
Adv. Course in Programming Languages

Yukiyoshi Kameyama

Department of Computer Science, University of Tsukuba

Program Generation: Performance vs Abstraction

Yukiyoshi Kameyama Adv. Course in Programming Languages

Papers for reports

Basic/General:

▶ A Gentle Introduction to Malt-Stage Programming,
Taha, Dagstuhl Seminar, 2003.

▶ GoMeta! A Case for Generative Programming and DSLs
in Performance Critical Systems, Rompf et al., SNAPL’15.

Application/Specific

▶ Terra: A Multi-Stage Language for High-Performance
Computing, DeVito et al., PLDI’13.

▶ Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines, Ragan-Kelly et al., PLDI’13.

▶ Functional Pearl: A SQL to C Compiler in 500 Lines of
Code, Rompf et al., ICFP’15.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Language Choice

▶ Quasiquotation in Scheme

▶ C++ template

▶ Template Haskell

▶ MetaOCaml

▶ Scala LMS (Lightweight Modular Staging)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Today

GoMeta! A Case for Generative Programming and DSLs in
Performance Critical Systems, Rompf et al., SNAPL’15.

Survey Paper on Program Generation

▶ Performance-critical software

▶ Abstraction without regret

▶ Generative performance programming

▶ Case Study 1: Compiling queries in database systems

▶ Case Study 2: Parser combinators

▶ Case Study 3: DSL compiler framework for heterogeneous
hardware

▶ Case Study 4: Synthesis of high-performance numeric kernels

Yukiyoshi Kameyama Adv. Course in Programming Languages



X-critical system

X=Mission (Mission-critical system)

Yukiyoshi Kameyama Adv. Course in Programming Languages

X-critical system

X=Safety (Safety-critical system)

Yukiyoshi Kameyama Adv. Course in Programming Languages

X-critical system

X=Performance (Performance-critical system/software)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Abstraction vs Performance

Low-level code: C, assembly etc.

▶ Good: High-performance

▶ Bad: Unsafe (security vulnerability), less agile and less
productive

▶ Bad: Not portable for different targets (multi-core, cluster,
NUMA, GPU)

High-level code:

▶ Good: Abstraction (types, modules, classes ...)

▶ Bad: Tend to be inefficient, Abstraction overhead

Solution:

▶ Generative performance programming

Yukiyoshi Kameyama Adv. Course in Programming Languages



Generative performance programming

Generative programming

▶ Another name for staged computation, or program generation

Generative ’performance’ programming

▶ New phrase in this paper

▶ Program generation for high-performance (or
performance-critical) code

Yukiyoshi Kameyama Adv. Course in Programming Languages

Abstraction/Productivity vs Performance

Abstraction is great for productivity

▶ data, type, procedure, function, module, class abstraction.

Abstraction overhead:

let rec search a t =
if a.(t) = 0 then
do_nothing

else begin
search a (t∗2);
print_node a.(t);
search a (t∗2+1);

end

let rec search t =
match t with
| Leaf −> do_nothing
| Node(n,t1,t2) −>
begin

search t1;
print_node n;
search t2

end

Yukiyoshi Kameyama Adv. Course in Programming Languages

Removing Abstraction Overhead

Optimizing compilers remove abstraction overhead by inlining etc.,
but ...

▶ Yet, it is often sub-optimal (not optimal)

▶ Compilers do not know each domain/architecture.

▶ Often we don’t have time to write optimizing compiler for
DSLs.

DSLs and generative programming help the situation.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Generative Performance Programming

▶ Different hardware: parallel, heterogeneous, distributed

▶ Applications which need high efficiency

▶ High-level programming languages provide more generality
and abstraction

Yukiyoshi Kameyama Adv. Course in Programming Languages



Case Study 1: database queries

Scala with metaprogramming feature (Lightweight modular
staging):

processCSV("data.txt") { record =>
if (record("Flag") == "yes")
println(record("Name"))

}

Example:

Name, Value, Flag
A 7 no
B 2 yes

==> "B" is printed

Yukiyoshi Kameyama Adv. Course in Programming Languages

Case Study 1: database queries

processCSV("data.txt") { record =>
if (record("Flag") == "yes")
println(record("Name"))

}

class Record(fields: Array[String], schema:
Array[String]) {
def apply(key: String) = fields(schema
indexOf key)

}

This is VERY slow than the following hand-written code:

while (lines.hasNext) {
val fields = lines.next().split(",")
if (fields(2)) == yes) println(fields(0))

}

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Interpreter is a compiler

In Scala LMS, we only have to specify dynamic/static by types.

(before staging)
class Record(fields: Array[String], schema:

Array[String]) {
def apply(key: String) = fields(schema
indexOf key)

}

(after staging)
class Record(fields: Rep[Array[String]],

schema: Array[String]) {
def apply(key: String) = fields(schema
indexOf key)

}

This modification means that the field argument is static and the
schema argument is dynamic.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Case Study 1: database queries

By specifying ’fields’ is static, we automatically get a staged
version of processCSV:

(before staging)
processCSV("data.txt") { record =>

if (record("Flag") == "yes")
println(record("Name"))

}

(generator for staging)
processCSV(file: String) (yld: Record => Rep[

Unit]) = {
val lines = FileReader(file); val schema =
lines.next.split(",")

run (while (lines.hasNext) {
val fields = lines.next().split(",")
yld (new Record(fields.schema))

})
}

(generated code fragment)
while (lines.hasNext) {

val fields = lines.next().split(",")
if (fields(2)) == yes) println(fields(0))

}

Yukiyoshi Kameyama Adv. Course in Programming Languages



Summary of Case Study 1

Generative programming with Scala LMS:

▶ can generate the best code (hand-written code),

▶ by only specifying the static/dynamic information through
types

The authors’ group has succeeded in

▶ writing a highly efficient SQL compiler, with only 500 lines

▶ ...and got the best paper award in VLDB (top conference on
database)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Other Case Studies

Case Study 2: Parser combinators

▶ cf. Hand-optimized HTTP parsers for Apache etc. (2000 lines
of C code)

▶ Staged parser combinators for HTTP and JSON data, which
have comparative (0.75 or 1.2 times faster/slower)
performance with hand-written parsers.

Case Study 3: DSL compiler framework for heterogeneous
hardware

▶ Delite: a compiler framework for embedded DSLs.

Case Study 4: Synthesis of high-performance numeric kernels

▶ Kernels for linear algebras, FFT (Fast Fourier Transform),
filters etc.

▶ Re-implemented Spiral’s DSLs by Scala LMS

▶ Uses type classes and generic programming

Yukiyoshi Kameyama Adv. Course in Programming Languages

Summary of this paper

▶ High-level vs low-level programming; abstraction vs
high-performance

▶ By eliminating abstraction overhead is the key to resolve this
tension

▶ It can be done by generative performance programming

▶ Many success stories using the authors’ Scala LMS

▶ The core idea of Scala LMS is ’staging by types’

Yukiyoshi Kameyama Adv. Course in Programming Languages

Summary of my lectures

Staged computation or Program generation (or Generative
Programming)

▶ is a key to achieve ’Abstraction without Guilt/Regret/Tears’

▶ can be done using types

▶ has a big potential to achieve high performance with high
reliability

Study on programming languages

▶ has solid foundation by logical/mathematical theories,

▶ is useful in understanding programming and designing new
languages and new way of computing

Yukiyoshi Kameyama Adv. Course in Programming Languages



Report (for the first 5 weeks)

Report:

▶ Choose one (or more) paper from the five papers about
program generation

▶ Write three (or more) pages of reports about the paper you
choose

▶ Submit the report through the Manabe system by May 23rd
(Tue.), 2017.

Recommended organization of the report:

▶ Summary of the paper

▶ Your evaluation/impression/thoughts on the paper

▶ Argue the relation between your topics and the paper (your
’topics’ can be your research topics for master thesis, or other
topics for part-time jobs, hobbies etc.)

Yukiyoshi Kameyama Adv. Course in Programming Languages


