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have been made to formalize the notion of meta-variable. One reason for thismay be that we have to go to metameta-level to do so.In this paper, we present two new formalizations of the onept of the meta-variable. These formalizations are based on our observations of the usages ofmeta-variables in text books and tehnial papers on logi.The �rst observation is from Shoen�eld [12℄ and Kleene [7℄. In these books, we�nd the following sentene as one of the indutive lauses whih de�ne formulas.(We have slightly modi�ed notations from the originals.)If x is a variable and A is a formula, then 9x A is a formula.In the above sentene, both `x' and `A' are meta-variables, and when we usethe sentene as a rule whih is used to onstrut a onrete formula, we mustinstantiate these meta-variables by onrete linguisti objets of the objet lan-guage. Thus, for example, we may instantiate x by a onrete variable x and Aby a onrete formula x = x. Then, by applying the instantiated rule, we havethat 9x x = x is a formula. Here, it is important to remark that the proessof instantiation we just desribed is a form of substitution, but, unlike ordinarysubstitutions, the variables being substituted are meta-variables. There is an-other subtle point in this substitution proess. To see this, we analyze the aboveinstantiation proess in two steps. Namely, we assume that the meta-variable`x' is �rst instantiated and then, in the seond step, the meta-variable `A' isinstantiated. Then, after the �rst step, we get the following sentene.If x is a variable and A is a formula, then 9x A is a formula.In the seond step, we substitute x = x for A in the above sentene, and we getthe fully instantiated sentene:If x is a variable and x = x is a formula, then 9x x = x is a formula.We note here that, unlike ordinary substitution, we have substituted x = x forA in 9x A without following the usual onvention of renaming the name of thebinding variable (x in this ase) to avoid the apture of free variables.The seond observation we now make is also a very ommon one. Often in theliterature, notation like A(x) is used to indiate a formula where free ourrenesof x in A(x) is impliitly understood. Thus, if t is a term, then A(t) stands fora formula whih is obtained from A(x) by substituting t for x in A(x). In thisusage, `x', `t' and `A' are all meta-variables and the �rst two meta-variables rangeover variables and terms in the objet language. As for the third meta-variable`A' it is possible to interpret its range in two ways.The �rst interpretation is to regard `A' as ranging over funtions whih, whenapplied to terms, will yield formulas. In this interpretationA(t) denotes the resultof applying the meta-level funtion A to a term t. So, in this interpretation, A isa metameta-variable, sine its denotation is not a linguisti objet of the objetlanguage but it is a funtion in the meta language.The seond interpretation is to regard `A' as ranging over abstrats of theobjet language whih an be instantiated to formulas by supplying terms of the2



objet language. This interpretation is possible only if the objet language on-tains suh abstrats as its formal entities. Higher-order abstrat syntax employedby, e.g., Edinburgh LF [5℄ is based on this interpretation.In this paper, we will introdue two typed aluli �M and �m, whih arerespetively designed based on the above two observations. In �M and �m, witheah variable a non-negative integer, whih we all the level of the variable, isassoiated. We onsider level 0 as the objet-level, level 1 as the meta-level, level2 as the metameta-level and so on.In these formalizations, we believe that we an take virtually any formalsystem as the objet-level of our systems. However, for the sake of onretepresentation, we take as the objet-level a system of symboli expressions weintrodued in Sato [10℄ whih is simple but powerful enough to represent syntaxof many of the ommonly used formal systems suh as the �-alulus and pred-iate alulus. Both �M and �m will be onstruted on top of this objet-levelsystem by adding higher-level strutures, and we will show that these alulienjoy nie properties suh as onuene and strong normalizability. We will alsoshow that the alulus �M an represent the notion of ontext naturally sinea ontext, whih is an expression ontaining some holes in it, is inherently alinguisti objet in the meta-level and not in the objet-level.Due to lak of spae, we have omitted some lemmas and details of proofs. Afull version of this paper with proofs is aessible athttp://www.sato.kuis.kyoto-u.a.jp/~masahiko/index-e.html.2 Informal Introdution to the CaluliIn this setion we informally explain the two aluli �M and �m whih we pro-pose in this paper. We assume our objet language ontains onstants, abstra-tion ((x)[M℄), and pair (hM;Ni). Abstration and appliation in the meta-levelare denoted by �X:M and MN . (We often use apital letters for meta-variablesin examples, although both objet- and meta-level variables belong to the samesyntati ategory in the formal de�nition.)2.1 The Calulus �MThe �rst alulus �M is based on the �rst observation in Setion 1. Let usonsider the �rst observation again and assume that we have just ompleted the�rst step. Then, we have the expression 9x A. We an represent this expressionby h090; (x0)[A1℄i using a onstant 090. On the shoulder of a variable, we write anatural number to indiate its level, although we often omit the level if it is learfrom the ontext. So, we simply write x for x0 and it orresponds to the onreteobjet-level variable x. In �M, the instantiation proess of the meta-variable Aby the objet-level formula x = x an be represented as the redution proess ofthe following �-redex: (�A: h090; (x)[A℄i)h0=0; hx; xii:3



In the redution, as pointed out in Setion 1, non-standard substitution is per-formed and we get: h090; (x)[h0=0; hx; xii℄iwhih represents the formula 9x x = x as expeted. Note that the objet-levelvariable x is aptured through the substitution.The non-standard (textual) substitution we have just introdued gives riseto the following two tehnial problems.The �rst one is the non-onuene of the alulus. As argued in the litera-ture on ontext aluli [8, 6, 11℄, aluli that have textual substitution annot beonuent unless we restrit the evaluation order. For instane, letM be the term(�X2: (�x1: X2)y0)x1. Depending on the evaluation-order, we will get di�erentresults y0 and x1. Our solution to this problem is (roughly) that, a redex maynot be redued if it ontains variables of higher levels than the level of the re-dex1. In this example, the inner redex has level-1, so its redution is postponeduntil the variable X2 disappears.The seond problem in formulating �M is that, sine we restrit the evaluation-order, some redutions may get stuk. Consider the terms (�X2: �x1: X2)y0z0,and (�x1: �X2: X2)y0z0. The �rst term redues to y0, while the seond termannot be redued. Sine we do not onsider terms like the seond one meaning-ful, we introdue arities to rule out suh terms. For instane, �x1: X2 : 0 !1 0signi�es that this term denotes a level-1 funtion from objets to objets. Sim-ilarly we have �X2: �x1: X2 : 0!2 (0 !1 0). On the other hand, �x1: �X2: X2would have arity 0 !1 (0 !2 0), and it would denote a level-1 funtion whihreturns a level-2 funtion. We will exlude suh a term by de�ning arity properly,and show that the evaluation in �M does not get stuk (Theorem 4).Although �M has non-standard substitution, we need the standard apture-avoiding substitution as well, when the variable being substituted for and onebeing aptured are of the same level. Let us see the following redution:(�X2: �Y 2: �z1: X2)(Y 2z1)! �W 2: �z1: Y 2z1in whih the variable z1 is aptured, while the variable Y 2 is not aptured sineits level is the same as that of the variable X2.2.2 The Calulus �mThe seond alulus �m formalizes the �rst interpretation2 of the seond obser-vation in Setion 1.The formula A(t) an be represented as A2(t1) using the level-2 variable A2of arity 0 !1 0, and the level-1 variable t of arity 0 in �m. The existentialformula 9x A(x) is represented as:h090; (x0)[A2(x0)℄i);1 The level of the redex (�Xi:M)N is i.2 In this paper, we do not formalize the seond interpretation in whih A in A(t) rangesover abstrats of the objet language. It should be a straightforward extension ofthis work, but details are left for future work.4



and the substitution of �x1 : 0: h0=0; hx1; x1ii for A2 is realized by �-redution,but this time we do not use the non-standard substitution. Hene, the term:(�A2 : 0!1 0: h090; (x0)[A2(x0)℄i)(�x1 : 0: h0=0; hx1; x1ii)redues (using standard substitution) toh090; (x0)[h0=0; hx0; x0ii℄ias expeted.3 The Calulus �MIn this setion, we give a formal de�nition of the �rst alulus �M. The seondalulus �m will be introdued in the next setion.3.1 Arities and TermsWe de�ne arity (�) and its level (j�j) as follows:1. 0 is an arity and j0j = 0.2. If � and � are arities, 0 < i, j�j < i, and j�j � i, then � !i � is an arityand j�!i �j = i.Note that the side ondition of the seond lause reets the intended notion oflevel introdued in Setion 1. Intuitively, the arity �!i � is for level-i funtionsfrom terms of arity � to terms of arity �, thus j�j < i and j�j < i must besatis�ed. The restrition on � is relaxed to j�j � i to allow urrying.We assume that, for eah natural number i and arity �, there are in�nitelymany variables, and the sets of variables of eah level and arity are mutuallydisjoint. For a variable x of level i and arity �, we sometimes write it as xi. Theset of all variables is denoted by V. A (variable) delaration is an expression ofthe form xi : �, where � is an arity and either j�j < i or j�j = i = 0. We saythe level of this delaration is i. A hypothesis sequene is a �nite sequene ofdelarations. A judgment is an expression of the form � ` M : � where � is ahypothesis sequene and � is an arity.We have the following rules that are used to derive judgments.The �rst rule introdues variables for eah i and �, where we assume x is avariable of level i and arity �. xi : � 2 �� ` xi : � (var)The next two rules introdue abstration and appliation for level-i (i > 0).�; xi : � `M : � j�j � i� ` �xi:�:M : �!i � (abs) � `M : �!i � � ` N : �� `MN : � (app)5



Note that, in the rule (abs), the level of the variable xi and that of the arity� !i � should agree, and the side-ondition j�j � i is needed to form a (well-formed) arity � !i �. Note also that we may not onstrut a term like �x1 :0: �X2 : 0: X2.The last group of rules are those for the level-0, the objet language. is a onstant� `  : 0 (onst0) �; x0 : 0 `M : 0� ` (x0)[M℄ : 0 (abs0)� `M : 0 � ` N : 0� ` hM;Ni : 0 (pair0)An expressionM is said to be a term if a judgment of the form � `M : � isderivable for some � and �. We sometimes just write �xi:M for �xi:�:M whenthe arity � of xi is irrelevant.The sope of �x: and free ourrenes of variables in a term are de�ned asusual. For a term M , the set of free variables in M is denoted by FV(M). Thelevel of a term M , denoted by jM j, is the maximum level of variables in M ,or 0 if there is no variable in M . Note that we take all variables (even variableourrenes in the sope of �) into aount|for instane, j(�x2:�: x2)y1j = 2.Note also that jM j is not neessarily equal to the level of its arity. The level of ahypothesis sequene � , denoted by j� j, is the maximum level of variables in � ,or 0 if � is the empty sequene.3.2 �-equivaleneIn the alulus �M, we need speial are to de�ne �-equivalene: ourrenesof a variable x in the sope of �x: { usually alled bound ourrenes { may ormay not be subjet to renaming sine textual substitution does not ommutewith naive variable renaming. For instane, we may identify �x1: y2(�z1: x1z1)with �x1: y2(�u1: x1u1), but not with �w1: y2(�z1: w1z1). To see its reason, letus substitute x1 for y2 in these terms. Sine the level of y2 is higher than x1 andw1, the textual substitution is used, and the �rst and the third terms beome�x1: x1(�z1: x1z1), and �w1: x1(�z1: w1z1), resp., whih do not have the samedenotational meaning. Hene, we let an abstration �xi: e be �-onvertible onlywhen no variable at a level higher than i ours in its sope.We de�ne the �-equivalene after a few auxiliary de�nitions. A renamingof variables is a partial funtion from V to V whih is injetive and satis�esjf(xi)j = i for all xi in the domain of the partial funtion. For a partial funtionf , its domain is denoted by dom(f). For a renaming f and a variable xi (whihmay not be in dom(f)), f # xi is a renaming of variables suh that dom(f #xi) = dom(f)� fxig, and f # xi agrees with f on its domain.For a renaming f and terms M and N in �M, we derive a judgment of theform f `M ' N by the following inferene rules:f(xi) = yif ` xi ' yi f `M 'M 0 f ` N ' N 0f `MN 'M 0N 06



f `M 'M 0f ` �xi : �:M ' �xi : �:M 0 (f(xi) = xi)f `M 'M 0g ` �xi : �:M ' �yi: �:M 0� jM j � i; jM 0j � i;f(xi) = yi; g # xi = f # xi�The last rule an be applied only when both M and M 0 are of level less than orequal to i. Otherwise, the term �xi:M ontains (not neessarily free) ourrenesof meta-variables whih have higher levels than i, and we annot rename thebound variable xi. In this ase we an still apply the seond last rule, sineit does not rename the bound variable xi. For brevity, we omit the inferenerules for terms onstruted by the rules (onst0), (abs0), and (pair0), whih aresimilarly de�ned. For instane, a term (x0)[M℄ has the same rules as the term�xi : �:M .Let id be the identity funtion on V. If id `M ' N is derived by the rulesabove, we say M is �-equivalent to N (written by M �� N). It is easy to showthe relation �� is a ongruene on terms.3.3 Substitution and RedutionThe notion of redution in the alulus �M is the union of those in the objetlanguage (whih we do not speify) and the following �-redution:(�) (�xi:M)N ! [xi := N ℄M if jM j � i and jN j � iin whih [xi := N ℄M denotes the (non-standard) substitution de�ned below. Wewrite �! for the reexive and transitive losure of !.For a level i > 0, a level-i variable xi, and termsM and N suh that jM j � iand jN j � i, we de�ne [xi := N ℄M as follows:1. [xi := N ℄xi 4= N2. [xi := N ℄yj 4= yj if yj 6� xi3. [xi := N ℄(M1M2) 4= ([xi := N ℄M1)([xi := N ℄M2)4. [xi := N ℄(�yj :M) 4= �yj : [xi := N ℄M if j < i5. [xi := N ℄(�yi:M) 4= �yi: [xi := N ℄M if yi 62 FV(N) and xi 6� yi6. [xi := N ℄ 4= 7. [xi := N ℄(y0)[M℄ 4= (y0)[[xi := N ℄M℄8. [xi := N ℄hM1;M2i 4= h[xi := N ℄M1; [xi := N ℄M2iThe �rst three lauses are standard. For the fourth line, if the level of yj isstritly less than that of xi, the substitution behaves like textual replaement,that is, free variables may get aptured through this substitution. For the �fthline, the bound variable yi has the same level as xi that is being substituted,in whih ase the substitution is the standard apture-avoiding one, hene theside-onditions yi 62 FV(N) and xi 6� yi must be satis�ed. (The seond side-ondition x 6� y is not needed for the fourth lause beause variables at di�erent7



levels are assumed to be di�erent.) This side-ondition an be always satis�edby taking an �-equivalent term. The last three lauses deal with the level 0 in astraightforward manner, exept textual substitution.For brevity, we identify �-equivalent terms in the following. Under this on-vention, we simply have that [xi := N ℄M is de�ned if and only if max(jM j; jN j) �i. The objet-level may ontain other redies than the �-redies in the aboveform, and to distinguish these two, we say that a redex (�xi : �:M)N is a meta-redex. A term is meta-normal if it does not have meta-redies and a redutionis alled a meta-redution if its redex is a meta-redex.3.4 Replaing Level-0 LanguagesOur level-0 language here is a simplest possible language, whih has no notionof types or even omputation. We have adopted suh a language beause it issimple but expressible enough to represent expressions that appear in typiallogial systems. It would be possible, however, to adopt other languages suh asuntyped and simply typed �-aluli as the level-0 language.For example, for untyped �-alulus, we ould introdue another term on-strutor M1 �M2 by the rule� `M : 0 � ` N : 0� `M �N : 0 (app0)and a redution rule (x0)[M℄ � N ! [x0 := N ℄M (if jM j = jN j = 0) wherethe level-0 substitution would be de�ned as expeted. It would be also straight-forward to substitute the simply typed �-alulus for the level-0 language, byextending the base arities from 0 to the set of simple types.4 The Calulus �mAs disussed in the previous setions, the seond alulus �m is based on the se-ond observation disussed in the introdution. It is obtained from �M by repla-ing the de�nition of substitution with the standard apture-avoiding one. Also,we need to use the standard de�nition of �-equivalene to identify �x1:y2(�z1:x1z1)with �w1:y2(�z1:w1z1), whih are not �-equivalent in �M. Sine the other def-initions of arities, rules to derive judgments, �-redution remain the same, weavoid repeating de�nitions and just show hanges to be made.For �-equivalene, we replae the third and fourth rules to derive f `M ' Nwith the following one:f `M 'M 0g ` �xi : �:M ' �yi : �:M 0 (f(xi) = yi; g # xi = f # xi)Notie that there is no restrition on the levels of the bodies M and M 0 of�-abstration. Similarly, the de�nition of substitution will be as follows.8



For a level i > 0, a level-i variable xi, and terms M and N suh thatjM j � i and jN j � i, [xi := N ℄M is de�ned by:1. [xi := N ℄xi 4= N2. [xi := N ℄yj 4= yj if yj 6� xi3. [xi := N ℄(M1M2) 4= ([xi := N ℄M1)([xi := N ℄M2)4. [xi := N ℄(�yj :M) 4= �yj : [xi := N ℄M if yj 62 FV(N) and xi 6� yj5. [xi := N ℄ 4= 6. [xi := N ℄(y0)[M℄ 4= (y0)[[xi := N ℄M℄ if y0 62 FV(N)7. [xi := N ℄hM1;M2i 4= h[xi := N ℄M1; [xi := N ℄M2iNotie that the �rst three lauses are the same as before and the fourth lauseis now a familiar one that avoids variable apturing.5 ExamplesIn this setion, we show a few examples of �M and �m.5.1 Representing FormulasIn earlier setions, we informally explained how the formula x = x is substitutedfor the meta-variable A in 9x A. Here we onsider this proess formally in �M.The arity of the orresponding term is inferred in �M as follows:x0 : 0; A1 : 0 ` 090 : 0 x0 : 0; A1 : 0; x0 : 0 ` A1 : 0x0 : 0; A1 : 0 ` (x0)[A1℄ : 0x0 : 0; A1 : 0 ` h090; (x0)[A1℄i : 0x0 : 0 ` �A1 : 0: h090; (x0)[A1℄i : 0!1 0 ....x0 : 0 ` h0=0; hx0; x0ii : 0x0 : 0 ` (�A1 : 0: h090; (x0)[A1℄i)(h0=0; hx0; x0ii) : 0Note that, the variable x0 ours free in the term of the onlusion, as indiatedby the hypothesis sequene.We an ompute this term as:(�A1 : 0: h090; (x0)[A1℄i)(h0=0; hx0; x0ii)! [A1 := h0=0; hx0; x0ii℄h090; (x0)[A1℄i� h090; [A1 := h0=0; hx0; x0ii℄(x0)[A1℄i� h090; (x0)[h0=0; hx0; x0ii℄iNote that non-standard (textual) substitution is applied in the last step, sinethe level of A1 is higher than that of x0. As a result, the free ourrenes of x0get bound, and x0 does not our free in the resulting term, whih representsthe formula 9x x = x. 9



We also informally explained how the same example an be written in �m.Its formal ounterpart an be written as follows3:A2 : 00 ` 090 : 0 � ` A2 : 00 � ` x0 : 0� ` A2(x0) : 0A2 : 00 ` (x0)[A2(x0)℄ : 0A2 : 00 ` h090; (x0)[A2(x0)℄i : 0` �A2 : 00: h090; (x0)[A2(x0)℄i : 00!2 0 ....y1 : 0 ` h0=0; hy1; y1ii : 0` �y1 : 0: h0=0; hy1; y1ii : 00` (�A2 : 00: h090; (x0)[A2(x0)℄i)(�y1 : 0: h0=0; hy1; y1ii) : 0where we put an arity 00 = 0 !1 0 and � = A2 : 0 !1 0; x0 : 0 Note that wereplaed the meta-variable A1 in �M by an appliation term A(x), and to ensurethis appliation is resolved in a meta-level, the arity of A should be 0!1 0, henethe level of the variable A must be 2 (or higher).We omit the omputation of the term here, sine it is essentially the same asthe standard �-redution.5.2 Representing ContextsContexts an be represented in �M using meta-variables naturally. Let M bea term, C be a ontext in the objet language, i.e., a term with a hole [ ℄ in it,and C[M ℄ be the result of the hole-�lling operation. In �M, the ontext C isrepresented as a term C � (�X1:0: C[X1℄), and C[M ℄ as an appliation (CM),whih redues to C[M ℄ by the textual substitution in �M.Let us take an example from Hashimoto and Ohori's ontext alulus [6℄.Consider the ontext C � (�u: (�x: [ ℄)u+y)3 and the termM � (�z: C[x+ z℄)xin lambda alulus. They an be written in �M (using our notation for objetlanguage) as: C � �X1:0: (u0)[((x0)[X1℄ � u0) + y0℄ � 3M � (z0)[C (x0 + z0)℄ � x0We an redue M as:M ! (z0)[[X1 := x0 + z0℄((u0)[((x0)[X1℄ � u0) + y0℄ � 3)℄ � x0� (z0)[(u0)[((x0)[x0 + z0℄ � u0) + y0℄ � 3℄ � x0�! 3 + x0 + y0Note that, by the side-ondition of the �-redution, we annot redue the outer-most level-0 redex �rst. If it would be redued �rst, we would get 3+x0+x0 as aresult, so the Churh-Rosser property would be broken. Hashimoto and Ohori'sontext alulus has a similar restrition that the �-redution is prohibited whenthe redex ontains a hole.3 We hanged the level-1 variable x1 to y1 for readability. Formally this renaming isjusti�ed by the �-equivalene. 10



A good point of our representation of ontexts is that, sine ontexts arefuntions, they an be omposed, in other words, we an �ll a ontext in anotherontext. As a simple example, let C and D be the ontexts �x: [ ℄ and �y: [ ℄ inlambda alulus, and onsider hole-�lling of D in C, i.e. C[D℄. The ontexts Cand D are represented in �M as C � �X1: (x0)[X1℄ and D � �X1: (y0)[X1℄,then we an ompose them in the same way as omposition of two funtions:C ÆD � �X1: C (D X1)C ÆD redues to �X1: (x0)[(y0)[X1℄℄ whih represents the ontext �x: �y: [ ℄.It should be noted that, in several existing ontext aluli inluding Hashimoto-Ohori's and our previous work [11℄, ontexts annot be omposed, sine thesealuli keep trak of possible bound variables in a hole.6 Properties of �M and �mWe have a number of desirable properties for the aluli �M and �m, that is,they enjoy subjet redution, onuene, and strong normalization properties.In the following, we fous on the properties of �M, but the modi�ation for �mis straightforward.We an prove the subjet redution property in the standard way.Theorem 1 (Subjet Redution Property). If � ` M : � is derived andM �! N , then � ` N : � an be derived.Note that even if � ` (�xi:M)N : � is derived, [xi := N ℄M is not neessarilyde�ned. But we an prove from Theorem 2 and 3 that if j� j � i then there existterms M 0 and N 0 suh that M �!M 0, N �! N 0, and [xi := N 0℄M 0 is de�ned.Lemma 1. Suppose � `M : � is derived and the highest level of the redies ofM is i. Then, any redution sequene that redues only level-i redies leads to aterm that does not have redies of level-i or higher.We an prove this lemma by reduing it to the strong normalizability of thesimply typed �-alulus. We translate �M to the simply typed �-alulus bymapping a level-i abstration �xi:M to an abstrat of the simply typed �-alulus and a level-j (j < i) abstration �xj :M to a pair of xj and M . Sinewe prove a stronger property in Theorem 6, we omit the details here.Note that, we annot simply map �-abstrations of �M to those of the sim-ply typed �-alulus, sine the textual substitution annot be simulated by theapture-avoiding substitution in the standard aluli.Theorem 2. If � `M : � is derived, then M has a meta-normal form.Proof. By repeatedly using Lemma 1. utTheorem 3. If � ` M : � is derived and M is meta-normal, then jM j �max(j� j; j�j). 11



Proof. Suppose M is a meta-normal term. We prove the theorem by indutionon M .If M is (�xi:�1: N0)N1 � � �Nn for some i � 0; xi; �1; n � 0; N0; � � � ; Nn, thenthe arity of N0 should be  � �2 !j2 � � � !jn �n !i � where �k is the arity ofNk for k = 2; � � � ; n. Sine N0 is meta-normal, we have jN0j � max(j� j; i; jj) byindution hypothesis, and jj � i by the side-ondition of rule (abs). Therefore,we have j�xi:�1: N0j = max(i; jN0j) � max(i; j� j). Now, we have two ases.1. n = 0. jM j � max(i; j� j) = max(j�1 !i j; j� j).2. n > 0. We have, by indution hypothesis, jNkj � max(j� j; j�kj) for 1 � k �n. Hene jN1j � max(j� j; i). Sine M is meta-normal, max(jN0j; jN1j) > i.Hene j� j > i. Sine jj � j�kj, we have jNkj � j� j for 1 � k � n. HenejM j � j� j.We omit the proof of the ase whereM is of the form xiN1 � � �Nn and we aneasily prove the laim in other ases (M is a onstant , (x0)[N0℄, or hN0; N1i)by indution hypothesis. utThe following theorem ensures that meta-level evaluation in �M does notget stuk.Theorem 4 (Normal Form Property). Suppose � ` M : � is derived andM is meta-normal. (1) If j� j = j�j = 0, then jM j = 0. (2) If j� j < j�j, then Mis a �-abstration.Proof. (1) Clear from Theorem 3. (2) If M is not a �-abstration, then it mustbe of the form xiN1N2 � � �Nn or (�xi::N0)N1N2 � � �Nn for n � 0. In the formerase, j�j � jxij � j� j. Contradition. In the latter ase, let � be the arity of N0.From Theorem 3, j(�xi : :N0)N1j � j�j. By the side-ondition of rule (abs),j�j � i. Hene jN0j � i and jN1j � i, whih implies (�xi::N0)N1 is a redex.Contradition. utWe an prove the onuene and strong normalizability of �M. The onu-ene an be proved using the standard tehnique (parallel redution), but thestrong normalizability is not trivial. Sine spae is limited, we just give the ideaof the proof here. For the detailed proof, see the full version of this paper.Lemma 2 (Substitution Lemma). Let xi and yi be distint variables, jM0j �i, jM1j � i, and jN j � i. Then we have[xi := N ℄[yi :=M1℄M0 � [yi := [xi := N ℄M1℄[xi := N ℄M0Theorem 5 (Conuene). The meta-redution is onuent.Theorem 6 (Strong Normalizability). If � ` M : � is derived, then M isstrongly normalizable with respet to the meta-redution.Proof. (idea) We an prove this theorem by using the reduibility method, but weannot follow the standard way beause substitution operations an be appliedonly when the level restrition is satis�ed. In other words, we annot express thelemma, whih is usually laimed in proof by the reduibility method, that12



If � ` M : � is derived, then a term that is obtained by substitutingreduible terms for free variables in M is reduible.To deal with this diÆulty, we extend �M so that it has `postponed substitu-tions', that is, we de�ne an extended judgment of the form �1; xi := N : �; �2 `M and give a redution rule that substitutes N for x in �2 or M under someonditions. Then, we de�ne reduibility sets that onsist of extended judgmentsand prove lemmas similar to the ones in the ase of simply typed lambda alu-lus. utWe remark that, for many objet languages suh as the simply typed lambdaalulus, these theorems still hold if we replae the meta-redution by the unionof the meta-redution and the redutions in the objet language.7 Related Work and ConlusionWe have proposed two formal systems �M and �m that formalize the notionof meta-variable, motivated by the observations how meta-variables are used intextbooks of logi.Edinburgh Logial Framework (LF) [5℄ gives a typed framework by whih wean de�ne various logial systems as objet aluli. Unlike LF and its desen-dants, we learly distinguish the meta-levels from the objet-level. The textualsubstitution in �M is another harateristi feature.Geuvers and Jogjov [3℄ have introdued the notion of meta-variable into theproof assistant system, so that they an desribe open proofs. Their motivationis similar to ours, so they have also enountered the problem that free variablesare aptured when a meta-variable is instantiated. Their solution to this problemis similar to the one in our work on the alulus of ontext [11℄.Reently muh e�ort has been devoted to formalize the notion of ontextin lambda aluli, and various aluli of ontext have been proposed. In thework of Talott [13℄ and Mason [8℄, the notion of ontexts are formalized outsideof the objet language, beause ontexts are meta-level objets in nature andshould be haraterized independently of the objet language. In other work suhas Dami [1℄, Hashimoto-Ohori [6℄, Sands [9℄, and Sato-Sakurai-Kameyama [11℄,ontexts are built into the system, so that ontext manipulations and objet-level alulations an be arried out in the same framework. By representingontexts in �M, we have integrated the two approahes.It turns out that �m is similar to the aluli for binding-time analysis in o�-line partial evaluation with multiple omputation stages [4, 2℄. In those aluli,types are strati�ed like ours but, there, levels represent binding time|i.e., whenertain expression an be omputed. Redution is similar to ours in that theorder of omputation is also determined by levels. Aside from the base language(for whih they use typed or untyped �-alulus), one subtle di�erene is that,in those aluli, variables an range over expressions of the same level, resultingin a relaxed ondition on funtion types: �!i � is a type if j�j � i (not j�j < i),and j�j � i. 13
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