
Adv. Course in Programming Languages

Yukiyoshi Kameyama

Department of Computer Science, University of Tsukuba

No.1: Program Generation

Yukiyoshi Kameyama Adv. Course in Programming Languages

プログラム生成 (Program Generation)

Power function in C:� �
int power (int x, int n) {

if (n == 1) { return x; }

else { return (x * power(x,n-1)); }

}� �
If we use the function for fixed n (e.g. 12), for various values of x ,
we had better use:� �
int power12 (int x) {

int y = x * x * x;

int z = y * y;

return (z * z);

}� �
Yukiyoshi Kameyama Adv. Course in Programming Languages

Program Generation

Quite a few applications need such specialization:

▶ image processing (Halide)

▶ linear algebra kernel (Spiral, Terra etc.)

▶ database query (Quel, Scala LMS etc.)

▶ DSL in general

We want to write a program which generates such a specialized
program (code).

▶ Program Generator

▶ Generated Code

Topic of this course: How can we write a program generator in a
safe, easy, extensible way ?

Yukiyoshi Kameyama Adv. Course in Programming Languages

Strings as code (1)

Terminology: we say programs for generators, and code for
generated programs.

First question: how to represent code as data ?

▶ Strings

▶ Data types for trees

▶ Language support for code generation (Built-in data types)

Yukiyoshi Kameyama Adv. Course in Programming Languages



Strings as code (1)

Power function (べき乗を求める関数) in the C language:� �
int power (int n, int x) {

if (n == 1) {

return x;

} else if (even(n)) {

return sqr(power(n/2,x));

} else {

return x*power(n-1,x);

}

)� �

Yukiyoshi Kameyama Adv. Course in Programming Languages

Strings as code (2)

A generator for power, assuming n is known, x is unknown.� �
string gen_power1 (int n, string xs) {

if (n == 1) { return xs;

} else if (even(n)) {

return concat("sqr(",gen_power1(n/2,xs), ")");

} else {

return concat(xs,"*(",gen_power1(n-1,xs),")");

}

}

string gen_power (int n) {

return concat("int power (int x) { return(",

gen_power1(n, "x"), ");}"); }� �
gen_power(5) returns
"int power (int x) { return(x*(sqr(sqr(x))));}".

Yukiyoshi Kameyama Adv. Course in Programming Languages

Strings as code (3)

Inner product of vectors in C-like notation:� �
float ip (int n, float a[], float b[]) {

int i;

float sum = 0.0;

for (i = 0; i < n; i++) {

sum += a[i] * b[i];

}

return sum;

}� �

Yukiyoshi Kameyama Adv. Course in Programming Languages

Strings as code (4)

Generator: (n is known, a and b are not known.)� �
string gen_ip1 (int n, int idx,

string as, string bs) {

if (idx == n) return "0.0";

else return

concat(as, "[", int_to_string(idx), "] * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, as, bs));

}

string gen_ip (int n,string as,string bs){return

concat("float ip(int ",as,"[],int",bs,"[]){"

"return ", gen_ip1(n, 0, as, bs), ";", "}");

}� �
Yukiyoshi Kameyama Adv. Course in Programming Languages



Strings as code (5)

Generating more specialized code: (n and a are known, and b is
not known.)� �
string gen_ip1 (int n, int idx,

float a[], string bs) {

if (idx == n) return "0.0";

else return

concat(float_to_string(a[idx]), " * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, a, bs) );

}

string gen_ip (int n, float a[], string bs) {

return concat("float ip (int ", bs, "[]) {"

"return ", gen_ip1(n, 0, a, bs), ";", "}");

}� �
Yukiyoshi Kameyama Adv. Course in Programming Languages

Strings as code (summary)

The “string as code” approach:

▶ (+) Can be done in any programming languages.

▶ (-) Is error prone; risk of erroneously bound/unbound variables
and type errors.

▶ (-) Is not composable; we cannot combine two generators
both of which use “x” as an internal variable.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Trees as code (1)

Lisp/Scheme has S-expressions (trees) as primitive data.

(+ 1 2) returns 3

’(+ 1 2) returns (+ 1 2)

(list (+ 1 2) (* 2 3)) returns (3 6)

(list ’(+ 1 2) ’(* 2 3)) returns ((+ 1 2) (* 2 3))

Suitable for symbolic computation (mathematical formulas, logical
formulas, programs, XML data, sentences in natural languages
etc.)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Trees as code (2)

Power function in Scheme:� �
(define (power n x)

(if (= n 1) x

(if (even n)

(sqr (power (/ n 2) x))

(* x (power (- n 1) x)))))� �

Yukiyoshi Kameyama Adv. Course in Programming Languages



Trees as code (3)

Generator for Power function in Scheme:� �
(define (gen_power1 n xs)

(if (= n 1) xs

(if (even n)

(list ’sqr (gen_power1 (/ n 2) xs))

(list ’* xs (gen_power1 (- n 1) xs)))))

(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))� �
Better than the “strings as code” approach. Splicing is still
problematic.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Trees as code (4)

(from the previous slide)� �
(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))� �
Generator for Power function in Scheme using quasi-quotation:� �
(define (gen_power n)

‘(define (power x)

,(gen_power1 n ‘x)))� �
Quasi-quotation allows splicing.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Trees as code (5)

Evaluation of “trees ad code” approach:

▶ (+) Better syntax. Ease of writing and understanding. Fewer
errors.

▶ (-) Still not composable; we cannot combine one generator
with internal variables “x” and “y”, and another generator
with internal variables “x” and “z”.

▶ (-) Risk of run-time type errors or unbound/erroneously
bound variables.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Data types as code

We can use user-defined data type instead of S-expressions:� �
type code =

| Var of string

| Fun of string * code

| App of code * code

| Plus of code * code

| Times of code * code� �
We still make mistakes in mixing up variables.

Yukiyoshi Kameyama Adv. Course in Programming Languages



Language support for quasi-quotation (1)

Power function in OCaml (a dialect of ML):� �
let rec power n x =

if n=1 then x

else if (even n) then

sqr (power (n / 2) x)

else x * (power (n-1) )� �

Yukiyoshi Kameyama Adv. Course in Programming Languages

Language support for quasi-quotation (2)

Generator for Power (OCaml plus quasi-quotation):� �
let rec gen_power1 n xs =

if n=1 then xs

else if (even n) then

‘(sqr ,(gen_power1 (n / 2) xs))

else ‘(,xs * ,(gen_power1 (n - 1) xs))� �
Generator for Power (in MetaOCaml):� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

<sqr ~(gen_power1 (n / 2) xs)>

else <~xs * ~(gen_power1 (n - 1) xs)>� �
Yukiyoshi Kameyama Adv. Course in Programming Languages

Language support for quasi-quotation (3)

Generator for Power:� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

<sqr ~(gen_power1 (n / 2) xs)>

else <~xs * ~(gen_power1 (n - 1) xs)>

let gen_power n =

<fun x -> ~(gen_power1 n <x>)>� �
gen_power 3 <x>

=> < ~<x> * ~(gen_power 2 <x>) >

=> < x * ~(<sqr ~(gen_power 1 <x>)>) >

=> < x * ~(<sqr ~(<x>)>)> => ...

Yukiyoshi Kameyama Adv. Course in Programming Languages

Program generation: overview

We have (at least) two stages:

▶ First stage: generating code using static data

▶ Second stage: executing the generated code using dynamic
data

Assumption: our program has two kinds of input data:

▶ Static input: their values are known at the first stage.

▶ Dynamic input: their values are not known the first stage, but
known at the second stage.

It is very essential for generators to know which data is static and
which is not.

Yukiyoshi Kameyama Adv. Course in Programming Languages



Language support for quasi-quotation (4)

But is anything better than Lisp’s S-expression approach ?
Support for types.

▶ Types give a certain reliability of generator.

▶ Types give a certain reliability of generated code,

▶ AND it ensures “no free variables” in generated code.

Errors:
x + 1, <x + 1>, <fun x -> 3.0 + 1> <fun x -> ~x + 1>

Ok:
<fun x -> x + 1>, fun x -> <~x + 1>,
fun x -> <fun y-> ~x + y + 1>,

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Programming with MetaOCaml

MetaOCaml is a multi-stage extension of the programming
language OCaml.

Creating code:

let x = 3 + 5 ;;

==> 8

let x = .< 3 + 5 >.;;

==> .< 3 + 5 >.;;

let x = .< 3 + 5 * y>.;;

==> (error)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Programming with MetaOCaml

Composing code:

let x = .< 3 + 5 >. ;;

==> .< 3 + 5 >.;;

let y = .< 7 * .~x >. ;;

==> .< 7 * (3 + 5) >.

let z = .< .~x / .~y >. ;;

==> .< (3 + 5) / (7 * (3 + 5)) >.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Programming with MetaOCaml

Executing code:

let x = .< 3 + 5 >. ;;

==> .< 3 + 5 >.;;

let y = run x ;;

==> 8

let z = run .< .~x * .~x >. ;;

==> 64

Yukiyoshi Kameyama Adv. Course in Programming Languages



Staged Programming with MetaOCaml

We can write a code generator for power:� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

.<sqr .~(gen_power1 (n / 2) xs)>.

else .<.~xs * .~(gen_power1 (n - 1) xs)>.� �
let code = gen_power1 3 .<5>. ;;

==> .< 5 * .~(gen_power1 2 .<5>.) >.

==> .< 5 * .~(.<sqr .~(gen_power1 1 .<5>.)>.) >.

==> .< 5 * .~(.<sqr .~(.<5>.)>.) >.

==> .< 5 * .~(.<sqr 5>.) >.

==> .< 5 * (sqr 5) >.

Yukiyoshi Kameyama Adv. Course in Programming Languages

What’s the difference ?

Types of code are checked (and inferred).

.<3 + 5>. : int code

.<3 + "abc">. type error

let x=.<10>. in .<.~x + 1>. : int code

fun x -> .<.~x + 1>. : (int code) -> (int code)

.<fun x -> x + 1>. : (int -> int) code

.<fun x -> .~x + 1>. type error

.<fun x -> y + 1>. error

fun x -> .<fun y -> .~x + y>.

: int code -> (int -> int) code

The programming languages Scala also has an advanced support
for staged programming.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Today’s Summary

▶ “Code as strings” are available in most languages, but no
support for program generation.

▶ “Code as trees (or datatypes)” are available in several
languages, but no support for program generation.

▶ Staged computation: Language support for code generation
(type system).

Yukiyoshi Kameyama Adv. Course in Programming Languages

Next week(s)

▶ Basic techniques of code generation. (2 weeks)

▶ Case studies (2 weeks): Code Generators for Image
Processing, Linear algebra, GPGPU, Domain-Specific
Languages etc.

▶ Report on a paper; See the web page.

http://www.cs.tsukuba.ac.jp/~kam/acpl/

Yukiyoshi Kameyama Adv. Course in Programming Languages


