
E-Learning of Foundation of Computer Science

Yukiyoshi Kameyama1 and Masahiko Sato2

1 Department of Computer Science, University of Tsukuba
kam@cs.tsukuba.ac.jp

2 Graduate School of Informatics, Kyoto University
masahiko@kuis.kyoto-u.ac.jp

Abstract. We report our teaching experience of undergraduate courses
on logic and computation. The topics covered are the syntax and the
semantics of basic logical and computational calculi. We put our em-
phasis on the treatment of formal systems and formal reasoning which
is notoriously difficult for most students. To overcome this difficulty, we
developed an e-learning system called CAL and have been using it for
the last several of years. The CAL system turned out not only useful,
but also essential to achieve the goals for our courses.
In this paper we give an overview of the CAL system, describe the design
principle of our courses, and discuss our teaching experiences.
Keywords: E-Learning, Computational Logic, Formal System, Proof-
Checker, Game, Syntax and Formal Semantics, Programming Languages,
Propositional Logic, Simply Typed Lambda Calculus.

1 Introduction

For the last several years, we have been teaching undergraduate courses which
cover the foundational topics for logic and computation. The course title is
“Computational Logic” for the first author at University of Tsukuba, and “Com-
putation and Logic” for the second author at Kyoto University.1 The specific
topics covered are the syntax, the semantics and formal reasoning. The main
goal of these courses is to help students think about the computer programs
as formal objects so that they can represent and reason about programs rig-
orously. We believe that understanding formal systems and formal reasoning is
a necessary first step for all students in Computer Science Department, since
computers are only able to treat formal objects (apart from the meaning), and
computer programming is therefore a way of formal reasoning. If a student does
not understand formal systems, then he can never write good programs.

Our goal involves a challenging issue in education, since, most students are
to some extent familiar with informal mathematical reasoning, while formal
systems and formal reasoning are for them a completely new language as if it
1 The two courses have essentially the same concept and share much materials, but

differ in concrete subjects. This is natural because each course is in a different
curriculum at each department and also because the course hours are different. In
this paper, we mainly focus on the course taught at University of Tsukuba.



were an unknown foreign language. In order to get accustomed with a foreign
language, students must try as many exercises as possible (reading, writing,
speaking, and listening). Similarly, in order to understand formal reasoning for
the first time, students must work out a sufficient number of exercises until they
understand how to reason formally. Answering one question about a formal sys-
tem takes only a few minutes for some students while other students need more
than several days or even weeks to solve a single question. Even worse, check-
ing the correctness of answers takes a long time even for experienced teachers.
Due to lack of human resources, traditional courses on formal logic tend to be
difficult, uninteresting, or even inaccessible for most students.

A solution for this problem is to use a proof-checker. Given a question about
formal reasoning, a student inputs his answer to the proof-checker, which checks
if the input is correct or wrong. In the latter case, the proof-checker points out
an error in the proof, and then the student can improve his wrong proof based
on the error message.

However, things are not so simple. This scenario works only if the software is
well designed and developed to be used for this purpose. Existing softwares for
proof-checking (and even our initial version of the CAL system) do not suffice
all the needs for our purpose. Let us point out some of the problems.

Firstly, the software must have a good user interface. Since students must
sometimes input a large symbolic expression as a proof object, a good editorial
facility is essential for the success of this approach, while many existing proof-
checkers have very poor editors, or too specialized editors which students do not
know.

Secondly, the software should not be bound to any specific logic or calculus.
Rather, it should allow the defining facility of various formal system, and the
proof checker must be generic so that teachers can define (or modify) logical
systems and computational calculi from time to time. Thirdly, the software must
be designed so that it gives good advices to the student when he inputs a wrong
answer. Error messages from the software are advices to students by which they
can improve wrong answers, and thus important for the purpose of education.
The advices should be not too kind (for instance, automatic theorem proving
facility should not be provided), and not too unkind (at the minimum, the system
should pinpoint which part of the user’s input is wrong).

We have solved these issues by developing and using a software called CAL
(computation and logic). The CAL system acts as a proof-checker which checks if
a given proof is correct against a formal system. It is fully automatic, and does
not need teachers’ help so that students can try to solve questions whenever
they want, even in the midnight from their home. The CAL system has been
carefully designed to fulfill the requirements we mentioned above. The initial
version of the CAL system was developed at Kyoto University in 1998 by the
second author’s leadership with the first author and Izumi Takeuti. In 2001, the
second author has totally rewritten the software to obtain the current version,
which has been used by the authors as courseware since then. It should be noted
that the current version of the CAL system is surprisingly stable, and thus gives



a solid foundation for e-learning. Our teaching experience in the past years has
shown several positive signs to use the CAL system in our courses.

The paper is organized as follows. In Section 2, we give a short overview
of the CAL system and also explain the underlying concepts. In Section 3, we
explain the design principles of our course, and give some concrete examples. In
Section 4, we report our teaching experience in the last several years. In Section
5, we make concluding remarks.

2 Overview of the CAL system

In this section, we briefly overview the CAL system without getting into technical
details. More information on the CAL system can be found in another paper [8].

2.1 Logical Perspective

Abstractly, the CAL system implements two functions: to define a formal system
in a generic logical framework (called Natural Framework), and to check if a
given proof is correct with respect to the definition of the formal system.

The key concept of the Natural Framework is a derivation game, which we
think is parallel to an ordinary game such as Shogi (Japanese Chess), Chess
and Card Games. The important properties of ordinary games are that they
have rigid rules to which players must follow, and that there is a rigid criterion
as to who wins/looses the game. Formal reasoning with logical systems and
computational calculi can be thought as a game too, although it is played by a
single person rather than multiple players.

A derivation game in CAL corresponds to a formal system. The salient aspect
of CAL’s derivation games is that one can define data structures under bind-
ing structures as derivation games. The rules of a derivation games are formal
derivation rules such as the introduction rule of implication (in the propositional
logic game) and the lambda-introduction rule (in the simply typed lambda cal-
culus game). The CAL proof-checker checks if a user’s input strictly follows the
rules or not. In this sense, the derivation game enjoys the same two properties
as above: each derivation game has its own rules players must follow, and also
there is rigid criteria as to whether the player wins the game or not.

The formal systems that have been so far defined as derivation games in
CAL range from various logical systems and computational calculi to inductively
defined datatypes and operational semantics. We could also define an ordinary
game as an instance of derivation games. In Section 3, we show a few concrete
derivation games we use in our courses.

2.2 Inside the CAL System

As a concrete software, the CAL system consists of three components: User
interface, parser, and checker.



defining games

Prop Game

Teacher

Student

Student

Lambda Game

Call-by-Value
Game

playing a game

CAL System

Call-by-Name
Game

Student

Fig. 1. Defining and Playing with Derivation Games

The parser and the checker do the obvious things: the former parses an input
string and converts it to a CAL expression, then the latter checks it. The key
feature is that it is generic in the sense that, given a specification of a formal
system as a derivation game, it behaves as the proof checker of that specified
formal system. This is important since teachers often want to switch from one
formal system (logic or programming language) to another in a single course.
Technically, we have developed a new theory of expressions, and a new meta-
logic called Natural Framework by which one can define an arbitrary derivation
game. It should be noted that not only the checker, but the parser is generic in
the syntax, since the surface syntax varies depending on a derivation game.

The user interface of the CAL system is implemented on top of the Emacs
editor, and a user can communicate with the CAL system through a buffer
of the emacs editor. In fact the CAL system is simply a collection of Emacs
functions. A user (student) invokes the CAL system by simply calling the top-
level function which is similar to the read-eval-print loop of Lisp, then he can
interact with the CAL system until he quits the loop. During this interaction,
the user can get questions in each game, and can input answers for any questions
he likes to answer then. The server checks whether the user’s answer is a correct
one for the corresponding question in the current game, and shows the results.
When the user inputs a wrong answer, the system not only says it is wrong, but
indicates the wrong part of the user’s answer. The important design principle of
the CAL system is that, the error message should not be too kind, nor indicates
multiple errors at a time. Our goal is to help students understand the syntax and
the semantics of formal systems, and to do so, they must think about what was
wrong at the rejected answer. This is in contrast with most compilers’ approaches
in which they always try to show verbose error messages, by which programmers
can often correct their errors without thinking about the reason.



CAL version 5.22 of Sun Dec 8 16:44:54 2002

CAL:Prop <1> play[Prop]

Let’s play Prop!

CAL:Prop <2> Q[50]

Derive the following judgment in the Prop game.

A, B, C ` ((A∨B)⊃C) ⊃ ((A⊃C)∧(B⊃C))

CAL:Prop <3>

Fig. 2. Playing the Prop game with CAL

2.3 Monitoring

The CAL system is not implemented as a centralized server in the server-client
model. Each user has a copy of the executable image in his (virtual) memory
space, and interacts with the copy independently with others. This implies that
failure in one user’s CAL system (possibly due to a bug in the system) does not
affect other users.

A problem in this model is that how we collect information (each student’s
achievement). We chose a simple solution for this, namely, when each user quits
the CAL system, the system writes the results (such as the student’s name and
the question numbers he correctly answered) into a file in the CAL system’s
directory with some simple cryptographic method. This directory is periodically
scanned and statistics is calculated, which is sent to a teacher by e-mails so that
he can grasp the students’ progress.

3 Course Design

After having decided to use the CAL system, we have set several design principles
for our course. In this section, we explain these principles one by one.

3.1 Informal first, formal second, meta properties last

That our major goal is to cultivate students’ ability of formal reasoning does
not imply we totally ignore informal practice of mathematical reasoning. In fact,
we take an opposite way; for all formal systems we teach in the courses, we
spend several hours for in-class lectures before the students start playing the
corresponding games with CAL. In other words, students do not have to play
an adventure game.2

2 In an adventure game, the player must find rules and even objectives of the game
by themselves.



Although the meta properties of formal systems such as normalization and
confluence are important to understand the formal systems deeply, we do not
teach them until (most) students finish to solve the questions in the correspond-
ing game. This is mainly because, some meta properties are so useful in reducing
the search space in the proof search, and therefore even if they do not under-
stand the formal system, they can make use of the meta properties to construct
proofs quickly, which might prohibit them to think about the formal reasoning
deeply. We believe that students can find the real meaning of meta-properties
only after they do trial-and-errors with the formal system for sufficiently many
times.

3.2 Not too many formal systems

A natural consequence of our observation that learning formal reasoning is simi-
lar to learning a foreign language is that, we should not offer too many different
languages (formal systems) to students. Rather, they should concentrate on one
formal until their understanding reach at a certain level. Hence, we define a lim-
ited number of derivation games, but for each game, we give a great number of
questions which students must solve (play with). In the course at University of
Tsukuba, we have deliberately chosen only four games (see below), which are we
think the minimum core when teaching basic logical and computational systems.

3.3 Formalize as much as possible (not only syntax, but also
semantics)

The central slogan of the course is that we can formalize informal practice of
reasoning in terms of derivation game (aka inductive definition with binding
structures). To reinforce this message, we try to formalize as many concepts
which appear in each formal system as possible. For instance, we not only for-
malize the syntax of a computational system, but only we give the semantics as a
derivation game (formal semantics). By seeing that both the static side (syntax)
and the dynamic side (operational semantics) can be equally formalized, some
students might predict the expressive power of derivation games, or induction
definitions. This principle need to be compromised since we do not want to define
too many formal systems (the second principle), though.

3.4 Concrete Derivation Games

Based on these principles, we have deliberately chosen only four games as fol-
lows:3

– Prop game for propositional logic.
– Lambda game for simply typed lambda calculus.

3 The second author defines six games which include Heyting arithmetic and depen-
dently typed lambda calculus.



– CBV game for call-by-value evaluation of simply typed lambda calculus.
– CBN game for call-by-name evaluation of simply typed lambda calculus.

The first one is a logical system, and the rest are about a computational
system, among which the Lambda game is about the syntax, and the last two
are about the semantics.

The Prop game corresponds to the natural-deduction style propositional
logic. We have chosen this game as the first game, since it is the most funda-
mental logic and students have sufficient knowledge about it. We take a variant
of the standard (classical) logic in that the double-negation elimination rule (or
the law of excluded middle) is missing, hence it is intuitionistic. This choice
is motivated by the Curry-Howard isomorphism, which connects intuitionistic
logic to typed lambda calculus, and is one of the central principles in the mod-
ern study on functional programming languages. The difference in fact does not
matter since the questions we give to students are all provable in both logic, i.e.
without using the double-negation elimination rule, and we never ask them to
show unprovability of a formula.4 Readers can find a sample session with the
Prop game (a question about proving some formula, and a student’s answer) in
Figure 5 in the appendix.

The Lambda game corresponds to the syntax of the terms in the simply
typed lambda calculus augmented with the product, coproduct (sum), and empty
types. The introduction of these types are again motivated by the Curry-Howard
isomorphism.

The CBV and CBN games give two operational semantics of the simply
typed lambda calculus. We think that teaching formal semantics to students is
essentially important; in daily programming, they are not conscious with the
evaluation order, and do not care about the meaning of programs. In these
games we give so called big-step operational semantics, namely, we define a
binary relation a ↓ v with the meaning that the term a evaluates to the value v.
A few key rules of the CBV game is illustrated in Figure 3. To read the rules,
we note that the CAL expression λ(x : A)b[x] means λxA.b[x] in the standard
notation (where A is the type of the bound variable x), and b[c] is an application
of a higher-order expression b to an expression c. Note that the rule is expressed
using a higher-order encoding, which is similar to higher-order abstract syntax
(such as the one used in the Twelf system), but is (we believe) simpler and more
fundamental. By virtue of this encoding, the binding structures of the (informal)
rules are precisely represented by the CAL rules.

x ↓ x
var

λ(x : A)b[x] ↓ λ(x : A)b[x]
λ

f ↓ λ(x : A)b[x] a ↓ v b[v] ↓ w

f(a) ↓ w
apply

Fig. 3. Big step call-by-value semantics

4 In fact, it is impossible to show unprovability inside the CAL system.



The call-by-name semantics is defined in a similar way. Since the difference

x ↓ x
var

λ(x : A)b[x] ↓ λ(x : A)b[x]
λ

f ↓ λ(x : A)b[x] b[a] ↓ c

f(a) ↓ c
apply

Fig. 4. Big step call-by-name semantics

of the two semantics is small, students, at a first sight, may not be able to
understand the difference of the two systems, or even recognize the difference.
Only after having solved a sufficient number of questions about these two games,
students are able to recognize the difference of the two semantics in a precise
way.

4 Teaching Experience

We have been teaching the undergraduate course using the CAL system for five
years at University of Tsukuba, and we believe that it has been successful. Let
us briefly state some of our experiences.

– To our surprise, students very much like solving questions given by the CAL
system. Before we started to use the CAL system, we have never encountered
this situation, and most students seemed to dislike formal reasoning. In fact,
students seemed to have spent much longer time than expected in solving
questions of the CAL system. By collecting students’ impression, we have
found that they were enjoying the derivation games in CAL as if it were a
new kind of computer games, even if the derivation games are played by a
single person.

– Many students preferred to play the derivation games at the computer room
in the university, rather than to play from their homes or other places. While
they could enjoy solving the questions from anywhere in the world (provided
they can connect to internet), they liked to solve questions with other stu-
dents. One obvious reason for this is that they wanted to exchange infor-
mation among students. However, a more important, and surprising reason
is that, they are competing with each other. The messaging system of the
CAL system shows the list of top ten players who have solved most questions
then, and the list is updated daily. The list stimulated many students, and
they tried to solve questions as fast as possible, earlier than other students.
In short, modest competition stimulates students.

– Students sometimes found useful meta theorems by themselves through the
interaction with the CAL system. While they could not prove the meta
theorems (no one have found the meta-theoretic induction which works on
the proof objects.), they found (or conjectured) a few meta theorems.
In the Lambda game, most students found that the derivation that gives a
typing to a given term are trivially constructed from the given term. In the



Prop game, a few clever students found a more interesting meta theorem
about the shape of the formal proof, which is known as the subformula
property.5 This is in fact a substantial theorem in logic and typed lambda
calculus.

We think that these are positive signs for the use of the CAL system especially
when teaching the foundational area of computer science.

5 Conclusion

In this paper we have reported our experience on teaching the courses on foun-
dation of computer science. Formal reasoning is no doubt a suitable subject to
teach with an e-learning system, but the results seem to indicate more than that.
We have found that many positive signs to use the CAL system, which strongly
encourage further efforts.

Yet, there remains room for improvement. One of the most important prob-
lem is the error messages. Since the CAL system is generic, i.e. is not bound to
any specific system, its error messages are uniformly generated and sometimes
not very useful for users. Moreover, it signals only one error at a time so that
students must improve their derivations one by one, typing similar derivations
(which might be several ten lines) many times. Also we should widen the scope
of the CAL system so that one can formalize more different systems as derivation
games.

The second author has already started to refine the underlying meta logic
and plans to revise the system in near future.

Acknowledgments:

The first author would like to thank Tetsuo Ida at University of Tsukuba for
encouragements.

5 Natural deduction style logic usually enjoys the subformula property: “all formu-
las appearing in a normal proof are subformulae of the conclusion or one of the
assumptions in the proof”.



References

1. Barendregt, H. P., The Lambda Calculus, Its Syntax and Semantics, North-Holland,
1981.

2. Barwise, J. and J. Etchemendy, Tarski’s World, CSLI Lecture Notes, No. 25, CSLI
Publications, Cambridge University Press, 1994.

3. de Bruijn, D. G., Lambda Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theo-
rem, Indag. Math. 34, pp. 381–392, 1972.

4. Harper, R., F. Honsell, and G. Plotkin, A Framework for Defining Logics, Journal
of the Association for Computing Machinery, Vol. 40, No. 1, pp. 143–184, 1993.

5. Sato, M., and M. Hagiya, Hyperlisp, in de Bakker, van Vliet eds., Algorithmic
Languages, North-Holland, pp. 251–269, 1981.

6. Sato, M., Theory of Symbolic Expressions, II, Publ. of Res. Inst. for Math. Sci.,
Kyoto Univ., 21, pp. 455–540, 1985.

7. Sato, M., An Abstraction Mechanism for Symbolic Expressions, in V. Lifschitz ed.,
Artificial Intelligence and Mathematical Theory of Computation (Papers in Honor
of John McCarthy), Academic Press, pp. 381–391, 1991.

8. Sato, M., Y. Kameyama, I. Takeuti, Masahiko Sato, Yukiyoshi Kameyama, Takeuti
Izumi, ”CAL: A Computer Assisted Learning system for Computation and Logic”,
EUROCAST2001, Lecture Notes in Computer Science 2178 (eds. R. Moreno-Diaz,
B. Buchberger, J.-L. Freire), pp. 509–524, 2001.

9. Sato, M., T. Sakurai and Y. Kameyama, A Simply Typed Context Calculus with
First-Class Environments, Proc. Fifth International Symposium on Functional and
Logic Programming (FLOPS), Lecture Notes in Computer Science 2024, pp. 359–
374, 2001.



Appendix.

Q[50]

Derive the following judgment in the Prop game.

A, B, C ` ((A∨B)⊃C) ⊃ ((A⊃C)∧(B⊃C))

CAL:Prop <4>

A[50][

A,B,C ` ((A∨B)⊃C) ⊃ ((A⊃C)∧(B⊃C)) in Prop since

((A∨B)⊃C) ⊃ ((A⊃C)∧(B⊃C)) by ⊃I {

(X1:: (A∨B)C) [

(A⊃C)∧(B⊃C) by ∧I {

A⊃C by ⊃I {

(X2::A)[

C by E {

(A∨B)C by assume {X1};

A∨B by ∨IL {

A by assume {X2}

}

}

]

};

B⊃C by ⊃I {

(X3::B)[

C by E {

(A∨B)C by assume {X1};

A∨B by ∨IR {

B by assume {X3}

}

}

]

}

}

]

}

]

Correct Answer!

CAL:Prop <5>

Fig. 5. A sample session in the Prop game.


