```
Today's Topic
```


## Adv. Course in Programming Languages

Yukiyoshi Kameyama
Department of Computer Science, University of Tsukuba

How to stage programs

How to automatically obtain a specialized code from an ordinary program?

|  | name | input | output |
| :--- | :--- | :--- | :--- |
| ordinary function | power | $\times, \mathrm{n}$ | $x^{n}$ |
| specialized code | power13 | x | $x^{13}$ |
| code generator | gen_power | n | powern |
|  | gen_power 5 | $\rightsquigarrow$ power5 |  |
|  | power5 $2 \rightsquigarrow 32$ |  |  |
|  | power5 $3 \rightsquigarrow 243$ |  |  |
|  | power5 $4 \rightsquigarrow 1024$ |  |  |

In MetaOCaml, $\langle e\rangle$ is quotation, and $e$ is anti-quotation.

```
<1+2> -> <1+2>
<1+2*3-4+5> -> <1+2*3-4+5>
< ~<1+2> * 3> -> < (1+2) * 3>
let x = <1+2> in < ~x * 3> -> <(1+2) * 3>
let }x=<1+2> in < ~x - ~x> -> <(1+2) - (1+2
    >
\(\rightarrow<1+2>\)
<1+2*3-4+5> -> <1+2*3-4+5>
let \(\mathrm{x}=<1+2>\) in < ~x * 3> -> <(1+2) * 3>
let \(\mathrm{x}=\langle 1+2\rangle\) in \(\langle\sim \mathrm{x}-\sim \mathrm{x}\rangle-><(1+2)-(1+2)\) \(>\)
```

Computation rule:

$$
\sim<e>->e
$$

Types of functions:

$$
\begin{aligned}
& \text { let incr } x=x+1 \text { incr: int } \rightarrow \text { int } \\
& \text { let foo }(x, y)=x+y \text { foo }: \text { (int } * \text { int) }->\text { int } \\
& \text { let } g o o x y=x+y \text { goo }: \text { int } \rightarrow \text { int } \rightarrow \text { int }
\end{aligned}
$$

Arrow $(\rightarrow)$ represents the function type.

```
power : int }->>\mathrm{ int }->> in
    power 2 5 = 32
gib : int -> int -> int -> (int*int)
    gib 3 1 1 = (3,5)
```


## How to make GenPower

How to obtain GenPower from Power?

GenPower Function (code generator for the power function):

```
let rec genp n x =
    if n = 0 then <1>
    else if (even n) then
            <square ~ (genp (n/2) x)>
        else < ~x * ~(genp (n-1) x)>
genp 0 <y> -> <1>
genp 1 <y> -> < ~<y> * ~ (genp 0 <x> )>
            -> < ~<y> * ~<1>>
    -> < Y * 1 >
genp 2 <y> -> <square ~(genp 1 <y>)>
    -> <square (y * 1)>
genp 3<y> -> <y * (square (y + 1))>
```

```
let rec power n x =
    if n = 0 then 1
    else if (even n) then
        square (power (n/2) x)
    else x * (power (n-1) x)
let rec genp n x =
    if n = 0 then <1>
    else if (even n) then
        <square ~(genp (n/2) x)>
    else < ~x * ~(genp (n-1) x)>
if \(n=0\) then 1
else if (even \(n\) ) then
square (power (n/2) x)
else \(x\) * (power ( \(n-1\) ) \(x\) )
let rec genp \(n x=\)
else if (even n) then
\[
\begin{aligned}
& <\text { square } \sim(\operatorname{genp}(n / 2) \quad x)> \\
& <\sim x * \sim(\operatorname{genp}(n-1) \quad x)>
\end{aligned}
\]
```

Quite similar: we only have to insert <> and ~ at some suitable places.

## Coloring power function (1)

Idea: Coloring by red for static, black for others
let rec power $n x=$
if $n=0$ then 1
else $x^{*}(\operatorname{power}(n-1) x)$
10 and 1 are static. We regard power itself is static.
2 We assume $n$ is static and $x$ is dynamic.
3 Then $\mathrm{n}=0$ and n - 1 become static.
${ }^{4}$ The conditional (if $\mathrm{n}=0$ then ...) becomes static.
5 Nothing more is static (the remaining things are dynamic.)
By quoting red parts, we get a code generator:
let rec genp $n\langle x\rangle=$
if $n=0$ then 1
else $\left\langle x^{*} \sim(\operatorname{genp}(n-1)\langle x\rangle)>\right.$

Coloring power function (2)
Coloring power function (2)

Problem 2 in the previous code:

> let rec genp $n\langle x\rangle=$
> if $n=0$ then $\langle 1\rangle$
> else $\left\langle x^{*} \sim(\operatorname{genp}(n-1)\langle x\rangle)>\right.$

Here, $\langle x\rangle$ cannot be an argument of a function. Solution: we replace it by $y$. Then $\langle x\rangle$ becomes $\sim y$, hence:

> let rec genp $n y=$
> if $n=0$ then 1
> else $<\sim y^{*} \sim(\operatorname{genp}(n-1) y)>$
with some magical code:
let genp_main $n=$

$$
\text { < fun } x \text {-> } \sim(\text { genp } n<x>)>
$$

## Coloring better power function

## Generalized Fibonacci Function

Starting from:

```
let rec power2 n x =
    if n = 0 then 1
    else if (even n) then
        square (power2 (n/2) x)
    else x * (power2 (n-1) x)
```

We obtain the following generator by coloring:

```
let rec genp2 n x =
    if n = 0 then <1>
    else if (even n) then
        <square ~ (genp2 (n/2) x)>
    else < ~x * ~(genp2 (n-1) x)>
```

```
let rec gib n x y =
    if n = 0 then (x, y)
    else let (r1,r2) = gib (n-1) x y in
        (r2,r1+r2)
gib 0 1 1 -> (1,1)
gib 1 1 1 ll> (1,2)
gib 2 1 1 -> (2,3)
gib 3 1 1 -> (3,5)
gib 4 1 1 ll> (5,8)
gib 4 3 7 -> (27,44)
```

Assumption: we know the value of $n$, but not that of $x$ or $y$.
let rec gib $n x y=$
if $n=0$ then $(x, y)$
else let $(r 1, r 2)=g i b(n-1) x y$ in
(r2, r1+r2)
We get a generator for Gibonacci:

```
let rec gib_gen n x y =
    if n = 0 then (x,y)
    else let (r1,r2) = gib_gen (n-1) x y in
        < (~r2, ~r1 + ~r2) >
```

- Starting from an ordinary function (e.g. power), and the static/dynamic information about its arguments,
- We can automatically derive a code genrator for it, by coloring.

Very simple analysis on programs (a modern compiler does a lot more).

But coloring is not sufficient for all the cases! (Bad news)

Assumption: we know the values of $n$ and $x$, but not that of $y$.

$$
\begin{aligned}
& \text { let rec gib } n \times y= \\
& \text { if } n=0 \text { then }(x, y) \\
& \text { else let }(r 1, r 2)=\operatorname{gib}(n-1) \times y \text { in } \\
& (r 2, r 1+r 2)
\end{aligned}
$$

The dynamic expression r2 appears in the first element of the pair, which should be static. (Problematic!)

Map is a typical higher-order function:

```
let rec map f lst =
    match lst with
    | [ ] -> [ ]
    | h :: tl -> (f h) :: (map f tl)
in
    map (fun x -> x + 1) [3; 7; 2; 5]
==>
    [4; 8; 3; 6]
```


## Coloring Types in GenPower

```
let rec power n x =
    if n = 0 then 1
    else x * (power (n-1) x)
power : int -> int -> int
The type of power: int -> int -> int
The type of power_gen: ?
- \(n\) is static (red), so its type is static
- \(x\) is dynamic (black), so its type is dynamic
- the returned object is dynamic (black), so its type is dynamic
```

The type of power_gen: int -> int -> int

The type of power_gen: int -> int -> int
We write it as int -> (int code) -> (int code)

```
gen_power : int -> (int code) -> (int code)
    gen_power 3 <5> ==> <5 * 5 * 5 * 1>
    gen_power 3 <2+3> ==> <(2+3) * (2+3) * (2+3) * 1>
```

If $n$ is dynamic, and $x$ is static, then we have another type:
gen_power2 : (int code) -> int -> (int code)

```
let rec gib n x y =
    if n = 0 then ( }\textrm{x},\textrm{y}\mathrm{ )
    else let (r1,r2) = gib (n-1) x y in
        (r2, r1+r2)
gib : int -> int -> int -> (int * int)
Assume \(n\) and \(x\) are staitc, and \(y\) is dynamic.
```

We want to assign consistent types for all expressions.

- (NG) gib : int $\rightarrow$ int $\rightarrow$ (int code) $\rightarrow$ (int * (int code) $)$
- (OK) gib : int $\rightarrow$ (int code) $\rightarrow$ (int code) $\rightarrow($ (int code)* (int code))

Type inference tells how we can make a consisten generator.

## Type Inference does the job

gib : int $\rightarrow$ (int code) $\rightarrow($ int code $) \rightarrow\left((\text { int code })^{*}(\right.$ int code $\left.)\right)$
let rec gen_gib $n \mathrm{x} y=$
if $\mathrm{n}=0$ then ( $\mathrm{x}, \mathrm{y}$ )
else let ( $r 1, r 2$ ) = gen_gib ( $n-1$ ) $x$ y in
( $\left.\mathrm{r} 2,<{ }^{\sim} \mathrm{r} 1+{ }^{\sim} \mathrm{r} 2>\right)$
gen_gib : int -> int code -> int code

$$
\text { -> int code } * \text { int code }
$$

To make the argument $x$ static (of type int), we need a wrapper function:
let wrapper $\mathrm{n} x \mathrm{y}=$

$$
\text { gen_gib } \mathrm{n} \text { <x> } \mathrm{y}
$$

wrapper : int -> int -> int code

$$
\text { -> int code } * \text { int code }
$$

Using the lifting (of MetaOCaml):

Which one is computed statically?

```
Assumption: a, b, c are static, others are not
let rec foo a b c d e =
    if a > 0 then
        foo (a+b) (b+c) (c+d) (d-e) (e*a)
        else
            foo 3 5 (foo b c d e a) 7 9
```

"Staging": converting an ordinary function to a code generator:

- Coloring expressions sometimes work, but not always.
- Coloring types does work, and correctly detects errors.

Type inference is quite fundamental in many modern programming languages:

- ML (SML, OCaml and F\#) and Haskell have built-in automatic type inference systems.
- Theories and algorithms for type inference are well studied.
- Many object-oriented programming languages (including Java and Scala) have powerful type systems.

Static safety guarantee of no syntax error, no type error and no scope error (no free variables) in generated codes:

| Approach | no syntax error | no type/scope error |
| :--- | :---: | :---: |
| Strings as codes | NG | NG |
| Lisp Quasiquotation | OK | NG |
| C++ template | OK | NG |
| Template Haskell | OK | NG |
| Scala LMS | OK | NG |
| MetaOCaml | OK | OK |

