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Inferiority Based Measuring Technical Inefficiency of Production

Hisao Kameda ∗

Abstract
Various system states’ inefficiencies for different systems ex-
ist, such as technical and profit inefficiencies for production
systems and social and Pareto inefficiencies for games. A state
is inefficient if it is inferior to some other state. We have a gen-
eral procedure to obtain each inefficiency measure based on
the corresponding inferiority. The procedure brings as each
inefficiency measure, the maximum degree of correspond-
ing inferiority of the state to some other. In production the-
ory, sophisticated technical-inefficiency measures exist, but
they reflect no corresponding inferiority explicitly. Firstly,
we present a united Farrel-type (radial but not hyperbolic)
technical-inefficiency measure (UTE) that integrates input-
and output-oriented famous Farrel measures. Then we follow
the procedure mentioned above and obtain simple technical-
inefficiency measures based on the corresponding inferiority.
Our proposed measures generalize and solidify the inferiority-
based foundation of UTE. Our measures behave identically
with UTE for technically-efficient technology-frontiers. We
propose another more complicated measure that solves the
slacks problem for weakly technically-efficient frontiers, like
the additive measures. We show a fixed relation between the
values of the examined measures for an arbitrary state. We
discuss the measures by using illustrative examples.

Keywords: production theory, degree of inferiority, profit in-
efficiency, radial expansion, Farrel inefficiency measure

1 Introduction
When considering a system state, a significant concern is
whether the state is inefficient; that is, whether there exists
another state to which the state in question is inferior (less fa-
vorable). If inefficient, then to what degree? Various system
states’ inefficiencies for different systems exist, such as tech-
nical and profit inefficiencies for production systems and so-
cial and Pareto inefficiencies for games. For games, we have
presented a general procedure to obtain each inefficiency mea-
sure based on the corresponding inferiority degree; this pro-
cedure gives as each inefficiency measure of a state the max-
imum degree of the corresponding inferiority of the state to
another (Kameda, 2020).1 This article follows the procedure
to obtain inefficiency measures in production activity.
∗University of Tsukuba, Department of Computer Science, Tsukuba Sci-
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1Given the definition of (particular) inferiority degree Q(S , S ′) of state S

to S ′, we obtain the (corresponding) inefficiency measure of S as MQ(S ) ,
maxS ′∈S Q(S , S ′) (5) as shown later. We prefer this procedure to possible
candidates based on other relations with the efficient set. We have justified it
in Kameda (2020) in the context of game theory.

There have already been proposals for sophisticated
technical-inefficiency measures in production theory. Sickles
and Zelenyuk (2019) present a comprehensive review. How-
ever, these proposed measures do not seem to reflect the cor-
responding inferiority degrees explicitly. This article follows
the procedure mentioned above and obtains simple technical-
inefficiency measures based on the corresponding inferiority.
We expect that our inferiority-based approach may shed light
on the already proposed of technical inefficiency measures
from another viewpoint. Moreover, we require that our mea-
sures be as simple as possible for broad applicability.2

Following Sickles and Zelenyuk (2019), we consider that
firms make production activity. A firm (or decision making
unit (DMU)) produces output y = (y1, y2, . . . , yM) ∈ RM

+ from
input x = (x1, x2 . . . , xN) ∈ RN

+ . We regard a firm’s instance
with a value of (x, y) as a state S . We assume that we can
characterize the technology of a particular firm by the tech-
nology set, T , as follows:

T ≡ {(x, y) ∈ RN
+ × RM

+ : y is producible from x}.

Denote by x−1 the vector (x−1
1 , x

−1
2 , . . . x

−1
N ). We think of the

integrated input-output technology space of z ≡ (x−1, y).3 We
consider such xi that xi > 0. We use S (z) and z(S ) inter-
changeably to denote the same state. We can regard the pro-
duction as an important economic activity. Each firm’s de-
cision results in the firm’s profit Π(x, y), given the prices w
and p of inputs and outputs: Π(x, y) ≡ py − wx. We can
think of certain inefficiencies of a state and inferiority rela-
tions between two states: profit inferiority and inefficiency,4

strict technical inferiority and inefficiency,5 and technical in-

2In game theory, to measure the inefficiency of Nash equilibria (NE)
(Dubey (1986) et al.), many people use the simple social-inefficiency mea-
sure, the price of anarchy (PoA) (Koutsoupias and Papadimitriou, 1999;
Roughgarden, 2006). PoA of an NE is the social utility of the social opti-
mum divided by that of the NE. The social utility of a state is the sum of the
players’ utilities in the state. We find vastly many papers that apply PoA to
various situations. It appears that the PoA’s simplicity allows the spread of its
application domains. This trend looks horizontal.

In contrast, Pareto inefficiency measures are yet to establish, with only
a few researchers pursuing Pareto-inefficiency measures more sophisticated
than PoA (Legrand and Touati, 2007; Aumann and Dombb, 2010; Kameda,
2019; Kameda, 2020). It looks contrastive to the situation of production the-
ory, where many researchers accumulate and deepen technical-inefficiency
measures to higher levels (Sickles and Zelenyuk, 2019; Ando, Kato, Maeda
and Sekitani., 2012). This trend looks vertical.

3If one minds the dimensions of the variables, we may replace (z1, z2) ≡
(1/x, y) by (z1, z2) ≡ (x0/x, y/y0) for some constant (x0, y0) to make (z1, z2)
dimensionless. Subsequent discussions would not change by the replacement.

4if a state S ’s profit is less than that of another state S ′, S is profit inferior
to S ′ (S ≺Π S ). A state S is profit inefficient if there exists another state S ′to
which S is profit inferior. More details are in Section 3.1.

5If each input of a state S is greater than that of another S ′. If each output
of S is less than that of S ′, then S is strictly technically inferior to S ′ (S ≺ S ).
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feriority and inefficiency.6

At the primary step, we present a united Farrel-type (radial)
technical-inefficiency measure (UTE) in integrated input-
output spaces (z). UTE integrates both the input- and output-
oriented famous Farrel inefficiency measures (Debreu, 1951;
Farrell, 1957) to one radial-type inefficiency measure. This
integration seems similar to the ‘hyperbolic’ inefficiency mea-
sure by Färe et al. (2016), but ours remains radial.

Following the procedure mentioned above, as the ineffi-
ciency measures, we obtain the magnitudes of profit ineffi-
ciency (MoΠ), strict technical inefficiency (MoST), technical
inefficiency (MoT), and technical profit inefficiency (MoTΠ).
MoΠ(S ) gives the factor by which the profit increases due to
moving from a state S to a profit optimum. (However, some
players may decrease their profits by the movement.) Contrar-
ily, every player’s utility can increase simultaneously at least
by the factor MoS T (S ) and MoT (S ) due to moving from S
to a particular target state. (Note, however, that the case of
MoT (S ) = 1 needs separate treatment.) Consider a state with
the most massive profit among the states technically superior
to S . MoTΠ(S ) gives the factor by which the profit increases
due to moving from a state S to the state.

We show that MoT and MoST generalize and solidify the
inferiority-based foundation of the Farrel-type technical inef-
ficiency measure UTE. Under the seemingly ordinary (pro-
portionality) condition that S has a (weakly) technically-
efficient frontier point on its radial expansion, MoT (S ) and
MoS T (S ) behave identically with UT E(S ) (Theorems 3 and
4).7 Under the condition, UT E(S ) is identical to the maxi-
mum degree of technical inferiority of the S to some other.

However, consider the seemingly exceptional cases where
the state in question has no (weakly) technically-efficient
frontier-point on its radial expansion. Then, UT E(S ) has
a non-efficient frontier point on the radial expansion of S .
The significance of this frontier point is unclear. In contrast,
MoST and MoT have a solution that reaches a technically-
efficient frontier point. The significance of this point seems
evident.

Furthermore, if the state in question has a weakly (but
not strongly) technically-efficient frontier-point on its radial
expansion, UTE, MoST, and MoT have some difficulty (of
slacks). MoTΠ is more complicated but solves this difficulty
similarly as additive technical-inefficiency measures do (Färe
and Knox Lovell, 1978; Charnes, Cooper, Golany, Seiford and
Stutz, 1985).

The rest of our results: We show that MoS T (S ) dis-
tinguishes strict technical inefficiency of S . That is, if
MoS T (S ) > 1, S is strictly technically inefficient, and if
MoS T (S ) = 1, S is weakly technically efficient (Proposi-

A state S is strictly technically inefficient if there exists another S ′ to which
S is strictly technically inferior. More details are in Section 3.1.

6If each input of a state S is not less than of another S ′, if each output
of S is not greater than of S ′, and if at least one input or one output of S is
not equal to that of S ′, then S is technically inferior to S ′ (S ≼ S ). A state
S is technically inefficient if there exists another S ′ to which S is technically
inferior. More details are in Section 3.1.

7The condition holds if the technology set satisfies Axioms 5 and 6 —
strong disposablity of all inputs and outputs (P.15 and P.17, Sickles and Ze-
lenyuk (2019)).

tion 2). But MoS T (S ) is not for distinguishing technical in-
feriority of S . Contrarily, MoT (S ) distinguishes technical in-
efficiency of S but in a complicated way for MoT (S ) = 1
(Proposition 3). MoTΠ(S ) distinguishes the technical ineffi-
ciency of S (Proposition 4). However, the procedure of cal-
culating MoTΠ is rather complicated (Theorem 1) compared
to the above measures. MoΠ is the simplest among them but
does always distinguish (strict) technical inefficiency. UTE
may have difficulty in distinguishing technical inefficiency for
uncommon technology frontiers.

We show a fixed relationship between the values of the
measures. That is, we see that for arbitrary state S , MoΠ(S )
(if exists) ≥ MoTΠ(S ) ≥ MoT (S ) = MoS T (S ) ≥ UT E(S )
(Theorem 2). This inequality agrees that from the definitions,
profit optimum (if it exists) implies technical-efficient profit
optimum that implies technical efficiency and weak technical
efficiency, but not vice versa.

Figure 1 shows examples of the technology spaces of two
outputs with the fixed inputs. yi denotes the output i, i =
1, 2. S F denotes the radial projection of S onto the technology
frontier achieving UT E(S ). SΠ denotes a profit optimum. S ≺
and S ≼ denote, respectively, the aforementioned target-states
that achieve the factors MoS T (S ) and MoT (S ). SΠ|≼ denotes
the state profit optimal within the above-mentioned subset of
states regarding MoΠ(S ).8 We denote by AB the length of the
line segment from state A to state B. We see that MoΠ(S ) =
S ′
Π

0/S 0 and that MoTΠ(S ) = S ′
Π|≼ 0/S 0.9 In the upper part

of the figure, S is technically inferior to SΠ. In the lower, S is
not technically inferior to SΠ.

Figure 2 shows examples of the technology spaces of one
input x = z−1

1 and one output y = z2.
I) We see that in the lower part of Figures 1, MoΠ(S ) =

S ′
Π

0/S 0 > 1, although S is not technically inferior to SΠ
(profit optimum). Therefore, MoΠ(S ) may sometimes be in-
appropriate as the technical-inefficiency measure of S .

II) In the Figures 1 and 2, the technology frontier consists
of technically efficient states. The proportionality (radial ex-
pansion) condition holds. Then, MoS T (S ) = MoT (S ) =
UT E(S ) = S ≺ 0/S 0 > 1, as is shown generally by Theo-
rems 3 and 4. MoS T (S ) = MoT (S ) behave identically with a
unified Farrel measure UT E(S ) .

The paper is organized as follows: Section 2 presents a uni-
fied Farrel measure UTE. Section 3 elaborates on the gen-
eral procedure of inefficiency measures in production theory
and, based on the procedure, build the measures: MoST, MoT,
and MoTΠ. Section 3.3.2 presents relations among the inef-
ficiency measures. Section 4 shows that MoST and MoT are
conceptually more straightforward and behave as UTE in the
case where some proportionality (radial expansion) condition
holds. Section 5 illustrates the proposed measures by exam-
ples of the technology spaces. Section 6 concludes this arti-

8Detailed definitions of S ≺ and S ≼, and SΠ|≼ are in Section 3.3.1.
9We show this as follows: On the upper part of Figure 1, the two par-

allel thin dotted lines that go through SΠ and S show the sets of points
with the same values of Π = p1y1 + p2y2 as SΠ and S . Thus, we can
obtain MoΠ(S )(= MoTΠ(S )) by S ′

Π
0/S 0. On the lower, similarly, we

have MoΠ(S ) = S ′
Π

0/S 0 and MoTΠ(S ) = S ′
Π|≼ 0/S 0, but MoΠ(S ) >

MoTΠ(S ).
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S

SΠ = SΠ|≼

z1(= y1)

z2(= y2)

S ≺ = S ≼ = S F

0

S ′
Π
= S ′

Π|≼

p1y1 + p2y2 = const.

S

SΠ (, SΠ|≼)

z1(= y1)

z2(= y2)

S ≺ = S ≼ = S F

0

S ′
Π

SΠ|≼
S ′
Π|≼

p1y1 + p2y2 = const.

Figure 1: Examples of SΠ (the profit optimum), S F (achieves
UT E(S ))), S ≺ (achieves MoS T (S )), S ≼ (achieves MoT (S )),
and SΠ|≼ (achieves MoTΠ(S ). The areas hatched by thin dot-
ted lines present the technology sets. Extra-thick curves are
technology frontiers. The thin-dotted lines present the states
with the same profit. The subsequent figures have the same
conventions.

cle. Appendix A presents the proofs of theorems. Appendix
B presents a glossary of symbols.

2 United Farrel measure of technical
inefficiency [UTE]

Recall that z ≡ (x−1, y) and that S (z) denotes the state with z.
We have the following:

Proposition 1 x(> 0) is a radial expansion of x′(> 0) iff x′−1

is a radial expansion of x−1.10

10We can show this as follows: The former means that
(θx1, θx2, . . . θxN ) = (x′1, x

′
2, . . . , x

′
N ) for some θ ≥ 1. This is equiva-

lent to (θx
′−1
1 , θx

′−1
2 , . . . , θx

′−1
N ) = (x−1

1 , x
−1
2 , . . . , x

−1
N ), which means the

latter.

S

SΠ = SΠ|≼

z1(= x−1)

z2(= y)

S ≺ = S ≼ = S F

0

S ′
Π
= S ′

Π|≼

py − wx = const.

Figure 2: Examples of S F , SΠ, S ≺, S ≼ and SΠ|≼. The thin
curves present the states with the same profit. The subsequent
figures have the same conventions.

This proposition implies that the radial-expansion relation
keeps from the space of x to that of x−1.

Define the united Farrel measure of technical inefficiency
(UTE) as follows:

UT E(S (z)) ≡ max{λ|S (λz) ∈ T }. (1)

S F denotes S (λz) with such λ that maximizes UT E(S (z)) of
(1). That is, S F is a technology-front point on a radial expan-
sion of S . If UT E(S ) > 1, S is technically inefficient. But, if
UT E(S ) = 1, S (= S F) is not necessarily (weakly) technically
efficient in the case of the seemingly uncommon technology
front.

3 Magnitude of Inefficiency
Our notion of the inefficiency of a state presupposes the infe-
riority of the state to some other. We primarily present the
definitions of inferiorities and inefficiencies (Section 3.1).

Our procedure for obtaining the inefficiency measure is as
follows:
(1) Firstly, determine the degree (extent) to which a state is
inferior to some other (Section 3.2).

(2) Then, given the definition of inferiority, determine the
state’s inefficiency measure (section 3.3).

3.1 Definitions of Inferiority and Inefficiency
We think of inferiority relations between two states or combi-
nations and inefficiency of a state. In the following, we con-
sider an arbitrary pair of states (or instances) of the firms, S a

and S b ∈ T .

Profit optimality/inefficiency: We denote the prices of the
outputs by p = (p1, p2, . . . , pM) ∈ RM

+ and those of inputs

3



w = (w1,w2 . . . ,wN) ∈ RN
+ . The profit of the firm (x, y) is

Π(S ) ≡ py − wx.
If Π(S a) < Π(S b), we say that S a is profit inferior to S b

(denoted by S a ≺Π S b). If Π(S a) > Π(S b), we say that S a is
profit superior to S b (denoted by S a ≻Π S b).

(i) If there exists some state S ′ that is profit superior to state
S , we call S a profit inefficient (profit non-optimal) state. That
is, if S a ≺Π S for some S ∈ T (i.e., ∃S ∈ T s.t. S a ≺Π S ), S a

is profit inefficient (profit non-optimal).
(ii) If there exists no state that is profit superior to S , we

call S a profit optimal (efficient) state.

Technical inefficiency and efficiency: If zi(S a) ≤ zi(S b) for
all i ∈ P and z j(S a) < z j(S b) for some j ∈ P, then S a is
technically inferior to S b (denoted by S a ≼ S b). If zi(S a) ≥
zi(S b) for all i ∈ P and z j(S a) > z j(S b) for some j ∈ P, then
S a is technically superior to S b (denoted by S a ≽ S b).

(i) If there exists some state S ′ that is technically superior
to state S , we call S a technically inefficient state; that is, S is
technically inefficient iff ∃S ′ ∈ T s.t. S ≼ S ′.

(ii) If there exists no state that is technically superior to S , S
is called a technically efficient state;11 that is, S is technically
efficient iff @S ′ ∈ T s.t. S ≼ S ′.

Strict technical inefficiency and weak technical efficiency:
If zi(S a) < zi(S b) for all i ∈ P, then S a is strictly technically
inferior to S b (denoted by S a ≺ S b). If zi(S a) > zi(S b) for all
i ∈ P, then S a is strictly technically superior to S b (denoted
by S a ≻ S b). S a ≺ S b implies S a ≼ S b but not vice versa.

(i) If there exists some state S ′ that is strictly technically
superior to state S , we call S a strictly technically inefficient
state; that is, S is strictly technically inefficient iff ∃S ′ ∈ T s.t.
S ≺ S ′. (Being strictly technically inefficient implies being
technically inefficient but not vice versa.)

(ii) If there exists no state that is strictly technically superior
to state S , we call S a weakly technically efficient state; that
is, S is weakly technically efficient iff @S ′ ∈ T s.t. S ≺ S ′.

Remark 1 We note that technical inferiority lacks uniformity
concerning players in contrast to strict technical inferiority.
This non-uniformity leads to particular difficulty in defining
the (non-strict) technical-inefficiency measure.

3.2 Degree of the inferiority of one state to an-
other

Here, we present some definitions of the degree of the inferi-
ority of one state to another.

3.2.1 Degree of profit inferiority

As the degree of profit inferiority of a state S a to another S b,
we have:

QΠ(S a, S b) ,
Π(S b)
Π(S a)

. (2)

Subsequently, if QΠ(S a, S b) > 1, then S a is profit inferior to
S b (Π(S a) < Π(S b)), and if QΠ(S a, S b) ≤ 1, then S a is not

11One often calls this technical efficiency the Pareto-Koopmans efficiency.

profit inferior to S b (Π(S a) ≥ Π(S b)). We note QΠ(S a, S b) =
1 for z(S a) = z(S b). Thus, the measure QΠ (given in (2))
distinguishes profit inferiority (≺Π).

Then, we have the following proposals.

3.2.2 Degree of (strict) technical inferiority

As a candidate of the measure of the degree of (strict) techni-
cal inferiority of state S a to S b, we define:

Q≺(S a, S b) , min
k∈M+N

zk(S b)
zk(S a)

(3)

Namely, as the degree of (strict) technical inferiority of state
S a to S b, we use the minimum ratio of each player’s utility of
state S b to that of state S a.

Degree of strict technical inferiority We have the following:
If Q≺(S a, S b) > 1, then S a ≺ S b (i.e., S a is strictly techni-
cally inferior to S b), and if Q≺(S a, S b) ≤ 1, then S a ⊀ S b

(i.e., S a is not strictly technically inferior to S b). Thus, the
measure Q≺ (given by (3)) distinguishes strict technical infe-
riority. Subsequently, we can use Q≺ to measure the degree
of strict technical inferiority.

Degree of technical inferiority Note that Q≺(S a, S b) = 1
implies z(S a) ≤ z(S b). Thus, for Q≺(S a, S b) = 1, if z(S a) ,
z(S b), then S a ≼ S b (S a is technically inferior to S b), oth-
erwise S a � S b (S a is not technically inferior to S b). Note
also that Q≺(S a, S b) = 1 for z(S a) = z(S b). Therefore, If
Q≺(S a, S b) > 1, then S a ≼ S b. If Q≺(S a, S b) = 1, then
if z(S a) , z(S b), then S a ≼ S b, otherwise S a � S b. If
Q≺(S a, S b) < 1, then S a � S b. Consequently, we can use
Q≺(S a, S b) as a technical-inferiority measure. However, this
measure seems complicated.

3.2.3 Degree of technical profit inferiority

We define the following: S a is technical profit inferior to S b if
S a ≼ S b (technically inferior) and S a ≺Π S b (profit inferior),
and this is not the case otherwise. As a candidate of the degree
of technical profit inferiority of state S a to S b, we define:

QΠ|≼(S a, S b) , ∆Q≺(S a,S b)≥1
Π(S b)
Π(S a)

+ ∆Q≺(S a,S b)<1

= 1 + ∆Q≺(S a,S b)≥1

(Π(S b)
Π(S a)

− 1
)
, (4)

where ∆L , 1 if L is, and = 0 otherwise.

Namely, as the degree of technical profit inferiority of state
S a to S b, we use the degree of profit inferiority of state S a to
S b if S a is technically inferior to S b (S a ≼ S b); otherwise, we
use the value 1 (S a � S b).

Then, if QΠ|≼(S a, S b) > 1, S a is technically profit inferior
to S b, and if QΠ|≼(S a, S b) = 1, S a is not technically profit in-
ferior to S b. We note that QΠ|≼(S a, S b) = 1 for z(S a) = z(S b).
Thus, the measure QΠ|≼ (given in (4)) distinguishes technical
profit inferiority and technical inferiority. QΠ|≼(S a, S b) coin-
cides with QΠ(S a, S b) if S a ≼ S b, and QΠ|≼(S a, S b) = 1 if
S a � S b. Namely, the technical profit inferiority of S a to S b

4



equals the profit inferiority of S a to S b, if S a is technically
inferior to S b. The degree of it is equal to 1 if S a is not tech-
nically inferior to S b.

3.3 Obtaining Inefficiency Measure by General
Procedure

Given the definition of the degree of the inferiority of one state
to another, we may have plural candidates for the procedures
obtaining the inefficiency measure of a state. We divide the
candidates into two categories:

1) One candidate depends on the maximum degree of the
inferiority of the state to some other (i.e., the maximum degree
to which the inferiority improves by moving from the state to
some other.)

2) The other candidate depends on other relations between
the state and the set of efficient states.
In this article, we consider that the inefficiency measures
along the line of 1) are preferable. We justify it is in section
3.3.3.

3.3.1 Inefficiency measure based on the maximum de-
gree of inferiority

As the candidate based on the maximum degree of the inferi-
ority of the state in question to some other, we have the fol-
lowing definition of the inefficiency measure: Given the defi-
nition of the degree of (particular) inferiority Q(S , S ′) of state
S to S ′, we have the (corresponding) inefficiency measure of
a state S (S ∈ T ) by

MQ(S ) , max
S ′∈T

Q(S , S ′). (5)

It shows the maximum degree of the inferiority of state S to
some other. As the basis of M, we can use various measures
of the degree of the inferiority Q(S , S ′) of state S to S ′ (given
in the previous subsection), as in the following:

I) The magnitude of profit inefficiency (profit non-
optimality): It is natural to use the ratio of the optimal profit
SΠ to the profit of the state S , Π(SΠ)/Π(S ) as the inefficiency
measure of a state. In this article, we call it MoΠ. If we use
the degree of profit inferiority QΠ(S , S ′) (2), as Q(S , S ′) in (5)
above, the following MQΠ(S ) equals MoΠ(S ).

MoΠ(S ) = MQΠ(S ) = max
S ′∈T

QΠ(S , S ′)

= max
S ′∈T

∑
k zk(S ′)∑
k zk(S )

=
maxS ′∈T

∑
k zk(S ′)∑

k zk(S )
=
Π(SΠ)
Π(S )

, (6)

where SΠ denotes a profit optimum. We say that SΠ is the
most profit superior to S . Therefore, we have:

If MoΠ(S ) > 1, then S (S ∈ T ) is profit inefficient (non-
optimal). If MoΠ(S ) = 1, then S (S ∈ T ) is profit opti-
mal. Therefore, MoΠ distinguishes profit inefficiency (profit
non-optimality). We thus see that MoΠ also conforms to the
general procedure.

MoΠ(S ) may not exist with the prices fixed, if the technol-
ogy is of nondecreasing returns to scale (NDRS). However,

if a firm increases the outputs to obtain more profit, it may
decrease the price. The situation seems complicated.

II) The magnitude of strict technical inefficiency [MoST]:
If we use the degree of strict technical inferiority Q≺(S , S ′)
given in (3), as Q(S , S ′) in (5), then

MoS T (S ) = MQ≺(S ) = max
S ′∈T

Q≺(S , S ′) = max
S ′∈T

min
k∈P

zk(S ′)
zk(S )

.

(7)

We call MQ≺ (S ) the magnitude of strict technical inefficiency
(MoST) of S , MoS T (S ). It shows the maximum degree of
strict technical inferiority of state S to some other S ′. If there
exists S ≺ s.t. Q≺(S , S ≺) = MoS T (S ), we call S ≺ the most
strictly technically superior state to S . S ≺ must be weakly
technically efficient.

Proposition 2 If MoS T (S ) > 1, then S (S ∈ T ) is strictly
technically inefficient, and if MoS T (S ) = 1, then S (S ∈ T )
is weakly technically efficient.12

This proposition implies that MoST distinguishes strict tech-
nical inefficiency. We note that MoST has a specific emphasis
on the strictness of technical inefficiency distinguished from
usual technical inefficiency. We also note that MoS T (S ) does
not always distinguish technical inefficiency. As an alterna-
tive, we propose the following:

III) The magnitude of technical inefficiency [MoT]: If we
use the degree of technical inferiority Q≺(S , S ′) given in (3),
as Q(S , S ′) in (5), then

MoT (S ) = MQ≼(S ) = max
S ′∈T

Q≺(S , S ′) = max
S ′∈T

min
k∈P

zk(S ′)/zk(S ).

(8)

We use (3) differently here from the case for MoST. We call
MQ≼(S ) the magnitude of technical inefficiency (MoT) of S ,
MoT (S ). It shows the maximum degree of technical inferior-
ity of state S to some other S ′.

If there exists S ≼ s.t. Q≺(S , S ≼) = MoT (S ), we call S ≼ the
most technically-superior state to S .

Proposition 3 If MoT (S ) > 1, then S is (strictly) technically
inefficient (S ∈ T ). If MoT (S ) = 1, then if there exists S ′

s.t. Q≺(S , S ′) = 1 and z(S ) , z(S ′), then S is technically
inefficient; otherwise, S is technically efficient (S ∈ T ).13

Therefore, while MoT distinguishes technical inefficiency, it
does not do so straightforwardly for MoT (S ) = 1. This dif-
ficulty (of slacks) seems parallel to that of the Farrel measure
of technical inefficiency. However, If MoT (S ) > 1, MoT (S )
and MoS T (S ) behave identically.

Instead, to measure technical inefficiency, we propose the
following:

12We see this as follows: From the definition, MoS T (S ) ≥ 1 as Q≺(S , S ) =
1. If MoS T (S ) > 1, then Q≺(S , S ′) > 1 for some S ′ (S ′ ∈ T ); thus, S is
strictly technically inefficient. If MoS T (S ) = 1, then Q≺(S , S ′) ≤ 1 for all
S ′ (S ′ ∈ T ); thus, S is not strictly technically inefficient.

13We see this as follows: If MoT (S ) > 1, then Q≺(S , S ′) > 1 for some
S ′ (S ′ ∈ T ); Thus, S is (strictly) technically inefficient. If MoT (S ) = 1,
then Q≺(S , S ′) ≤ 1. Then, if Q≺(S , S ′) = 1 and z(S ) , z(S ′) for some S ′

(S ′ ∈ T ), S is technically inferior to S ′ and, thus, is technically inefficient;
otherwise, S is technically efficient.
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Remark 2 The formulas of MoS T (S ) and MoT (S ) look the
same, but their usages and interpretations, shown in Proposi-
tions 2 and 3, are different. Nevertheless, as far as S is strictly
technically inefficient, MoS T (S ) and MoT (S ) behave identi-
cally.

IV) The magnitude of technical profit inefficiency [MoTΠ]:
If we use the degree of technical profit inferiority QΠ|≼(S , S ′)
given in (4), as Q(S , S ′), then,

MoTΠ(S ) = MQΠ|≼ (S ) = max
S ′∈T

QΠ|≼(S , S ′). (9)

We call MQΠ|≼ (S ) the magnitude of technical profit ineffi-
ciency (MoTΠ ) of S , MoTΠ(S ). It shows the maximum de-
gree of the technical profit inferiority of state S to some other
S ′. If there exists SΠ|≼ s.t. QΠ|≼(S , SΠ|≼) = MoTΠ(S ), we call
SΠ|≼ the most technically profit superior state to S .

Proposition 4 If MoTΠ(S ) > 1, then S is technically inef-
ficient (S ∈ T ), and if MoTΠ(S ) = 1, then S is technically
efficient.14

This proposition implies that MoTΠ distinguishes technical
inefficiency.

In the following, we show a base for calculating MoTΠ of
a state S . Denote by R(S ) the subset of T , whose elements
S ′ ∈ R(S ) are all technically superior or identical to S . Define
Π(SΠ|R(S )) = maxS ′∈R(S )Π(S ′). SΠ|R(S ) is a profit optimum
within R(S ). If R(S ) \ {S } , ∅ (nonempty), MoTΠ(S ) =
Π(SΠ|R(S ))/Π(S ). If R(S ) \ {S } = ∅ (empty), MoTΠ(S ) = 1.

Theorem 1 Assume that we can find a profit optimum SΠ|R(S )
of R(S ). Then, we have MoTΠ(S ) = Π(SΠ|R(S ))/Π(S ) =∑

k Uk(SΠ|R(S ))/
∑

k Uk(S ), and SΠ|R(S ) = SΠ|≼. In this case,
MoTΠ(S ) > 1, iff S is technically inefficient, and MoTΠ(S )
= 1, iff S is technically efficient.

[Proof] See Appendix A. �

This theorem shows how to obtain MoTΠ of a state, and
MoTΠ distinguishes technical inefficiency. See Figure 1.
By using the above theorem 1, we have MoTΠ(S ) =
Π(SΠ|R(S ))/Π(S ). If R(S ) = T , a profit optimum SΠ|R(S ) of
R(S ), is a profit optimum SΠ.

Corollary 1 The MoΠ of a state S presents the MoTΠ of S in
the case where there exists a profit optimum that is technically
superior or identical to S . In that case, MoΠ(S ) = MoTΠ(S )
> 1, if S is technically inefficient, and MoΠ(S ) = MoTΠ(S )
= 1, if S is technically efficient.

This corollary shows that if a state is technically inferior or
equal to a profit optimum, then MoTΠ is identical to MoΠ,

14We see this as follows: From the definition, MoTΠ(S ) ≥ 1 as
QΠ|≼(S , S ) = 1. If MoTΠ(S ) > 1, then QΠ|≼(S , S ′) > 1 for some S ′

(S ′ ∈ T ); thus, S is technically inefficient. If MoTΠ(S ) = 1, then
QΠ|≼(S , S ′) = 1 for all S ′ (S ′ ∈ T ); thus, S is neither profit technically
inefficient nor technically inefficient (technically efficient).

and that MoTΠ and MoΠ of S distinguish technical ineffi-
ciency of S . Then, in that case, MoΠ works both as the mea-
sures of profit inefficiency and of technical inefficiency. See
Figures 1.

This measure avoids the difficulty (of slacks) of the mea-
sure MoT by introducing the optimization of a scalar function
within the subset of the states technical superior to or equal to
the state S . The introduction of optimizing some scalar func-
tion looks parallel to the additive measures of technical inef-
ficiencies, such as those of Russel, Charnes et al., etc. (Färe
and Knox Lovell, 1978; Charnes et al., 1985).

3.3.2 Relation between MoST, MoT, MoTΠ , MoΠ, and
UTE

In the previous section, we have the following:

• If MoΠ(S ) > 1, then S is profit inefficient (profit non-
optimal). If MoΠ(S ) = 1 then S is profit optimal.

• If MoS T (S ) > 1, then S is strictly technically inefficient.
If MoS T (S ) = 1, then S is weakly technically efficient.

• If MoTΠ(S ) > 1, then S is technically inefficient. If
MoTΠ(S ) = 1 then S is technically efficient.

• If MoT (S ) > 1, then S is technically inefficient. If
MoT (S ) = 1 then, if Q(S , S ′) = 1 and z(S ) , z(S ′) for
some S ′ ∈ S then S is technically inefficient, otherwise
S is technically efficient.

• If UT E(S ) > 1, then S is technically inefficient. For
UT E(S ) = 1, we cannot say whether S is technically
inefficient or efficient.

We have the following definition:

[Proportionality – radial expansion] Consider the case
where zi(S a) = KS aS b zi(S b) (S a, S b ∈ T ) for all i ∈ P
and for some constant KS a,S b > 0. (We denote this by
z(S a) = KS aS b z(S b).) We say that state S a is proportional
to state S b and that state S a is a radial expansion of state S b

for KS aS b > 1. KS a,S b is the proportionality constant.

Condition 3.1 [proportionality (radial expansion)] There
exists such a technically-efficient state, S π, that is propor-
tional to S .

Condition 3.2 [profit proportionality] We can find a profit
optimum SΠ that is proportional to a state S .

Condition 3.3 [technical profit proportionality] We can
find S ’s technical profit optimum SΠ|≺ that is proportional to
a state S .

We note that Condition 3.2 implies Condition 3.3 if SΠ ex-
ists. Condition 3.3 implies Condition 3.1. Then we have the
following:
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Theorem 2 For an arbitrary state S , MoΠ(S ) (if it exists)
≥ MoTΠ(S ) ≥ MoT (S ) = MoS T (S ) ≥ UT E(S ) where the
first equality holds if S is technically inferior or equal to a
profit optimum, where the second equality holds if Condition
3.3 is satisfied with KSΠ|≼S = 1, and where the fourth equality
holds if Condition 3.1 is satisfied.

[Proof] See Appendix A. �

This theorem implies that for every realizable state S ∈ S,
MoΠ(S ) is not less than MoTΠ(S ), which is not less than
MoT (S ) and MoS T (S ), which is not less than UT E(S ).

Corollary 2 If state S satisfies the profit-proportionality con-
dition 3.3, although other feasible states may not be propor-
tional to S , MoΠ(S ) = MoTΠ(S ) ≥ MoT (S ) = MoS T (S ) =
UT E(S ) = KSΠS > 1 if S is strictly technically inefficient, and
MoΠ(S ) = MoTΠ(S ) = MoT (S ) = MoS T (S ) = KSΠS =

UT E(S ) = 1 if S is technically efficient.

This corollary shows that all measures MoΠ, MoTΠ , MoT,
MoST, and UTE of a state S happen to be identical if S sat-
isfies the profit proportionality condition 3.2 with KSΠ|≼S = 1.
In this proportional case, MoT, MoTΠ, MoΠ, and UTE of a
state distinguish the (strict) technical inefficiency of the state
as well as MoST. Moreover, note that in this proportional case,
if a state S is technically inefficient, it is also strictly techni-
cally inefficient, and that even if it is weakly technically effi-
cient, it is also technically efficient.

3.3.3 Inefficiency measure based on other relations with
the efficient set

See, for example, Figure 3, which has the same convention
as Figure 2. The technology frontier consists of technically
efficient states. In the figure, for UTE, S F is the frontier point
on the radial expansion of S . S is proportional to the profit
optimum (SΠ). MoST, MoT, and MoTΠ give S ≺ = S ≼ =
SΠ|≼ as the state most strictly technically superior, the most
technically superior, and the most technically profit superior
to S . SΠ = S ≺ = S ≼ = SΠ|≼ = S F .

In the figure, X is the point in the technology frontier near-
est to S . Thus, as another candidate, one may propose the
distance between S to X as the (strict) technical-inefficiency
measure. However, S ≺ = S ≼ = SΠ|≼ coincide with SΠ under
the profit-proportionality condition. We think that it would be
natural that the states most superior to S coincide with a profit
optimum SΠ (if it exists) under the profit-proportionality con-
dition 3.2. The reason is that MoΠ seems a common measure
of profit inefficiency and that MoΠ(S ) may also serve as a
technical-inefficiency measure of S , as far as S satisfies the
profit-proportionality condition.

Moreover, we note that MoS T (S ) and MoT (S ) behave
identically as the united Farrel measure UT E(S ) when S ≺ =
S ≼ are proportional to or radial expansion of S . By Sick-
les and Zelenyuk (2019) (page 74), the Farrel measure seems
more popular in empirical use than all of the alternative mea-
sures of technical inefficiency. MoS T (S ) and MoT (S ) are
the inefficiency measures based on the maximum inferiority

degree but not based on the technically-efficient frontier’s dis-
tance from other points. Besides, the methods of defining and
calculating the least distance in this framework appear uneasy,
particularly in the integrated input- and output space united.
Thus, we prefer to the inefficiency measure based on the max-
imum degree of inferiority to the measure based on the dis-
tance from other points of the technically-efficient frontier.

Furthermore, we note that by Briec (1999), the Hölder dis-
tance weighted by S covers the Farrel input technical ineffi-
ciency measure of S , where the Hölder norm is Tshebishev
norm. Therefore, by the suitable settings in defining the dis-
tance measure, the frontier point least distant from S is iden-
tical to the state, S ≺(= S ≼ = S F), most technically superior to
S .

S

S F = S ≺ = S ≼ = SΠ

z1(= x−1)

z2(= y)

0

X

py − wx = const.

Figure 3: Distance from the technology frontier.

4 Proportional (Radial Expansion)
Cases

Consider a state S with z(S ) = (z1(S ), z2(S ), . . . , zn(S )).

Condition 4.1 [weak proportionality] There exists such a
weakly technically efficient state, S ωπ, that is proportional to
S .

Theorem 3 Assume that weak-proportionality condition 4.1
is satisfied. That is, zi(S ωπ)/zi(S ) = KS ωπS , i ∈ P, for some
proportionality constant KS ωπS . We have MoS T (S ) = KS ωπS ,
and S ωπ = S ≺. In this case, MoS T (S ) = KS ωπS > 1, and = 1
if S is strictly technically inefficient and weakly technically
efficient.

[Proof] See Appendix A. �

This theorem shows that we can obtain MoS T (S ) in the
way identical to UT E(S ), i.e., in an intuitively-simpler way
(radial-fashion) than the method following the definition
when the weak-proportionality condition 4.1 is satisfied. Note
that among the states S for which Condition 4.1 holds,
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technically-inefficient states are also strictly technically in-
efficient. Note also that it is impossible that MoS T (S ) =
KS ωπS < 1. We see that MoS T (S ) behaves in the same way as
UT E(S ).

A technically efficient state is also weakly technically effi-
cient. Then, we have the following:

Corollary 3 Assume that proportionality condition 3.1 is sat-
isfied; that is, zi(S π)/zi(S ) = KS πS , i ∈ P for some proportion-
ality constant KS π,S . We have MoS T (S ) = KS πS and S π = S ≺.
In this case, MoS T (S ) = KS ωπS > 1 and = 1, if S is strictly
technically inefficient and technically efficient.

This corollary implies that we can obtain MoS T (S ) in the
way identical to UT E(S ), i.e., in an intuitively-simpler way
(radial-fashion) than the method used following the definition
when the proportionality condition 3.1 is satisfied. Note that
if the proportionality condition 3.1 holds for state S , S is tech-
nically inefficient iff S is strictly technically inefficient. In the
case where Corollary 3 holds, Theorem 3 also holds.

Theorem 4 Assume that proportionality condition 3.1 is sat-
isfied. That is, zi(S π)/zi(S ) = KS πS , i ∈ P for some propor-
tionality constant KS πS . For KS πS > 1, we have MoT (S ) =
KS πS , and S π = S ≼. In this case, MoT (S ) = KS πS > 1 and S
is strictly technically inefficient. For KS πS = MoT (S ) = 1, S
is technically efficient.

[Proof] See Appendix A. �

This theorem implies that we can obtain MoT (S ) in the
way identical to UT E(S ), i.e., in an intuitively-simpler way
(radial-fashion) than the method following the definition
when the proportionality condition 3.1 is satisfied. Note that
when S satisfies the proportionality condition 3.1, MoS T (S )
and MoT (S ) behave identically. See Figures 1 and 2. Note
also that it is impossible that KS πS < 1.

We present certain sufficient conditions to achieve the pro-
portionality conditions 4.1 and 3.1 as follows: Define Z ,
{z(S ) | S ∈ T }. We consider the case where Z is compact
(closed and bounded). Then, we have the boundaries of Z
as follows: n boundary hyperplanes Bi = {z(S ) | zi(S ) =
0, z(S ) ∈ Z}, i ∈ P and a boundary hypersurface η connecting
all Bi, i ∈ P.

Condition 4.2 [weak technically efficient frontier] The hy-
persurface η is composed of weakly technically efficient
points.

Condition 4.3 [technically efficient frontier] The hypersur-
face η is composed of (strongly) technically efficient points.

Proposition 5 If Conditions 4.2 and 4.3 are satisfied, then,
for an arbitrary z(S ) ∈ Z, any line zi = tzi(S ), i ∈ P, t ≥ 0,
crosses weakly and strongly technically efficient points that
are both denoted by z(S ωπ) = KS ωπS z(S ). Then, Theorem 3
and both of Theorems 4 and Corollary 3 hold.

Consider systems that satisfy the technically-efficient fron-
tier conditions 4.2 and 4.3. This proposition implies that for

the systems, we can obtain MoST (and also MoT) of S as
MoS T (S ) = MoT (S ) = S ≺0/S 0 in the graph of Z. See
Figures 1 and 2.

Remark 3 If we consider the nature of technology and pro-
duction, it would be natural to think that the technology fron-
tier consists of technically efficient states. However, we need
to show how our proposals handle exceptional cases where
the technology frontier includes technically inefficient states.
We offer it in the next section. Note, in passing, that in the
context of games one may consider the efficient frontier point
that is on the radial expansion of an NE a ‘Nash-proportionate
fair’ allocation (Kameda, Altman, Touati and Legrand, 2012).

5 Exceptional Cases

z1 = (x−1)

z2(= y)

0

SΠ
S 1 = S 1

≺ = S 1
F

S 1
≼ = S 1

Π|≼

(S ′1
Π

)
(S ′1
Π|≼)

py − wx = const.

Figure 4: The technology frontier is all (weak) technically ef-
ficient. Even by consuming more than a certain amount of
input x, the technology allows no increase in producing y.
(Besides, to produce output y, the technology requires no less
than a certain amount of input x.)

In Figures 4 and 5, we illustrate some cases of UTE, MoST,
MoT, MoTΠ, and MoΠ with the seemingly exceptional tech-
nology frontier in the two dimensional technology spaces. S 1

is technically inefficient but not strictly technically inefficient.
S 2 is technically inefficient and also strictly technically in-
efficient. Again, we denote by S a S b the length of the line
segment from S a to S b.

(1) Figure 4 has the same convention as Figure 2. The fron-
tier states of the extra-thick and thick curves, respectively, are
technically efficient and weakly technically efficient. S 1, S 1

≺
and S 1

F are on the weakly efficient technology frontier. S 1
≼ is

technically efficient, and Q≺(S 1, S 1
≼) = 1 with MoT (S 1) =

UT E(S 1) = 1 although S 1 is technically inferior to S 1
≼. This

situation shows the difficulty (of slacks) because of the non-
uniformity of the definition of technical inferiority concern-
ing players. In contrast, MoTΠ(S 1) = Π(S ′1

Π|≼)/Π(S 1) > 1
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determines the technical inefficiency of S 1 although S 1 is not
technically inferior to SΠ.

MoΠ(S 1) ≡ Π(S ′1
Π

)/Π(S 1) > MoTΠ(S 1) ≡
Π(S ′1

Π|≼)/Π(S 1) >15 S ′1
Π|≼0/S 10 > S 1

≺0/S 10 ≡ MoS T (S 1) =
MoT (S 1) = UT E(S 1) = 1.

S 2

z1(= y1)

z2(= y2)

S 2
≺ = S 2

≼

0

(S ′2≺ )

SΠ

(S ′2
Π

)

S 2
Π|≼

(S ′2
Π|≼)

S 2
F

Figure 5: The technology frontier is not all (weak) technically
efficient. The technology does not allow to produce certain
combinations of outputs (y1, y2). Those combinations look
possible in standard cases. (Besides, decreasing the produc-
tion of y1 less than a certain amount causes the technology to
reduce the production capacity of y2.)

(2) Figure 5 has the same convention as Figure 1 (two out-
puts with the inputs given). Only some frontier points (extra-
thick curve) are technically efficient. Others (thick curve) are
not technically efficient which may be uncommon. But for
that case, UT E(S 2) gives S 2

F as the radial expansion of S 2

in the technologically-inefficient technology frontier. Thus,
UT E(S 2) = S 2

F0/S 10. It is difficult to find the significance
of S 2

F . In contrast, MoST and MoT give S 2
≺(= S 2

≼) on the
technically-efficient frontier. The significance of S 2

≺ and S 2
≼)

seems clear.
Proportionality conditions 4.1 and 3.1 do not hold for S 2.

Then, in these cases, we rely on the definitions (3) and (7), to
obtain MoST and MoT. We have MoS T (S 2) = MoT (S 2) =
S ′2≺ 0/S 2 0 > 1.16 MoS T (S 2) = MoT (S 2) = S ′2≺ 0/S 2 0 >
S 2

F0/S 10 = UT E(S 2). Also S 2
≺ is technically efficient

whereas S 2
F is not. Therefore, we think that in this extraor-

dinary case, MoT and MoST behave more reasonably than
UTE. Similarly as S 1 we see that S 2 is not technically infe-
rior to SΠ. Then,

15We see this inequality by the following: Assume (z2 =) y′ = ky and
(z1 =) 1/x′ = k/x for k ≥ 1 (proportionality). Then (py′ − wx′)/(py − wx) =
k + (k − 1/k)wx/(py − wx) ≥ k where the equality holds for k = 1.

16We obtain them as follows: If a certain state S is in the area
above the dashed line from 0 through S 2, z1(S )/z1(S 2) < z2(S )/z2(S 2).
Then, Q≺(S 2, S ) = z1(S )/z1(S 2) (see (3)), which is the largest when
S = S 2

≺. If S is in the area below the dashed line from 0 through
S 2, then Q≺(S 2, S ) = z2(S )/z2(S 2), which is less than z2(S ′2≺ )/z2(S 2) =
z1(S ′2≺ )/z1(S 2) = z1(S 2

≺)/z1(S 2). Therefore, MoS T (S 2)(= MoT (S 2)) is

given by z1(S 2
≺)/z1(S 2) = S ′2≺ 0/S 2 0 (see (7)).

MoΠ(S 2) ≡ Π(S ′2
Π|≼)/Π(S 2) > MoTΠ(S 2) ≡

Π(S ′2
Π|≼)/Π(S 2) >17 S ′2

Π|≼0/S 20 > S ′2≼ 0/S 20 ≡ MoS T (S 2) =
MoT (S 2) > 1.

We thus have:
MoΠ(S 1) > MoTΠ(S 1) > MoT (S 1) = MoS T (S 1) =

UT E(S 1) = 1.
MoS T (S 2) > MoTΠ(S 2) > MoT (S 2) = MoS T (S 2) >

UT E(S 2) > 1.
We see that S 1 and S 2 are not technically inferior to SΠ.

Nevertheless, MoΠ > 1 for both of S 1 and S 2. Then, MoΠ
is again an unsuitable technical-inefficiency measure some-
times. MoST distinguishes strict technical inefficiency. Con-
trarily, in some instances (MoT (S ) = 1), MoT has some dif-
ficulty (of slacks) distinguishing technical inefficiency of S ,
which MoTΠ can distinguish.

6 Concluding Remarks

Preliminarily, we present a united Farrel-type (radial)
technical-inefficiency measure (UTE) in integrated input-
output spaces. UTE integrates both the input-oriented and
output-oriented Farrel inefficiency measures to one radial-
type inefficiency measure. This integration seems similar to
the ‘hyperbolic’ inefficiency measure by Färe et al. (Färe,
Margaritis, Rouse and Roshdi, 2016), but ours remains radial.

We have had a general procedure for various inefficiency
types to obtain each inefficiency measure based on the corre-
sponding inferiority. According to the general procedure, we
have obtained inefficiency measures of production:
•MoΠ for the profit-inefficiency measure,
•MoST for the strict-technical-inefficiency measure,
•MoT for the technical-inefficiency measure,
•MoTΠ for the technical-profit-inefficiency measure.

We have confirmed that each measure distinguishes its inef-
ficiency but does not always distinguish the inefficiency of
others.

MoST and MoT generalize and solidify the inferiority-
based foundation of Farrel type (radial) measures of techni-
cal inefficiency. Consider the seemingly ordinary case where
a state S has a technically-efficient technology-frontier point
on its radial expansion. This case holds for the seemingly
familiar technology-front of production. In that case, MoST
and MoT behave identically in a radial way as UTE and look
conceptually straightforward.

In another case of the weakly efficient technology fron-
tier, UTE, MoST, and MoT may have the problem of slacks.
Our proposed MoTΠ(S ) is complicated but solves the prob-
lem like the additive measures. We have shown a fixed rela-
tion between the values of the measures. Namely, in general,
MoΠ(S ) (if it exists) ≥ MoTΠ(S ) ≥ MoT (S ) = MoS T (S ) ≥
UT E(S ). This relation agrees that from the definitions, strict

17We see this inequality by the following: Assume (z2 =)y′2 = ky2, (z1 =)
y′1 = ky1 (proportionality) and x′ = x (fixed). Then (p1y′1+p2y′2−wx)/(p1y1+

p2y2 −wx) = k+ (k− 1)wx/(p1y1 + p2y2 −wx) ≥ k. where the equality holds
for k = 1.
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technical inefficiency implies technical inefficiency that im-
plies technical profit inefficiency that implies profit ineffi-
ciency, not vice versa.

We have had an overall characterization as follows: MoΠ
(if it exists) is the most straightforward measure, but it can-
not always distinguish technical inefficiency. UTE and MoST
look secondly simple. But UTE does not seem proper in dis-
tinguishing (strict) technical inefficiency in general. MoST
is the second-most simple measure and can distinguish strict
technical inefficiency, but it does not always distinguish tech-
nical inefficiency. MoT is similar to MoST in simplicity, but
MoT = 1 requires an extra procedure in distinguishing techni-
cal inefficiency. In contrast, in the case of MoT > 1, MoT has
no problem, MoST and MoT are identical, and MoST also
distinguishes technical inefficiency. MoTΠ is more compli-
cated but distinguishes technical inefficiency.

We plan to pursue the suitability of MoST, MoT, and MoTΠ
by examining several other concrete examples and seek the
possibility of the inefficiency measures of the types not dis-
cussed here. We hope that our study will serve as a stepping-
stone to future developments.
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Appendix A. Proofs of Theorems
A Proof of Theorem 1 Note that Π(SΠ|R(S )) =

maxS ′∈R(S )Π(S ′). Namely, we can find a profit opti-
mum of R(S ), SΠ|R(S ), that is technically superior or identical
to the state S .

Case 1: R(S )\ {S } , ∅ (nonempty). Then, Q≺(S , SΠ|R(S )) ≥ 1.
Consider an arbitrary state S ′ ∈ R(S ). Q≺(S , S ′) ≥ 1.

Π(S ′) ≤ Π(SΠ|R(S )) since SΠ|R(S ) is a profit optimum
within R(S ). That is, Π(S ′)/Π(S ) ≤ Π(SΠ|R(S ))/Π(S ).
Then, QΠ|≼(S , S ′) = ∆Q≺(S ,S ′)≥1[Π(S ′)/Π(S )] +
∆Q≺(S ,S ′)<1 = Π(S ′)/Π(S ). Then, MoTΠ(S ) =

max[{maxS ′∈R(S ),S ′,SΠ|R(S ) QΠ|≼(S , S ′)},QΠ|≼(S , SΠ|R(S ))]
= Π(SΠ|R(S ))/Π(S )

(by noting that QΠ|≼(S , SΠ|R(S )) = Π(SΠ|R(S ))/Π(S ) since
Q≺(S , SΠ|R(S )) ≥ 1 by assumption).

Thus, MoTΠ(S ) is given by Π(SΠ|R(S ))/Π(S ).
If SΠ|R(S ) is technically superior to S , S is technically inef-

ficient and MoTΠ(S ) = Π(SΠ|R(S ))/Π(S ) > 1.
If SΠ|R(S ) is identical to S , S is technically efficient and

MoTΠ(S ) = Π(SΠ|R(S ))/Π(S ) = 1.

Case 2: R(S ) \ {S } = ∅ (empty). Then, S is technically effi-
cient, SΠ|R(S ) = S , and

MoTΠ(S ) = Π(SΠ|R(S ))/Π(S ) = 1.
From Proposition 4, MoTΠ(S ) > 1 means that S is techni-

cally inefficient. Furthermore, from Proposition 4, MoTΠ(S )
= 1 means that S is technically efficient. �

A Proof of Theorem 2

1) MoΠ(S ) ≥ MoTΠ(S ): It is clear if we note the following.
Recall that MoΠ(S ) is the ratio of the optimal profit to the
profit of state S ∈ T and that MoTΠ(S ) is the ratio to the
profit of state S , of the optimal profit within the subset TR(S)
of states that are technically superior or equal to S . Since
TR(S) ⊂ T , then maxS ′∈TR(S) Π(S ′) ≤ maxS ′∈T Π(S ′). We,
therefore, see that MoΠ(S ) ≥ MoTΠ(S ). The equality holds
if S is technically inferior or equal to the profit optimum SΠ.
2) MoTΠ(S ) ≥ MoT (S ): Denote K ≡ Q≺(S , S ′)
= min{mink∈M yk(S ′)/yk(S ),mink∈N xk(S )/xk(S ′)}. We

note that for K ≥ 1

Π(S ′)
Π(S )

=

∑
k∈M pkyk(S ′) −∑k∈N wk xk(S ′)∑
k∈M pkyk(S ) −∑k∈N wk xk(S )

≥
∑

k∈M pkKyk(S ) −∑k∈N wk xk(S )/K∑
k∈M pkyk(S ) −∑k∈N wk xk(S )

=

K{∑k∈M pkyk(S ) −∑k∈N wk xk(S )} + K − 1
K

∑
k∈N

wk xk(S )∑
k∈M pkyk(S ) −∑k∈N wk xk(S )

≥ K,

where the first equality holds if S ′ is proportional to S and
where the second equality holds if K = 1. Then, from (3)
and (4), QΠ|≼(S , S ′) ≥ Q≺(S , S ′). Therefore, from (8) and (9),
we have MoTΠ(S ) ≥ MoT (S ), where the equality holds if
Condition 3.3 is satisfied with KSΠ|≺S = 1.
3) It is evident that MoT (S ) = MoS T (S ).
4) MoT (S ) ≥ UT E(S ): If S F is technically efficient, natu-
rally, S F = S ≺ = S ≼. Then MoT (S ) = MoS T (S ) = UT E(S ).
If If S F is technically inefficient, there must exist S ′ s.t.
S ≼ S ′. Then,

UT E(S ) ≡ KS S F =
zk(S F)
zk(S )

≤ min
k∈N∪M

zk(S ′)
zk(S )

≤ max
S ′′∈T

min
k∈N∪M

zk(S ′′)
zk(S )

≡ MoT (S ) = MoS T (S ).

Thus, we have MoT (S ) ≥ UT E(S ). The equality holds if the
proportionality condition 3.2 is satisfied. �

A proof of Theorem 3 Note that we can find such a weak
technically efficient state S ωπ that satisfies zi(S ωπ)/zi(S ) =
KS ωπS , i ∈ P. Consider another state S ′ ∈ T . Since S ωπ
is weakly technically efficient. Then there must exist some
i (i ∈ P) such that zi(S ′) ≤ zi(S ωπ) and, thus, such that
zi(S ′)/zi(S ) ≤ zi(S ωπ)/zi(S ) = KS ωπS . Then, Q≺(S , S ′) =
mink zk(S ′)/zk(S ) ≤ KS ωπS . Then

MoS T (S ) = max[{maxS ′∈T ,S′,Sωπ Q≺(S , S ′)},Q≺(S , S ωπ)]
= KS ωπS (by noting that Q≺(S , S ωπ) = KS ωπS ), and S ωπ = S ≺.
Thus, MoS T (S ) is given by KS ωπS .

Naturally, MoS T (S ) = KS ωπS > 1 means that S is strictly
technically inefficient, and MoS T (S ) = KS ωπS = 1 means that
z(S ωπ) = z(S ). Thus, S is also weakly technically efficient. �

A Proof of Theorem 4 Note that for KS πS > 1, we can
find such a technically efficient state z(S π) that satisfies
zi(S π)/zi(S ) = KS πS > 1, i ∈ P. Consider another state
S ′ ∈ T . Since S π is a technically efficient state, there
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must exist some i (i ∈ P) such that zi(S ′) ≤ zi(S π) and,
thus, such that zi(S ′)/zi(S ) ≤ zi(S π)/zi(S ) = KS πS . Then,
Q≺(S , S ′) = mink zk(S ′)/zk(S ) ≤ KS πS . Then,

MoT (S ) = max[{maxS ′∈T ,z(S ′)),z(S π) Q≺(S , S ′)},Q≺(S , S π)] =
KS πS (by noting that Q≺(S , S π) = KS πS ). Thus, MoT (S ) is
given by KS πS .

Naturally, MoT (S ) = KS πS > 1 means that S is strictly
technically inefficient. For KS πS = MoT (S ) = 1, z(S π) =
z(S ) and, thus, S is also technically efficient. (We note that
if there were S ′ s.t. z(S π) = z(S ) , z(S ′) and Q≺(S π, S ′) =
Q≺(S , S ′) = 1, then zi(S π) < zi(S ′) for some i and z j(S π) ≯
z j(S ′) for all j, thus, S π should be technically inferior to S .
Therefore, S π should not be technically efficient, which is a
contradiction.) �

Appendix B: Glossary of Symbols
We have the following notation:

• M— the set of output indexes {1, 2, · · · ,m}.

• N — the set of input indexes {1, 2, · · · , n}.

• x = (x1, x2, · · · , xn) — inputs

• y = (x1, x2, · · · , xm) — outputs

• z = (x−1, y) — inputs and outputs

• z(S ) — (z1(S ), z2(S ), . . . , zm+n(S )).

• T — the set of feasible states (instances of firms).

(x, y) ∈ T iff y is producible from x.

• Π(S ) — py(S ) − wx(S ) ≡ ∑k pkyk(S ) −∑k wk xk(S ).

• S a ≺Π S b — Π(S a) < Π(S b) (S a is profit inferior to S b).

• SΠ — a profit optimum: Π(SΠ) = maxS ′∈T Π(S ′).

• S a ≼ S b — S a is technically inferior to S b.

• S b ≽ S a — S b is technically superior to S a.

• S a ≺ S b — S a is strictly technically inferior to S b.

• S b ≻ S a — S b is strictly technically superior to S a.

• KS aS b > 0 (S a, S b ∈ T ) — the proportionality constant:
zi(S a) = KS aS b zi(S b) for all i ∈ P.

• QΠ(S a, S b) — the degree of profit inferiority of S a to S b:
Π(S b)/Π(S a) =

∑
k zk(S b)/

∑
k zk(S a).

• Q≺(S a, S b) — the degree of technical inferiority of S a to
S b: mink∈P zk(S b)/zk(S a).

• QΠ|≼(S a, S b) — the degree of technical profit inferiority
of state S a to S b: ∆Q≺(S a,S b)≥1Π(S b)/Π(S a)+∆Q≺(S a,S b)<1

= 1 + ∆Q≺(S a,S b)≥1(Π(S b)/Π(S a) − 1).

• MQ(S ) — maxS ′∈T Q(S , S ′): the inefficiency measure of
S (S ∈ T ) with the degree of the inferiority of S to S ′

being Q(S , S ′).

• MoΠ(S ) — the magnitude of profit inefficiency of S :
Π(SΠ)/Π(S ).

• MoS T (S ) — the magnitude of strict technical ineffi-
ciency of S : MQ≺(S ) = maxS ′∈T Q≺(S , S ′).

• S ≺ — the most strictly technically superior state to S :
Q≺(S , S ≺) = MoS T (S ).

• MoT (S ) — the magnitude of technical inefficiency of S :
MQ≼ (S ) = maxS ′∈T Q≺(S , S ′).

• S ≼ — the most technically superior state to S :
Q≺(S , S ≼) = MoT (S ).

• MoTS (S ) — the magnitude of technical profit ineffi-
ciency of S : MQΠ|≼ (S ) = maxS ′∈T QΠ|≼(S , S ′).

• SΠ|≼ — the most profit technically superior state to S :
QΠ|≼(S , SΠ|≼) = MoTΠ(S ).

• AB — the length of the line segment from A to B.

• Z — the set of z of feasible combinations: {z(S ) | S ∈
T }.

• Bi, i ∈ P— a boundary hyperplane ofZ: {z(S ) | zi(S ) =
0, z(S ) ∈ Z}, i ∈ P.

• η— a boundary hypersurface ofZ that connects all Bi.

• R(S ) — the subset of T whose elements are all techni-
cally superior or identical to S : the set {S ′ ∈ T |S ′ ≽
S or S ′ = S }.

• SΠ|R(S ) — a profit optimum within R(S ): Π(SΠ|R(S )) =
maxS ′∈R(S )Π(S ′).
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Färe, R. and Knox Lovell, C. (1978). Measuring the technical effi-
ciency of production, Journal of Economic Theory 19(1): 150
– 162.

11
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