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In the following, we provide Lemmas 5.1 to 5.9 and their full proofs,
which are not included in the main paper. There lemmas are re-
quired to prove Theorem 5.1.

Lemma 5.1. Let 𝜎1, 𝜎2 be sequences, and let 𝑥 and 𝑎 be agents,
with an initial gossip graph 𝐺 . If 𝑎 ∉ 𝜎1 and neither 𝜎1 nor 𝜎2
contains failures, then 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;𝜎2 .

Proof. The proof proceeds by induction on the length of 𝜎2.

(B. C.) Since 𝜎2 = 𝜖 , the statement of this lemma holds.

(I. S.) Assume 𝜎2 = 𝜎′2;𝑘𝑙 . The result follows from the inductive
hypothesis for both cases, 𝑥 ∈ {𝑘, 𝑙} and 𝑥 ∉ {𝑘, 𝑙}. □

Lemma 5.2. Let 𝜎1, 𝜎2 be sequences, and let 𝑥 and 𝑎 be agents
(𝑥 ≠ 𝑎), with an initial gossip graph 𝐺 . If either 𝑎 ∉ 𝜎1 or 𝑎 ∉ 𝜎2,
and neither 𝜎1 nor 𝜎2 contains failures, then 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;𝜎2 .

Proof. The proof proceeds by induction on the length of 𝜎2.

(B. C.) Since𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎]) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1), the result holds.
(I. S.) Assume 𝜎2 = 𝜎′2;𝑘𝑙 . The result follows from the inductive
hypothesis, considering the cases where 𝑥 ∈ {𝑘, 𝑙} and 𝑥 ∉ {𝑘, 𝑙}.
□

Next, we prove Lemmas 5.3 and 5.4. These lemmas show that if
an agent fails, but the failed agent never made a call before the fail-
ure, or has not made any calls after the failure, the failure remains
undetected.

Lemma 5.3. Let 𝜎1, 𝜎2 be sequences, and let 𝑎 and 𝑥 be agents,
with an initial gossip graph𝐺 . If ⟨𝑎⟩ ∉ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)),
and neither𝜎1 nor𝜎2 contains failures, then𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎−𝑎

1 ;[𝑎];𝜎2 .

Proof. The proof proceeds by induction on the combined length of
𝜎1 and 𝜎2.

(B. C.) Since 𝜎1, 𝜎2 = 𝜖 , the result holds.

(I. S.) We distinguish cases depending on whether 𝜎2 = 𝜖 .

(Case 1) If 𝜎2 = 𝜖 , and 𝑥 ≠ 𝑎, it suffices to show that𝐺𝜎1 ∼𝑥 𝐺𝜎−𝑎
1 .

Let 𝜎1 = 𝜎′1;𝑘𝑙 . By the inductive hypothesis, 𝐺𝜎 ′
1 ∼𝑥 𝐺𝜎 ′

1
−𝑎
. We

further distinguish cases based on the type of the last call 𝑘𝑙 .

(Case 1.1) If 𝑥 ∈ {𝑘, 𝑙} and 𝑎 ∉ {𝑘, 𝑙}, let 𝑘 = 𝑥 . By the inductive
hypothesis, 𝐺𝜎 ′

1;[𝑎];𝜎2 ∼𝑙 𝐺𝜎 ′
1
−𝑎 ;[𝑎];𝜎2 , so 𝐺𝜎 ′

1 ∼𝑙 𝐺𝜎 ′
1
−𝑎
. Hence,

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎
′
1
−𝑎), and𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎′1) =𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎

′
1
−𝑎).

Therefore, 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1;𝑥𝑙) = ⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1), 𝑥𝑙,𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎
′
1)⟩, and

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1
−𝑎 ;𝑥𝑙) = ⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1

−𝑎), 𝑥𝑙,𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎′1
−𝑎)⟩. Hence,

𝐺𝜎1 ∼𝑥 𝐺𝜎−𝑎
1 .

(Case 1.2) If 𝑎 ∈ {𝑘, 𝑙} and 𝑥 ∉ {𝑘, 𝑙}, let 𝑘 = 𝑎. Since 𝐺𝜎 ′
1 ∼𝑥

𝐺𝜎 ′
1
−𝑎
,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎

′
1
−𝑎). Since 𝑎𝑙 does not involve 𝑥 ,

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1). Therefore, 𝐺
𝜎1 ∼𝑥 𝐺𝜎−𝑎

1 .

(Case 2) Let 𝜎2 = 𝜎′2;𝑘𝑙 , and consider the case 𝑥 ≠ 𝑎. By the induc-
tive hypothesis, 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥 𝐺𝜎−𝑎
1 ;[𝑎];𝜎 ′

2 .

(Case 2.1) If 𝑥 ∈ {𝑘, 𝑙}, let 𝑘 = 𝑥 . By the assumption, ⟨𝑎⟩ ∉
𝑙𝑒𝑎𝑣𝑒𝑠 (⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2), 𝑥𝑙,𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎1; [𝑎];𝜎

′
2)⟩). By the induc-

tive hypothesis,𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑙 𝐺𝜎−𝑎

1 ;[𝑎];𝜎 ′
2 . Therefore,𝐺𝜎1;[𝑎];𝜎2 ∼𝑥

𝐺𝜎−𝑎
1 ;[𝑎];𝜎2 .

(Case 2.2) If𝑥 ∉ {𝑘, 𝑙}, then𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2),
and similarly,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎−𝑎1 ; [𝑎];𝜎′2) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎

−𝑎
1 ; [𝑎];𝜎2). There-

fore, since 𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑥 𝐺𝜎−𝑎

1 ;[𝑎];𝜎 ′
2 , it follows that 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥

𝐺𝜎−𝑎
1 ;[𝑎];𝜎2 . □

Lemma 5.4. Let 𝜎1, 𝜎2 be sequences, and let 𝑎 and 𝑥 be agents,
with an initial gossip graph𝐺 . If ⟨𝑎⟩ ∉ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)),
and neither𝜎1 nor𝜎2 contains failures, then𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎2−𝑎 .

Proof. The proof proceeds by induction on the length of 𝜎2.

(B. C.) Since 𝜎2 = 𝜖 , the statement of this lemma holds.

(I. S.) Let 𝜎2 = 𝜎′2;𝑘𝑙 . By the inductive hypothesis, 𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑥

𝐺𝜎1;[𝑎]𝜎 ′
2
−𝑎
. We now distinguish cases based on the type of 𝑘𝑙 .

(Case 1) If 𝑥 ∈ {𝑘, 𝑙} and 𝑎 ∉ {𝑘, 𝑙}, let 𝑘 = 𝑥 . By the inductive
hypothesis,𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎1; [𝑎];𝜎′2) =𝑚𝑡𝑟𝑒𝑒 (𝑙, 𝜎1; [𝑎];𝜎

′
2
−𝑎). Since

𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎
′
2
−𝑎), it follows that

𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎2−𝑎 .

(Case 2) If 𝑎 ∈ {𝑘, 𝑙} and 𝑥 ∉ {𝑘, 𝑙}, then 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2) =
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2). Similarly,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎−𝑎1 ; [𝑎];𝜎′2) =
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎−𝑎1 ; [𝑎];𝜎2). Therefore, since 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥 𝐺𝜎−𝑎
1 ;[𝑎];𝜎 ′

2 ,
it follows that 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎−𝑎

1 ;[𝑎];𝜎2 . □
Next, we prove Lemmas 5.5, 5.6, and 5.7. These lemmas describe

basic properties of the structure of memory trees.

Lemma 5.5. For any sequence 𝜎 , agent 𝑥 , and memory tree 𝑡 , if
[𝑎] ∉ 𝜎 and 𝑡 ∈ 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)), then there exists some 𝜏 ⊑ 𝜎
such that 𝑡 =𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏).

Proof. The proof proceeds by induction on the length of 𝜎 .

(B. C.) Since 𝜎 = 𝜖 , 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜖)) is empty, which leads to a
contradiction.

(I. S.) Let 𝜎 = 𝜎′; e, and distinguish cases based on the type of event
e. Here, we only show the case when e = 𝑥𝑦. Then,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =
⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′), 𝑥𝑦,𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′)⟩. By the assumption, either



𝑡 ∈ 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′)) or 𝑡 ∈ 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′)), or 𝑡 =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎).
In the first two cases, by the inductive hypothesis, there exists
𝜏 ⊑ 𝜎 such that 𝑡 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏). In the third case, we can take
𝜎 as 𝜏 . □

Lemma 5.6. For any sequence 𝜎 and agent 𝑥 , either𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)
contains no non-leaf nodes, or all non-leaf nodes in 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)
are contained in 𝜎 .

Proof. The proof proceeds by induction on the length of 𝜎 .

(B. C.) Since 𝜎 = 𝜖 , we have𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) = ⟨𝑥⟩.
(I. S.) Let 𝜎 = 𝜎′; e. By the inductive hypothesis, either𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′)
contains no non-leaf nodes, or all non-leaf nodes in 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′)
are contained in 𝜎′. We now distinguish cases based on the type
of event e. Here, we show the case when e = 𝑥𝑦. By the inductive
hypothesis, either𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′) contains no non-leaf nodes, or all
non-leaf nodes in𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′) are contained in 𝜎′. In either case,
the statement of this lemma holds. □

Lemma 5.7. For any agent 𝑥 and sequence 𝜎 ,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) either
contains amemory treewith a singlememory of𝑥 , or𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =
⟨𝑥⟩.
Proof. The proof proceeds by induction on the length of 𝜎 .

(B. C.) Since 𝜎 = 𝜖 , we have𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) = ⟨𝑥⟩.
(I. S.) Let 𝜎 = 𝜎′; e. By the inductive hypothesis, either𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′)
contains amemory treewith a singlememory of𝑥 , or𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) =
⟨𝑥⟩. We now distinguish cases based on whether this holds and on
the type of event e.

(Case 1) If𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) contains a memory tree with a single mem-
ory of 𝑥 , we show the case where e = 𝑥𝑦 involves 𝑥 . Then,
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) = 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′;𝑥𝑦) = ⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′), 𝑥𝑦,𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′)⟩,
so𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) contains a memory tree with a single memory of 𝑥 .

(Case 2) If 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) = ⟨𝑥⟩, we similarly show the case where
e = 𝑥𝑦 involves 𝑥 . Then,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) =𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′;𝑥𝑦) =
⟨𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′), 𝑥𝑦,𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′)⟩, and since𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′) =
⟨𝑥⟩,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) contains a memory tree with a single memory of
𝑥 . □

Lemmas 5.8 and 5.9 play a central role in proving Theorem 5.1.
When agent 𝑥 calls agent 𝑎, 𝑥 also receives the history of calls that
𝑎 has made. In this theorem, agent 𝑥 knows only one person whom
𝑎 has called since the initial state, so 𝑥 must not have called 𝑎 after
𝑎 failed. Therefore, removing calls involving 𝑎 from the sequence
does not affect the secrets held by 𝑥 .

Lemma 5.8. Let𝜎1 and𝜎2 be sequences, and let𝑥 and𝑎 be agents,
with an initial gossip graph 𝐺 . If the following conditions hold,
then 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎−𝑎

1 ;[𝑎];𝜎2 :
• Neither 𝜎1 nor 𝜎2 contains failures.
• |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎]𝜎2)) | = 1.
• For the memory tree 𝑡 ∈ 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎]𝜎2)), 𝑟 (𝑡) ∉
𝜎1.

Proof. The proof proceeds by induction on the combined length of
𝜎1 and 𝜎2.

(B. C.) Since 𝜎1 = 𝜎2 = 𝜖 , the result holds.

(I. S.) We distinguish cases based on whether 𝜎2 = 𝜖 .

(Case 1) If 𝜎2 = 𝜖 , let 𝜎1 = 𝜎′1;𝑘𝑙 .

(Case 1.1) First, we consider when 𝐺𝜎 ′
1 ∼𝑥 𝐺𝜎 ′

1
−𝑎

holds. We then
further distinguish cases based on the type of the last call 𝑘𝑙 .

(Case 1.1.1) Assume 𝑥, 𝑎 ∈ {𝑘, 𝑙}, and consider the case when 𝑥 ≠ 𝑎.
In this case, 𝑘𝑙 = 𝑥𝑎, and𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1;𝑥𝑎) = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎

′
1;𝑥𝑎) con-

tains a memory tree with a single memory of 𝑎 by Lemma 5.7.
Moreover, by Lemma 5.6, all non-leaf nodes in 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1) are
contained in𝜎1. Thus, if we let 𝑡1 be thememory tree in𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1)
that contains 𝑎’s single memory, the root of 𝑡1 must be in 𝜎1, which
contradicts the assumption.

(Case 1.1.2) Assume 𝑥 ∈ {𝑘, 𝑙} and 𝑎 ∉ {𝑘, 𝑙}, and let 𝑘𝑙 = 𝑥𝑦. We
distinguish cases depending on whether |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′1)) | = 1
or |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′1)) | = 0.

(Case 1.1.2.1) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′1)) | = 1, then since the last event
of 𝜎1 is the call 𝑥𝑦, 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1) also contains the memory tree
𝑡2 with 𝑎’s single memory. By Lemma 5.6, all non-leaf nodes in
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1) are contained in 𝜎1. Therefore, the root of 𝑡2 must be
in 𝜎1, which contradicts the assumption.

(Case 1.1.2.2) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′1)) | = 0, then ⟨𝑎⟩ ∉
𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎′1; [𝑎];𝜎2)). By Lemma 5.3, 𝐺𝜎 ′

1 ∼𝑦 𝐺𝜎 ′
1
−𝑎
. To-

getherwith𝐺𝜎 ′
1 ∼𝑥 𝐺𝜎 ′

1
−𝑎
, this implies that𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 .

(Case 1.2) Next, consider the case when 𝐺𝜎 ′
1 ∼𝑥 𝐺𝜎 ′

1
−𝑎

does not
hold.We distinguish cases based on whether𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) contains
a memory tree with a single memory of 𝑎. If𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) does not
contain a memory tree with a single memory of 𝑎, and 𝑥 ≠ 𝑎, then
𝑎 ∉ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1; [𝑎];𝜎2)). Therefore, by Lemma 5.3,𝐺𝜎 ′

1 ∼𝑥
𝐺𝜎 ′

1
−𝑎
, which leads to a contradiction. If 𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎′1) contains a

memory tree with a single memory of 𝑎, let 𝑡3 be this tree, and
assume 𝑥 ≠ 𝑎. By Lemma 5.6, the root of 𝑡3 must be in 𝜎1, which
contradicts the assumption.

(Case 2) Let 𝜎2 = 𝜎′2;𝑘𝑙 . We now distinguish cases where
|𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2)) | = 0 and |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2)) |
= 1, showing in both cases that 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥 𝐺𝜎1
−𝑎 ;[𝑎];𝜎 ′

2 . If
|𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2)) | = 1, let 𝑡4 be the memory tree in
𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2) that contains 𝑎’s single memory. By assump-
tion, 𝑟 (𝑡4) ∉ 𝜎1. Hence, by the inductive hypothesis, 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥
𝐺𝜎1

−𝑎 ;[𝑎];𝜎 ′
2 . Finally, we distinguish cases based on the last call 𝑘𝑙 .

If 𝑥 ∈ {𝑘, 𝑙}, let 𝑘𝑙 = 𝑥𝑦. We then distinguish cases depending on
whether |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑦, 𝜎1; [𝑎];𝜎′2)) | = 0, and in both cases, we
show that 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑦 𝐺
𝜎1

−𝑎 ;[𝑎];𝜎 ′
2 . Together with 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥
𝐺𝜎1

−𝑎 ;[𝑎];𝜎 ′
2 , we conclude that 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜏1

−𝑎 ;[𝑎];𝜏2 . □

Lemma 5.9. Let𝜎1 and𝜎2 be sequences, and let 𝑥 and𝑎 be agents
(𝑥 ≠ 𝑎), with an initial gossip graph 𝐺 . If the following conditions
hold, then 𝐺𝜎1;[𝑎];𝜎2 ∼𝑦 𝐺

𝜎1;[𝑎];𝜎−𝑎
2 :

• Neither 𝜎1 nor 𝜎2 contains failures.
• |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎]𝜎2)) | = 1.
• For the memory tree 𝑡 ∈ 𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎]𝜎2)), 𝑟 (𝑡) ∈
𝜎1.

Proof. The proof proceeds by induction on the length of 𝜎2.

(B. C.) Since 𝜎2 = 𝜖 , the result holds.



(I. S.) Let 𝜎2 = 𝜎′2;𝑘𝑙 . We distinguish cases based on whether
𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎 ′
2
−𝑎

holds.

(Case 1) If 𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎 ′

2
−𝑎

holds, we further distinguish
cases based on whether the last call 𝑘𝑙 involves both 𝑥 and 𝑎.

(Case 1.1) If 𝑥, 𝑎 ∈ {𝑘, 𝑙}, then the last call in 𝜎2, 𝑘𝑙 , involves both 𝑥
and 𝑎, so 𝜎1; [𝑎];𝜎2 = 𝜎1; [𝑎];𝜎′2;𝑥𝑎. Since 𝑎 ∈ 𝜎2, there must exist
a call involving 𝑎 that is the earliest in 𝜎2. Let this call be 𝑎𝑏, and
write 𝜎2 = 𝜏1;𝑎𝑏;𝜏2. Then,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏) =
⟨⟨𝑎⟩, 𝑎𝑏,𝑚𝑡𝑟𝑒𝑒 (𝑏, 𝜎1; [𝑎];𝜏1)⟩. Therefore,𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜏1;𝑎𝑏;𝜏2)
contains a memory tree with 𝑎’s single memory, and if 𝑎𝑏 ∈ 𝜎1, we
can write 𝜎1 = 𝜐1;𝑎𝑏;𝜐2. Hence,𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1;𝑎𝑏) contains a mem-
ory treewith𝑎’s singlememory. As a result,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏)
contains multiple single memories of 𝑎, which is a contradiction.

(Case 1.2) If 𝑥 ∈ {𝑘, 𝑙} and 𝑎 ∉ {𝑘, 𝑙}, let 𝑘𝑙 = 𝑥𝑧. We now distin-
guish cases depending on whether𝑚𝑡𝑟𝑒𝑒 (𝑧, 𝜎1; [𝑎];𝜎′2) contains a
memory tree with 𝑎’s single memory. If𝑚𝑡𝑟𝑒𝑒 (𝑧, 𝜎1; [𝑎];𝜎′2) con-
tains such a subtree 𝑡1, then by assumption, 𝑟 (𝑡1) ∈ 𝜎1. By the
inductive hypothesis, 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑧 𝐺𝜎1;[𝑎];𝜎 ′
2
−𝑎
. Together with

𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎 ′

2
−𝑎
, this implies that𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎−𝑎

2 .

(Case 2) Assume that𝐺𝜎1;[𝑎];𝜎 ′
2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎 ′

2
−𝑎

does not hold. We
distinguish cases based on whether𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2) contains a
memory tree with 𝑎’s single memory. If𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎′2) con-
tains such a tree, let 𝑡2 be this tree. If 𝑟 (𝑡2) ∈ 𝜎1, then by the in-
ductive hypothesis, 𝐺𝜎1;[𝑎];𝜎 ′

2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎 ′
2
−𝑎
, which leads to a

contradiction. On the other hand, if 𝑟 (𝑡2) ∉ 𝜎1, this contradicts the
assumption that 𝑟 (𝑡2) ∈ 𝜎1. □

Wenowpresent the necessary and sufficient conditions for iden-
tifying a single failure.

Theorem 5.1. Let 𝜎 be a sequence containing at most one fail-
ure, and let 𝑥 , 𝑎 be agents, with an asynchronous gossip model G∼

and an initial gossip graph 𝐺 . Then G∼,𝐺𝜎 |= 𝐾𝑥F(𝑎) if and only
if𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) contains multiple single memories of 𝑎.

Proof. (⇒) Assume G∼,𝐺𝜎 |= 𝐾𝑥F(𝑎). Write 𝜎 = 𝜎1; [𝑎];𝜎2. Sup-
pose𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎) does not contain multiple single memories of 𝑎.

(Case 1) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)) | = 0, and 𝑥 ≠ 𝑎, then ⟨𝑎⟩ ∉
𝑙𝑒𝑎𝑣𝑒𝑠 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)). By Lemma 5.3,𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 .
Therefore, by Lemma 5.1,𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1
−𝑎 ;𝜎2 , which leads to

a contradiction.

(Case 2) If |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎1; [𝑎];𝜎2)) | = 1, let 𝑡 be the memory
tree containing 𝑎’s single memory in𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎). By Lemma 5.6,
𝑟 (𝑡) ∈ 𝜎1; [𝑎];𝜎2.
(Case 2.1) If 𝑟 (𝑡) ∈ 𝜎1, and 𝑥 = 𝑎, then 𝑎 ∈ 𝜎2. Let the first call
involving 𝑎 be 𝑎𝑏, and write 𝜎2 = 𝜏1;𝑎𝑏;𝜏2. Then,
𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏) contains a single memory of 𝑎. Therefore,
since 𝑡 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏), it follows that 𝑎𝑏 ∈ 𝜎1. Hence,
we can write 𝜎1 = 𝜐1;𝑎𝑏;𝜐2, and𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1;𝑎𝑏) contains a mem-
ory treewith𝑎’s singlememory. Therefore,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜎1; [𝑎];𝜏1;𝑎𝑏)
contains multiple single memories of 𝑎, which is a contradiction.
Next, assume𝑥 ≠ 𝑎. By Lemmas 5.2 and 5.9,𝐺𝜎1;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1;[𝑎];𝜎2−𝑎 ,
which leads to a contradiction.

(Case 2.2) Assume that 𝑟 (𝑡) ∉ 𝜎1. By Lemma 5.8, 𝐺𝜎1;[𝑎];𝜎2 ∼𝑥
𝐺𝜎1

−𝑎 ;[𝑎];𝜎2 . Therefore, by Lemma 5.1, 𝐺𝜎1
−𝑎 ;[𝑎];𝜎2 ∼𝑥 𝐺𝜎1

−𝑎 ;𝜎2 ,
which leads to a contradiction.

(⇐) Assume |𝑠𝑢𝑏𝑎 (𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜎)) | ≥ 2. If G∼,𝐺∼ |= ¬𝐾𝑥F(𝑎),
then there exists some 𝐺𝜏 such that 𝐺𝜎 ∼𝑥 𝐺𝜏 and G∼,𝐺𝜏 |=
¬F(𝑎). In𝑚𝑡𝑟𝑒𝑒 (𝑥, 𝜏), there exist two distinct memory trees, 𝑡1 and
𝑡2, each containing a single memory of 𝑎. By Lemma 5.5, there ex-
ist prefixes 𝜏1 and 𝜏2 of 𝜏 such that 𝑡1 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) and 𝑡2 =
𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2). Next, we distinguish cases based on the inclusion re-
lation between 𝜏1 and 𝜏2. Here, we show only the case where 𝜏1 ⊏
𝜏2.

If 𝜏1 ⊏ 𝜏2, then𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) ⊆ 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2). In this case, since
𝑡2 =𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2) contains a single memory of 𝑎, we must have 𝑎 ∈
𝜏2. Let the last call in 𝜏2 involving 𝑎 be 𝑎𝑏, and write 𝜏2 = 𝜐1;𝑎𝑏;𝜐2.
Then,𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏2) = ⟨⟨𝑎⟩, 𝑎𝑏,𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1)⟩, thus𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏1) ⊆
𝑚𝑡𝑟𝑒𝑒 (𝑏,𝜐1). Thus, there exists some 𝜏3 ⊆ 𝜐1 such that 𝑡1 =
𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏3). Therefore, 𝑡1 = 𝑚𝑡𝑟𝑒𝑒 (𝑎, 𝜏3) ⊆ 𝑚𝑡𝑟𝑒𝑒 (𝑎,𝜐1) = ⟨𝑎⟩,
which is a contradiction. □


