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プログラム生成 (Program Generation)

Power function in C:� �
int power (int x, int n) {

if (n == 1) { return x; }

else { return (x * power(x,n-1)); }

}� �
If we use the function for fixed n (e.g. 12), for various values of x ,
we had better use:� �
int power12 (int x) {

int y = x * x * x;

int z = y * y;

return (z * z);

}� �
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Program Generation

Quite a few applications need such specialization:

▶ image processing (Halide)

▶ linear algebra kernel (Spiral, Terra etc.)

▶ database query (Quel, Scala LMS etc.)

▶ DSL in general

We want to write a program which generates such a specialized
program (code).

▶ Program Generator

▶ Generated Code

Topic of this course: How can we write a program generator in a
safe, easy, extensible way ?
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Strings as code (1)

Terminology: we say programs for generators, and code for
generated programs.

First question: how to represent code as data ?

▶ Strings

▶ Data types for trees

▶ Language support for code generation (Built-in data types)
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Strings as code (1)

Power function (べき乗を求める関数) in the C language:� �
int power (int n, int x) {

if (n == 1) {

return x;

} else if (even(n)) {

return sqr(power(n/2,x));

} else {

return x*power(n-1,x);

}

)� �
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Strings as code (2)

A generator for power, assuming n is known, x is unknown.� �
string gen_power1 (int n, string xs) {

if (n == 1) { return xs;

} else if (even(n)) {

return concat("sqr(",gen_power1(n/2,xs), ")");

} else {

return concat(xs,"*(",gen_power1(n-1,xs),")");

}

}

string gen_power (int n) {

return concat("int power (int x) { return(",

gen_power1(n, "x"), ");}"); }� �
gen_power(5) returns
"int power (int x) { return(x*(sqr(sqr(x))));}".
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Strings as code (3)

Inner product of vectors in C-like notation:� �
float ip (int n, float a[], float b[]) {

int i;

float sum = 0.0;

for (i = 0; i < n; i++) {

sum += a[i] * b[i];

}

return sum;

}� �
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Strings as code (4)

Generator: (n is known, a and b are not known.)� �
string gen_ip1 (int n, int idx,

string as, string bs) {

if (idx == n) return "0.0";

else return

concat(as, "[", int_to_string(idx), "] * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, as, bs));

}

string gen_ip (int n,string as,string bs){return

concat("float ip(int ",as,"[],int",bs,"[]){"

"return ", gen_ip1(n, 0, as, bs), ";", "}");

}� �
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Strings as code (5)

Generating more specialized code: (n and a are known, and b is
not known.)� �
string gen_ip1 (int n, int idx,

float a[], string bs) {

if (idx == n) return "0.0";

else return

concat(float_to_string(a[idx]), " * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, a, bs) );

}

string gen_ip (int n, float a[], string bs) {

return concat("float ip (int ", bs, "[]) {"

"return ", gen_ip1(n, 0, a, bs), ";", "}");

}� �
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Strings as code (summary)

The “string as code” approach:

▶ (+) Can be done in any programming languages.

▶ (-) Is error prone; risk of erroneously bound/unbound variables
and type errors.

▶ (-) Is not composable; we cannot combine two generators
both of which use “x” as an internal variable.
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Trees as code (1)

Lisp/Scheme has S-expressions (trees) as primitive data.

(+ 1 2) returns 3

’(+ 1 2) returns (+ 1 2)

(list (+ 1 2) (* 2 3)) returns (3 6)

(list ’(+ 1 2) ’(* 2 3)) returns ((+ 1 2) (* 2 3))

Suitable for symbolic computation (mathematical formulas, logical
formulas, programs, XML data, sentences in natural languages
etc.)
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Trees as code (2)

Power function in Scheme:� �
(define (power n x)

(if (= n 1) x

(if (even n)

(sqr (power (/ n 2) x))

(* x (power (- n 1) x)))))� �
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Trees as code (3)

Generator for Power function in Scheme:� �
(define (gen_power1 n xs)

(if (= n 1) xs

(if (even n)

(list ’sqr (gen_power1 (/ n 2) xs))

(list ’* xs (gen_power1 (- n 1) xs)))))

(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))� �
Better than the “strings as code” approach. Splicing is still
problematic.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Trees as code (4)

(from the previous slide)� �
(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))� �
Generator for Power function in Scheme using quasi-quotation:� �
(define (gen_power n)

‘(define (power x)

,(gen_power1 n ‘x)))� �
Quasi-quotation allows splicing.
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Trees as code (5)

Evaluation of “trees ad code” approach:

▶ (+) Better syntax. Ease of writing and understanding. Fewer
errors.

▶ (-) Still not composable; we cannot combine one generator
with internal variables “x” and “y”, and another generator
with internal variables “x” and “z”.

▶ (-) Risk of run-time type errors or unbound/erroneously
bound variables.
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Data types as code

We can use user-defined data type instead of S-expressions:� �
type code =

| Var of string

| Fun of string * code

| App of code * code

| Plus of code * code

| Times of code * code� �
We still make mistakes in mixing up variables.
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Language support for quasi-quotation (1)

Power function in OCaml (a dialect of ML):� �
let rec power n x =

if n=1 then x

else if (even n) then

sqr (power (n / 2) x)

else x * (power (n-1) )� �
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Language support for quasi-quotation (2)

Generator for Power (OCaml plus quasi-quotation):� �
let rec gen_power1 n xs =

if n=1 then xs

else if (even n) then

‘(sqr ,(gen_power1 (n / 2) xs))

else ‘(,xs * ,(gen_power1 (n - 1) xs))� �
Generator for Power (in MetaOCaml):� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

<sqr ~(gen_power1 (n / 2) xs)>

else <~xs * ~(gen_power1 (n - 1) xs)>� �
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Language support for quasi-quotation (3)

Generator for Power:� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

<sqr ~(gen_power1 (n / 2) xs)>

else <~xs * ~(gen_power1 (n - 1) xs)>

let gen_power n =

<fun x -> ~(gen_power1 n <x>)>� �
gen_power 3 <x>

=> < ~<x> * ~(gen_power 2 <x>) >

=> < x * ~(<sqr ~(gen_power 1 <x>)>) >

=> < x * ~(<sqr ~(<x>)>)> => ...
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Program generation: overview

We have (at least) two stages:

▶ First stage: generating code using static data

▶ Second stage: executing the generated code using dynamic
data

Assumption: our program has two kinds of input data:

▶ Static input: their values are known at the first stage.

▶ Dynamic input: their values are not known the first stage, but
known at the second stage.

It is very essential for generators to know which data is static and
which is not.
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Language support for quasi-quotation (4)

But is anything better than Lisp’s S-expression approach ?
Support for types.

▶ Types give a certain reliability of generator.

▶ Types give a certain reliability of generated code,

▶ AND it ensures “no free variables” in generated code.

Errors:
x + 1, <x + 1>, <fun x -> 3.0 + 1> <fun x -> ~x + 1>

Ok:
<fun x -> x + 1>, fun x -> <~x + 1>,
fun x -> <fun y-> ~x + y + 1>,

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Programming with MetaOCaml

MetaOCaml is a multi-stage extension of the programming
language OCaml.

Creating code:

let x = 3 + 5 ;;

==> 8

let x = .< 3 + 5 >.;;

==> .< 3 + 5 >.;;

let x = .< 3 + 5 * y>.;;

==> (error)
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Staged Programming with MetaOCaml

Composing code:

let x = .< 3 + 5 >. ;;

==> .< 3 + 5 >.;;

let y = .< 7 * .~x >. ;;

==> .< 7 * (3 + 5) >.

let z = .< .~x / .~y >. ;;

==> .< (3 + 5) / (7 * (3 + 5)) >.
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Staged Programming with MetaOCaml

Executing code:

let x = .< 3 + 5 >. ;;

==> .< 3 + 5 >.;;

let y = run x ;;

==> 8

let z = run .< .~x * .~x >. ;;

==> 64
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Staged Programming with MetaOCaml

We can write a code generator for power:� �
let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

.<sqr .~(gen_power1 (n / 2) xs)>.

else .<.~xs * .~(gen_power1 (n - 1) xs)>.� �
let code = gen_power1 3 .<5>. ;;

==> .< 5 * .~(gen_power1 2 .<5>.) >.

==> .< 5 * .~(.<sqr .~(gen_power1 1 .<5>.)>.) >.

==> .< 5 * .~(.<sqr .~(.<5>.)>.) >.

==> .< 5 * .~(.<sqr 5>.) >.

==> .< 5 * (sqr 5) >.
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What’s the difference ?

Types of code are checked (and inferred).

.<3 + 5>. : int code

.<3 + "abc">. type error

let x=.<10>. in .<.~x + 1>. : int code

fun x -> .<.~x + 1>. : (int code) -> (int code)

.<fun x -> x + 1>. : (int -> int) code

.<fun x -> .~x + 1>. type error

.<fun x -> y + 1>. error

fun x -> .<fun y -> .~x + y>.

: int code -> (int -> int) code

The programming languages Scala also has an advanced support
for staged programming.
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Today’s Summary

▶ “Code as strings” are available in most languages, but no
support for program generation.

▶ “Code as trees (or datatypes)” are available in several
languages, but no support for program generation.

▶ Staged computation: Language support for code generation
(type system).
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Next week(s)

▶ Basic techniques of code generation. (2 weeks)

▶ Case studies (2 weeks): Code Generators for Image
Processing, Linear algebra, GPGPU, Domain-Specific
Languages etc.

▶ Report on a paper; See the web page.

http://www.cs.tsukuba.ac.jp/~kam/acpl/
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