
ontexts in �M, we have integrated the two approa
hes.It turns out that �m is similar to the 
al
uli for binding-time analysis in o�-line partial evaluation with multiple 
omputation stages [4, 2℄. In those 
al
uli,types are strati�ed like ours but, there, levels represent binding time|i.e., when
ertain expression 
an be 
omputed. Redu
tion is similar to ours in that theorder of 
omputation is also determined by levels. Aside from the base language(for whi
h they use typed or untyped �-
al
ulus), one subtle di�eren
e is that,in those 
al
uli, variables 
an range over expressions of the same level, resultingin a relaxed 
ondition on fun
tion types: �!i � is a type if j�j � i (not j�j < i),and j�j � i. 13



Davies [2℄ also presents a reformulation �
 of the 
al
ulus for binding-timeanalysis and shows that it 
orresponds to a proof system of linear-time temporallogi
 with a modal operator. A
tually, our earlier attempt to formalize meta-variables [14℄ was done in a 
lose style. In these 
al
uli, terms are annotatedwith information that indi
ates levels of subexpressions, hen
e �m is a simpler
al
ulus to formalize meta-variables.As far as we know, the 
al
ulus �M is the �rst one whi
h formalizes non-standard (textual) substitution and is 
on
uent and strongly normalizing. Webelieve that our 
al
uli 
an be a basis of formalizing logi
al and 
omputationsystems naturally and dire
tly, but their further development is left for futurework.A
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