
Decision-Making in Hearthstone Based on Evolutionary Algorithm

Eiji Sakurai, Koji Hasebe
Department of Computer Science, University of Tsukuba, Japan

s2120594@s.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

Keywords: Game AI, Hearthstone, Decision-Making, Rolling Horizon Evolutionary Algorithm.

Abstract: Hearthstone is a two-player turn-based collectible card game with hidden information and randomness. Gen-
erally, the search space for actions of this game grows exponentially because the players must perform a series
of actions by selecting each action from many options in each turn. When playing such a game, it is often
difficult to use a game tree search technique to find the optimal sequence of actions up until the end of a turn.
To solve this problem, we propose a method to determine a series of actions in Hearthstone based on an evolu-
tionary algorithm called the rolling horizon evolutionary algorithm (RHEA). To apply RHEA to this game, we
modify the genetic operators and add techniques for selecting actions based on previous search results and for
filtering (pruning) some of the action options. To evaluate the effectiveness of these improvements, we imple-
mented an agent based on the proposed method and played it against an agent based on the original RHEA for
several decks. The result showed a maximum winning rate of over 97.5%. Further, our agent played against
the top-performing agents in previous competitions and outperformed most of them.

1 INTRODUCTION

With the rapid advance in artificial intelligence tech-
nologies, many studies have been made on the devel-
opment of agents playing games. In particular, many
researchers have paid attention to games with hidden
information and randomness, such as poker, mahjong,
and collectible card games.

Hearthstone (Blizzard Entertainment, nd) is a col-
lectible card game classified into a two-player turn-
based imperfect information game. In this game, each
player composes a bunch (called a deck) of 30 cards
of more than 1,000 different types of cards and plays
with them. The game progresses while alternating
turns between two players, and the player who uses
the deck on hand in their turn and eventually reduces
the opponent’s health to 0 wins.

Typically, in collectible card games, the search
space grows exponentially because players select a
sequence of actions from numerous options at each
turn. Many previous studies, such as (Zhang and
Buro, 2017; Świechowski et al., 2018; Choe and Kim,
2019), have used tree search techniques for collectible
card games. However, finding the optimal sequence
of actions to take to the end of the turn using a tree
search within time constraints is often difficult.

To solve this problem, in this study, we pro-
pose a method for determining a sequence of ac-

tions in Hearthstone based on the evolutionary al-
gorithm called the rolling horizon evolutionary algo-
rithm (RHEA) (Perez et al., 2013). In RHEA, each
individual has a sequence of genes that represents a
series of behaviors in a certain interval. Furthermore,
each individual is given a fitness value obtained by
evaluating the state reached through its series of ac-
tions. From a set of individuals, those with high fit-
ness are selected, and a new generation is generated
by crossover and mutation. The optimal sequence of
actions is eventually determined by repeating this pro-
cess.

Despite being a versatile genetic algorithm, apply-
ing the RHEA directly to decision-making in Hearth-
stone is difficult. Therefore, our proposed method has
the following three improvements. The first improve-
ment is to modify the genetic operators to account for
subsequent actions. The second improvement is to
use a tree structure based on the study of Perez et al.
(Perez Liebana et al., 2015) to store and reuse statis-
tical information obtained from previously generated
individuals. Finally, the third improvement is to fil-
ter action options (i.e., pruning) so that the series of
actions in a turn is consistent.

In this study, we evaluated the effectiveness of
these improvements by playing game against an agent
based on the original RHEA. The result showed that
the maximum winning rate of the proposed method

was 97.5% when using a deck called MidrangeJade-
Shaman.

Furthermore, to evaluate the performance of our
proposed method, we played our agent against sev-
eral agents that achieved high performance in the
past Hearthstone AI Competitions (Dockhorn and
Mostaghim, 2019). According to the results, our
agent outperformed most of them for several decks.

The remainder of this paper is organized as fol-
lows. Section 2 explains the related work. In Sec-
tion 3, we provide an overview of the background of
this study. Section 4 describes our proposed method
for determining the optimal sequence of actions in
Hearthstone based on RHEA. In Section 5, we present
the results of the evaluation by experiments. Finally,
Section 6 concludes the paper and presents future
work.

2 RELATED WORK

In research on decision-making in Hearthstone, many
attempts based on Monte Carlo Tree Search (MCTS)
(Browne et al., 2012) have been proposed. Choe et
al.’s study (Choe and Kim, 2019) suppressed the ex-
pansion of search trees by abstraction and sampling.
Some studies (Zhang and Buro, 2017; Świechowski
et al., 2018; Wang and Moh, 2019) have improved
the accuracy of state evaluation by combining neural
networks. A study (Dockhorn et al., 2018) presented
a method for estimating the opponent’s hand based
on the cards used by the opponent immediately be-
fore. Furthermore, a study (Dockhorn et al., 2018)
extended the method of (Bursztein, 2016) to improve
MCTS by estimating the opponent’s deck.

Furthermore, studies have been conducted on the
application of the RHEA to game-solving. In particu-
lar, there were many attempts at utilizing past search
information in research (Perez Liebana et al., 2015;
Gaina et al., 2017) that applied the RHEA to a frame-
work called general video game AI (GVGAI). GV-
GAI is a framework for handling relatively simple
games, such as Space Invaders and puzzle games.

A study (Justesen et al., 2016) proposed a method
called online evolutionary planning (OEP) to apply
RHEA to a turn-based strategy game, which deter-
mined a series of actions based on an action plan
rather than a single action decision. In a study
(Dockhorn et al., 2021) that applied the RHEA to a
real-time strategy game, the RHEA was not used to
search the action space but to search the script space,
where actions were abstracted. In each of (Justesen
et al., 2016) and (Dockhorn et al., 2021), experiments
showed that the RHEA-based agents were superior to

MCTS in several cases.
Generally, for collectible card games with many

options, it is often difficult for the MCTS to find the
optimal series of actions until the end of a turn within
a time limit. On the other hand, RHEA is expected to
perform decision-making for actions considering the
goal of the turn because it searches based on the state
evaluation after executing a series of actions.

3 BACKGROUND

This section outlines the rules of Hearthstone (in Sec-
tion 3.1) and RHEA (in Section 3.2), which are pre-
requisites for this study.

3.1 Rules of Hearthstone

A match in Hearthstone consists of two phases,
namely, deck-building and battle, as described below.

3.1.1 Deck-Building Phase

A player selects 30 cards from among the cards that
can be used by the selected hero and bundles them
together to complete the deck.

The cards used in Hearthstone are classified into
the following three types.

Minion: This can be summoned to the battlefield by
playing from hand. A minion consists of health
and attack, and they are removed when the health
of a minion on the battlefield reaches 0.

Spell: Players can use the effect of a card by playing
it from their hand.

Weapon: This can be equipped on heroes. A
hero equipped with a weapon acquires the attack
power.

Each card has a cost, and when a card is used, a player
needs to pay the card’s cost from the resource called
mana crystal.

3.1.2 Battle Phase

A hero’s health is set to 30 at the start of a battle,
and the first player draws cards from their deck to
make a hand of three cards. The second player draws
one more card from their deck and add a special card
called a coin, to make their hand five cards. After
that, each player aims to reduce the opponent’s hero’s
health to 0 while taking turns. Here, we note that,
for each player, the state of the game is only partially
visible, and some information is hidden.

The player who takes the first turn adds one card
from the shuffled deck to the hand. At this time, the
upper limit of mana crystal is increased by 1. Mana
crystal increases up to its capacity of 10 as the turn
progresses. Then, the player can perform multiple ac-
tions, such as paying mana crystal to play cards or
attacking minions if they are on the battlefield.

3.2 Rolling Horizon Evolutionary
Algorithm (RHEA)

RHEA (Perez et al., 2013) is a type of evolutionary al-
gorithm for decision-making that replaces tree search
in games with real-time state transitions. Each indi-
vidual comprises a sequence of genes and a fitness
value. The former represents a series of actions, while
the latter indicates the evaluation of the state obtained
when performing a series of actions. Similar to other
genetic algorithms, RHEA searches for the optimal
sequence of actions by repeatedly changing genera-
tions through genetic manipulations.

Figure 1 shows the optimization procedure by
RHEA. Here, the numbers in the figure correspond to
the step numbers in the following description. Also,
each alphabet surrounded by a square represents an
individual action, and a mass consisting of them rep-
resents a sequence of actions.

A B C D ?

A B C D 0.6

E F G H ? I J K L ?

E F G H 0.8 I J K L 0.7

M N O P 0.9 E F G H 0.8 I J K L 0.7

1

2

3

M F O H 0.7 E N G P 0.6 I J C L 0.85

4 Crossover Mutation 6

Q R S T 1.0

Best individual

7 Q

Execution
8

Figure 1: Steps for action decision based on RHEA.

1. Perform a series of actions at random, generate
multiple individuals, and form an initial popula-
tion.

2. Evaluate each individual. The fitness of an indi-
vidual is the evaluation value of the state after per-
forming a series of actions.

3. Select individuals with high fitness through tour-
nament or elitism selection.

4. Generate new individuals from selected individ-
uals through genetic operators. In a crossover,
the behavior of two individuals is randomly ex-
changed through a uniform crossover. In muta-
tion, the mutation point is determined at random,

and actions are randomly selected. This generates
an individual with a new set of behaviors.

5. Evaluate the generated new individuals.

6. Repeat Steps 2-5 until the time limit is reached.

7. The first action of the individual with the highest
fitness value is selected when determining an ac-
tion.

8. Transition to the next state and search for the sec-
ond action, which is the next action from Step 1.

As shown above, RHEA searches solely on the evalu-
ation value of the state after executing a series of ac-
tions, thereby allows for action decisions to be made
in anticipation of the final state of the turn.

4 DECISION-MAKING WITH
RHEA

Our method for decision-making in Hearthstone is
based on the idea of RHEA. A more specific search
procedure is as follows. First, an initial population is
generated. Second, crossover and mutation are per-
formed for each individual contained in the popula-
tion. At this time, a statistical tree constructed on the
basis of the fitness possessed by the generated indi-
viduals is used. In the initialization and mutation, op-
tions are pruned by a filter that encourages consistent
action decisions. The game transitions to the next step
by selecting and executing the first action of the best
individual in the last generation when deciding on an
action. Then, the initial population is generated again
to search for the next action, and new individuals are
generated through genetic operators. The above pro-
cedure is repeated until the end of turn.

A more detailed description is provided below.
Section 4.1 first explains the statistical tree. Section
4.2 describes the new genetic operators. Section 4.3
describes how to evaluate the fitness of each individ-
ual. Finally, Section 4.4 describes filtering for action
selection.

4.1 Statistical Tree

A C H 0.7

B E I 0.8

A D 0.3

Store the fitness

+0.7

A B

C D E F

G H I

+0.7

+0.7

Population Search tree

Figure 2: Store the fitness in a statistical tree.

In the proposed method, to reuse the information
obtained by searching during evolution, the informa-
tion is stored in a tree structure using the techniques of
(Perez Liebana et al., 2015) and (Gaina et al., 2017).
Figure 2 shows how the fitness value of individuals
is stored in a statistical tree. Here, the value stored
in each node is a pair of the evaluation value and the
number of visits at a node. Because this search tree
does not store the state of the game, nodes are deter-
mined only by actions. Therefore, the expansion of
the search tree can be suppressed, even if an action
or state transition, including randomness, occurs. In
addition, this statistical tree can construct another tree
whose root is the node that can be reached by that ac-
tion when a certain action is determined and executed.

In the proposed method, the Upper Confidence
Bound (UCB) (Kocsis and Szepesvári, 2006), defined
by the following equation, is used for crossover and
mutation.

a∗ = arg max
a

{
V (s,a)
N(s,a)

+C

√
lnN(s)
N(s,a)

}
. (1)

Here, s represents the current node, N(s) represents
the number of visits to the current node, V (s,a) de-
notes the cumulative evaluation value of the next
nodes reached by action a, N(s,a) represents the num-
ber of visits to the next node that selected the action
a, and C denotes the search coefficient. It is possible
to prioritize and search for promising actions while
maintaining a balance between exploration and ex-
ploitation, because this formula selects actions with
high evaluation values and actions with low visit
counts.

4.2 Genetic Operators

4.2.1 Selection

! " # !"#

$ % & !"$

! ' !"%

&'(()*+,-)*)(.+/0*

$ (!"1

23/+/45,4)3)6+/0*

70'(*.5)*+,4)3)6+/0*

8)9+,-)*)(.+/0*

! " # !"#

! ' !"%

Figure 3: Tournament selection and elitism selection.

Tournament selection and elitism selection are
combined to generate a population to choose for the
next generation. Figure 3 shows the selection of indi-
viduals by tournament and elitism selection. Tourna-
ment selection is a selection method that randomly se-
lects n individuals from the population of the current
generation and chooses the individuals with the high-
est evaluation value among the selected individuals.

Meanwhile, elitism selection is a selection method
that selects and retains n individuals with high eval-
uation values from the population. Tournament selec-
tion may lead to a more diverse selection of individ-
uals than elitism selection, which simply selects only
individuals with high evaluation values, but may omit
the best individuals of the current generation. There-
fore, it is supplemented by elitism selection, which
selects individuals with high fitness values.

4.2.2 Crossover

A B C D E F G E

Parents

1

2
UCB or random

selection

Repeat

3

Children

CG

CG G D EB F E Evaluation0.8 0.6

Population

A C H 0.7

B E I 0.8

A D 0.3

Figure 4: Crossover based on the search information.

Figure 4 shows an example of individual gener-
ation by crossover. The procedure for crossover is
shown below, where the numbers in the figure corre-
spond to the numbers in the following description:

1. Sequentially select one individual from the popu-
lation of the current generation and select another
randomly.

2. Select one individual with a probability of 50%,
and select the feasible action using the UCB. At
this time, if an executable action does not exist
in the search tree, that action is selected with a
certain probability. Thereafter, one individual is
selected again with a probability of 50%, and the
action is selected in the same manner. Repeat this
operation until the end of the turn to generate a
series of actions.

3. The evaluation value of the state after executing a
new series of actions is the fitness of the individ-
ual.

Our method probabilistically select a parent to in-
herit the behavior and generate a new individual by
inheriting good behavior from the parent’s series of
behaviors by random selection or selection based on
the UCB. Thus, it is possible to generate a series of
actions that tend to be highly evaluated without gen-
erating unfeasible actions.

Either random selection or selection based on the
UCB is performed by γ N(s) when inheriting the par-
ent’s behavior. Here, γ (0 ≤ γ ≦ 1) represents the at-
tenuation rate, and N(s) represents the number of vis-

its to the current node s that can be reached by actions
thus far. According to this value, if the search infor-
mation is sufficient, the search is performed by selec-
tion based on the UCB with a high probability; oth-
erwise, the search is performed by random selection.
Random selection is also performed when search in-
formation about the current node does not exist.

4.2.3 Mutation

! " # $ %!

! " # $ %"

! " &' %# (!"#$%&$&'()%*$+,-,./0%(

! " &' %$ (123 45'-6'/0%(

7'()%*$+,-,./0%($%8$*6/'/,)$9%0(/

:%96-'/0%(

! " # $%&

' () $%*

! + $%,

Figure 5: Mutation based on search information.

Figure 5 shows an example of generating an in-
dividual by mutation. The mutation procedures are
shown below, where the numbers in the figure corre-
spond to those in the following description:

1. Select one individual from the population of the
current generation.

2. Randomly determine mutation points.

3. For each subsequent action, choose an action ei-
ther randomly with a rate γ N(s) or based on the
UCB. Repeat this until the end of the turn to gen-
erate a series of actions.

4. The evaluation value of the state after executing a
new series of actions is the fitness of the individ-
ual.

Therefore, in our method, after randomly deter-
mining the mutation point, all subsequent behaviors
are mutated. For each behavioral mutation, two mu-
tations are used: random mutation and mutation based
on search information. The former selects randomly
from the current viable options, whereas the latter
selects the action using UCB. Similar to crossover,
in mutation, the selection method is determined by
γ N(s), and as the number of visits to nodes that can
be reached by actions increases, the ratio of random
mutations decreases, and the ratio of mutations based
on search information increases.

4.3 Evaluation of Individuals

Evaluating the state after executing a series of actions
is necessary to evaluate an individual. Our method

uses random playouts often used in MCTS. In addi-
tion, to determine the opponent’s deck and hand for
the simulation of the opponent’s actions, our method
randomly determines the cards included in the oppo-
nent’s deck from the observable information of the
opponent’s hero class. Furthermore, the opponent’s
hand is determined by taking it out from the generated
deck so that it matches the actual number of cards in
the hand.

In addition, our method abstracts card location
and other information, and keeps the abstracted state
and evaluation values. Therefore, evaluation can be
done without playouts.

4.4 Filtering for Consistent Action
Selection

In Hearthstone, consistent action decisions are re-
quired to execute a series of actions in one turn.
Therefore, eliminating unnecessary options from the
immediately preceding action and the current state
would allow for consistent action selection.

In the proposed method, a filter is used when ini-
tialization and during mutation, and a filter is ran-
domly applied from five filters other than the turn end
when selecting actions. Moreover, the same filter is
applied to subsequent action selections until the filter
becomes inapplicable. Here, a filter cannot be applied
if all options are blocked, in which case another filter
is applied. If there is no applicable filter, a filter other
than the turn end is applied only for one action, and
in subsequent action selections, it is once more ran-
domly applied from among the five types of filters.

Direct Attack: This filter keeps the action of attack-
ing the opponent’s hero.

Destroy minion: This filter keeps actions that dam-
age destructible minions. Here, a certain minion is
destructible if the health of the minion is less than
or equal to the total attack value of its minion.

Deploy minion: This filter keeps the action of sum-
moning minions. In addition, this filter keep spells
and hero powers that summon effect.

Protection: This filter keeps the summoning of min-
ions with taunts and actions that block opponent
attacks to mitigate health loss.

Keep hand: This filter calculates the average cost of
the cards in player’s hand and keeps actions that
play card below that value.

Except turn end: This filter is applied when none of
the above five filters is left with any options left.
This filter keeps the action except for the end of
the turn.

5 EXPERIMENTS

To evaluate the effectiveness of the proposed method,
we conducted the following two experiments. First,
to evaluate the effectiveness of the improvements
explained in the previous section, we performed
matches against an agent based on the original RHEA
(called Vanilla RHEA) and measured the winning
rate Second, we measured the winning rate of our
agent against conventional agents submitted in past
Hearthstone AI Competitions to demonstrate the per-
formance of our method.

5.1 Experimental Settings

As the environment of the experiments, we used Sab-
berStone (Dockhorn and Mostaghim, 2019), which
was used in Hearthstone AI Competitions. In our ex-
periments, there is no re-drawing of cards, and the
time limit per turn is set to 30 s to conform to the
rules of the competition. The turn end is forcibly se-
lected if the time limit is exceeded when deciding on
an action. Furthermore, the match may be prolonged
depending on the deck and will be treated as a draw
if it exceeds 25 turns. In the experiments, three decks
were used: MidrangeJadeShaman, AggroPirateWar-
rior, and CubeWarlock, which are defined in a website
(Hearthstone Top Decks, nd).

In addition, during action search, our method as-
sumed a population size of 50 with a tournament size
of 2 and an elite size of 1. During state evaluation,
our method generates 20 game states, and performs
20 random playouts for each state.

5.2 Opponent Agents

The opponents used in the experiments were as fol-
lows. Here, except for vanilla RHEA and MCTS, the
agents who have excelled in previous Hearthstone AI
Competitions.

Vanilla RHEA: This is an agent developed for com-
parative experiments to evaluate the effectiveness
of our improvements. This agent is based on the
original RHEA algorithm, which searches by ge-
netic operators based on point mutation and uni-
form crossover.

Vanilla MCTS: This is a general MCTS-based agent
implemented for comparison of the search aspect
with the proposed method.

DynamicLookAhead (DLA): This agent uses sim-
ple evaluation function to evaluate the state, and
searches actions through depth-first search with a
dynamically limited depth.

AlvaroAgent: This agent searches for actions itera-
tively based on the UCB using the optimized eval-
uation functions.

Monte Carlo graph search (MCGS): It is possible
to search for actions even after the end of the turn
by suppressing the expansion of the search tree
used in the MCTS by abstracting, sampling, and
pruning the state and assuming that the opponent’s
actions are random.

TycheAgent: This agent uses a random search, and
only the first action with a high evaluation value
is selected after a certain number of iterations. It
uses a complex evaluation function for the state
evaluation.

5.3 Search Performance Evaluation

5.3.1 Impact of genetic operators and statistical
tree on performance

We measured the winning rate against Vanilla RHEA
to evaluate the effectiveness of the proposed genetic
manipulation and the statistical trees. The results are
shown in Figure 6. Here, the genetic manipulation
rate is set to 50% in both cases, and the filter described
in Section 4.4 is not used. Combinations of methods
and settings that constitute each method are expressed
using the following abbreviations.

• VC: uniform crossover.

• VM: point mutation.

• PC: crossover by the proposed method (see Sec-
tion 4.2.2).

• PM: mutation by the proposed method (see Sec-
tion 4.2.3).

• γ : ratio of random selection (see Section 4.2.2).

In Figure 6, the vertical axis presents the list of
agents, each of which represents a possible com-
bination of the components, whereas the horizontal
axis indicates the winning rate against Vanilla RHEA.
Here, the orange, green, and gray graphs show the
winning rates when using the decks called Midrange-
JadeShaman, AggroPirateWarrior, and CubeWarlock,
respectively.

The results show that there was no significant dif-
ference between the proposed method and Vanilla
RHEA when search information was not used (i.e.,
γ = 1.0). However, it was observed that the win-
ning rate of the proposed method was significantly
improved compared with Vanilla RHEA when search
information was used (i.e., γ ̸= 1.0). In particular,
the winning rate of the agent with PC, PM, and γ =
0.0 when using MidrangeJadeShaman improved to a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Winning rate

VC, VM, γ = 0.0

PC, PM, γ = 0.0

VC, PM, γ = 0.0

PC, VM, γ = 0.0

VC, VM, γ = 0.6

PC, PM, γ = 0.6

VC, PM, γ = 0.6

PC, VM, γ = 0.6

VC, VM, γ = 0.8

PC, PM, γ = 0.8

VC, PM, γ = 0.8

PC, VM, γ = 0.8

PC, PM, γ = 1.0

VC, PM, γ = 1.0

PC, VM, γ = 1.0
MidrangeJadeShaman
AggroPirateWarrior
CubeWarlock

Figure 6: Match results against Vanilla RHEA.

maximum of 97.5%. This was because the selection
based on the UCB during genetic manipulation could
generate many highly rated individuals with a promis-
ing set of behaviors. As a result, the proposed method
can search for promising series of action in the next
generation.

5.3.2 Impact of genetic operators’ rate and
filters on performance

We also conducted experiments to measure changes
in the performance by varying the ratio of mutations
and crossovers and by using a filter. We used an agent
that applied the proposed crossover (PC) and muta-
tion (PM) to genetic operators based on the experi-
mental results presented in Section 5.3.1. Here, the
ratio of random selection (γ) was set to 0.0. The re-
sults are presented in Figure 7.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Winning rate

75:25, with filter

25:75, with filter

50:50, with filter

75:25, without filter

25:75, without filter MidrangeJadeShaman
AggroPirateWarrior
CubeWarlock

Figure 7: Winning rates against agents with PC, PM, γ =
0.0.

In this figure, the vertical axis presents the list of
agents with different genetic manipulation rates and
the presence or absence of filtering, whereas the hori-

zontal axis represents the winning rate. The colors of
the graph are the same as in Figure 6.

This result shows that using the filter improved
the winning rate when using CubeWarlock to a max-
imum of 78.5% and MidrangeJadeShaman to a max-
imum of 65.5%. This was because CubeWarlock and
MidrangeJadeShaman tended to have more action op-
tions than AggroPirateWarrior, and the search per-
formance was improved by filtering out inconsistent
choices. On the other hand, it was possible to search
sufficiently without using a filter when using Ag-
groPirateWarrior, which did not have many choices,
so the change in the winning rate was small.

5.4 Performance Comparison with
Conventional Methods

To demonstrate the performance of our method, we
performed matches between an agent based on the
proposed method and agents that achieved remark-
able results in past Hearthstone AI Competitions. Fig-
ure 8 shows the winning rate of our agent against
those agents. In this experiment, only decks called
MidrangeJadeShaman and AggroPirateWarrior were
used. Some other decks have been implemented, but
they were not used because of a lack of cards. Here,
as the difference in performance is expected to in-
crease depending on the state evaluation method, we
used the state evaluation function implemented in Al-
varoAgent for game state evaluation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Winning rate

MCGS

TycheAgent

Dynamic
Lookahead

AlvaroAgent

Vanilla MCTS

O
pp
on
en
ts

MidrangeJadeShaman
AggroPirateWarrior

Figure 8: Winning rates of the proposed method against ex-
isting agents.

In Figure 8, the vertical axis presents the list of
the opponents, while the horizontal axis represents
the winning rate of the proposed method. This figure
demonstrates that the proposed method is as strong
as or stronger than almost all other agents, regard-
less of which deck is used. In particular, the pro-
posed method outperforms AlvaroAgent, which has
the same state evaluation function, by an average of
53%, suggesting that the proposed method is equally
or even better than AlvaroAgent at searching for ac-
tions. On the other hand, when using AggroPirate-
Warrior, the win rate was 40% against MCGS. This

is most likely because MCGS has an ingenious way
of pruning options even when conducting playouts,
which was more powerful than the state evaluation
function for the relatively simple deck of AggroPi-
rateWarrior, which was able to correctly evaluate the
state of the game.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a method for decision-
making for actions in Hearthstone based on the
RHEA. To apply the RHEA to Hearthstone, we im-
proved the original algorithm by introducing tech-
niques of genetic manipulation, utilizing past search
information, and filtering action options.

We implemented agents based on the proposed
method and the original RHEA to evaluate the ef-
fectiveness of the proposed method. The results
showed that the winning rate for each improvement
was higher than that without the improvement. Fur-
thermore, our agent played against the top-performing
agents in past Hearthstone AI Competitions and out-
performed most of them.

In future work, we would like to investigate the
performance improvement by parameter tuning be-
cause the proposed method has various hyperparame-
ters. We are also interested in improving search effi-
ciency. Specifically, we shall attempt to take over bet-
ter individuals found during the previous search steps
instead of generating the initial group only at random.

REFERENCES

Blizzard Entertainment (n.d.). Hearthstone official web-
site. Retrieved November 24, 2022, from https:
//playhearthstone.com.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez,
D., Samothrakis, S., and Colton, S. (2012). A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in games,
4(1):1–43.

Bursztein, E. (2016). I am a legend: Hacking hearth-
stone using statistical learning methods. In 2016 IEEE
conference on computational intelligence and games
(CIG), pages 1–8. IEEE.

Choe, J. S. B. and Kim, J.-K. (2019). Enhancing monte
carlo tree search for playing hearthstone. In 2019
IEEE Conference on Games (CoG), pages 1–7. IEEE.

Dockhorn, A., Frick, M., Akkaya, Ü., and Kruse, R.
(2018). Predicting opponent moves for improving
hearthstone ai. In International Conference on Infor-

mation Processing and Management of Uncertainty in
Knowledge-Based Systems, pages 621–632. Springer.

Dockhorn, A., Hurtado-Grueso, J., Jeurissen, D., Xu, L.,
and Perez-Liebana, D. (2021). Portfolio search and
optimization for general strategy game-playing. In
2021 IEEE Congress on Evolutionary Computation
(CEC), pages 2085–2092. IEEE.

Dockhorn, A. and Mostaghim, S. (2019). Introduc-
ing the hearthstone-ai competition. arXiv preprint
arXiv:1906.04238.

Gaina, R. D., Lucas, S. M., and Perez-Liebana, D. (2017).
Rolling horizon evolution enhancements in general
video game playing. In 2017 IEEE Conference on
Computational Intelligence and Games (CIG), pages
88–95. IEEE.

Hearthstone Top Decks (n.d.). Retrieved November 24,
2022, from https://www.hearthstonetopdecks.
com/.

Justesen, N., Mahlmann, T., and Togelius, J. (2016). Online
evolution for multi-action adversarial games. In Euro-
pean Conference on the Applications of Evolutionary
Computation, pages 590–603. Springer.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-
carlo planning. In European conference on machine
learning, pages 282–293. Springer.

Perez, D., Samothrakis, S., Lucas, S., and Rohlfshagen, P.
(2013). Rolling horizon evolution versus tree search
for navigation in single-player real-time games. In
Proceedings of the 15th annual conference on Genetic
and evolutionary computation, pages 351–358.

Perez Liebana, D., Dieskau, J., Hunermund, M.,
Mostaghim, S., and Lucas, S. (2015). Open loop
search for general video game playing. In Proceed-
ings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 337–344.

Świechowski, M., Tajmajer, T., and Janusz, A. (2018). Im-
proving hearthstone ai by combining mcts and su-
pervised learning algorithms. In 2018 IEEE Con-
ference on Computational Intelligence and Games
(CIG), pages 1–8. IEEE.

Wang, D. and Moh, T.-S. (2019). Hearthstone ai: Oops to
well played. In Proceedings of the 2019 ACM South-
east Conference, pages 149–154.

Zhang, S. and Buro, M. (2017). Improving hearthstone ai
by learning high-level rollout policies and bucketing
chance node events. In 2017 IEEE Conference on
Computational Intelligence and Games (CIG), pages
309–316. IEEE.

