
Computational Effects across Generated Binders
Maintaining future-stage lexical scope

Yukiyoshi Kameyama
University of Tsukuba
kameyama@acm.org

Oleg Kiselyov

oleg@okmij.org

Chung-chieh Shan

ccshan@post.harvard.edu

Abstract
Code generation is the leading approach to making high-perfor-
mance software reusable. Effects are indispensable in code genera-
tors, whether to report failures or to insert let-statements and if-
guards. Extensive painful experience shows that unrestricted effects
interact with generated binders in undesirable ways to produce un-
expectedly unbound variables, or worse, unexpectedly bound ones.
These subtleties prevent experts in the application domain, not in
programming languages, from using and extending the generator. A
pressing problem is thus to express the desired effects while regu-
lating them so that the generated code is correct, or at least correctly
scoped, by construction.

In an imminently practical code-generation framework, we
show how to express arbitrary effects, including mutable refer-
ences and delimited control, that move open code across gener-
ated binders. The static types of our generator expressions not
only ensure that a well-typed generator produces well-typed and
well-scoped code, but also express the lexical scopes of generated
binders and prevent mixing up variables with different scopes. This
precise notion of lexical scope subsumes the complaints about in-
tuitively wrong example generators in the literature. For the first
time, we demonstrate statically safe let-insertion across an arbi-
trary number of binders.

Our framework is implemented as a Haskell library that embeds
an extensible typed higher-order domain-specific language. It may
be regarded as ‘staged Haskell.’ The library is convenient to use
thanks to the maturity of Haskell, higher-order abstract syntax, and
polymorphism over generated type environments.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Control struc-
tures; polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure

General Terms Design, Languages

Keywords Multi-stage programming, mutable state and control
effects, binders, CPS, higher-order abstract syntax

1. Introduction
High-performance computing applications (scientific simulation
[20], digital signal processing [41], network routing [3], and many
others) require domain-specific optimizations (for example, rea-
soning about complex roots of unity) that the typical domain expert
performs by hand over and over again to write each specialized pro-
gram. To recover code reuse without incurring prohibitive dispatch-
ing overhead, the leading approach is to automate and modularize
the optimizations in the form of domain-specific code generators.
By far the most popular representation of generated code is to use
a concrete data type, be it S-expressions or even text strings, that

allows arbitrary manipulations without respect for the invariant that
all variables be bound, let alone the generated code be well typed.
Such ‘tree hacking’ may be appropriate if used by a professional
compiler writer for a fixed, verified code generator, but will ex-
acerbate bugs and stymie maintenance if used by an application
programmer who may be an expert in biology but not in compilers.

Therefore, we embrace code generation and disavow tree hack-
ing. We seek a refined representation that guarantees by construc-
tion that the generated code is well-scoped and well-typed (and
hence will compile without error, so the end user need not look at
it). These guarantees are not checks that the generator should per-
form when it ends but invariants that it should maintain as it runs.
This way, the programmer discovers mistakes as early as possible,
even while writing just one module of the generator, so we improve
our confidence that the generator is correct. In short, we aim for
principled code generation in which code is an abstract data type
that assures static safety and permits equational reasoning.

For a richer equational theory, we follow MetaOCaml in treat-
ing each piece of generated code as a black box, which can be com-
bined with other code but not inspected [45]. Experience shows that
this generative approach permits many domain-specific optimiza-
tions [19, 29] (see §6 for comparison with nominal systems). It also
makes it possible to improve efficiency by interleaving code gener-
ation and evaluation [16].

The more code generators we want to express, the harder it is
to assure static safety and permit equational reasoning [25, 50]. In
particular, modular code generators necessarily incur side effects
such as exceptions, state, and control [32, 49]: to report failures,
to order and memoize generated computations [1, 2, 4, 7, 11–
13, 27, 43, 44], to search among alternatives [42], and so on. Effects
incurred during generation are treated in the literature in four ways:

1. Some systems allow them without regulation. This invalidates
hard-won [46] static safety and stymies equational reasoning.

2. Some systems disallow all effects [34] or disallow effects that
manipulate open code [5, 6, 51]. This rules out such useful
generation techniques as monadic insertion of let-statements
and if-guards [44] and imperative partial evaluation [14, 48].

3. A simple compromise is to encapsulate effects within binders:
although an abstraction’s body can be generated using effects,
generating the abstraction as a whole must be pure. When ef-
fects are expressed (conveniently) in direct style, this compro-
mise means all generated binders delimit all effects [19].
This compromise allows a wide variety of useful generators but
rules out many others. The generation techniques ruled out are
roughly those that move open code across generated binders (so
generating the abstraction as a whole is impure): loop-invariant
code motion, scalar promotion [11], early assert-insertion, and
normalization by evaluation for sums [2].



4. Some systems explicitly represent environments for the vari-
ables used in generated code: either as records with named la-
bels [10, 21] or as tuples [9]. In the latter case, the variables
in the generated code are represented as de Bruijn indices. It is
straightforward to add effects to these systems while maintain-
ing type soundness, so we follow this approach here.

In sum, our code generators represent environments explicitly so as
to express effects on open code across generated binders. Although
such representations have been deemed impractical [46, §1.4], our
representation overcomes the obstacles as described below.

Contribution 1: static types for lexical scope Unfortunately, pre-
vious representations of generated code with explicit environments
do not express, let alone enforce, any notion of lexical scope. Lex-
ical scope is crucial to all modular programming, but what it even
means in a code generator is hard to pin down [16, 17]. To this end,
Pouillard and Pottier [40] put forth three informal slogans:

1. Name abstraction cannot be violated.
2. Names do not escape their scope.
3. Names with different scopes cannot be mixed.

The first slogan could mean that α-equivalent code generators gen-
erate α-equivalent code. However, the notion of α-equivalence
among generators is itself elusive. It is easier to interpret the second
slogan, to mean that all generated code is well-scoped˜– in partic-
ular, the final result is a closed program. However, the literature is
rife with intuitively wrong examples (see˜§5.1) that show that it is
not enough for the generated code to be merely well-scoped.

Our most important contribution is to use static types to express
and enforce a notion of lexical scope on generated code. Our type
discipline ensures that generated variables are always bound inten-
tionally, never captured accidentally. That is the content of the third
slogan. We argue that lexical scope in a code generator means that
different generated variables cannot be substituted for each other
(because they have different types in our system), even if they have
the same named label or the same de Bruijn index.

Contribution 2: imminently practical library for code generation
To validate our approach, we built a library of combinators for code
generation in Haskell. This paper explains our approach to effects
and scope by describing this library. Our concrete examples show
how to express effects on open code across generated binders, as
well as how rank-2 types enforce lexical scope.

Our library is not yet ready for real-life applications like those
that MetaOCaml has supported [29], because its syntax is rather
heavy. We write int 1 +: int 2 to generate the expression 1 +
2. (We avoid overloading Haskell’s type class Num, for clarity and to
emphasize that our approach is not restricted to Haskell but works
in any functional language with rank-2 polymorphism.) Moreover,
weakening coercions often have to be applied explicitly to gen-
erated code, and there is no syntactic sugar for pattern matching.
(Again, type-class overloading can help.) Although we have im-
plemented many interesting examples using our library, more ex-
perience is needed to recommend its wide practical use. Still, our
library is imminently practical in that

1. it has been built in the mature language Haskell, not an experi-
mental language with a dearth of documentation and tools;

2. it uses higher-order abstract syntax (HOAS) [31, 35] rather
than de Bruijn indices, so bindings in the generator are human-
readable;

3. it allows polymorphism over generated environments, so the
same generator module can be reused in many environments;

4. the language of generated code can easily be extended with
more features and constants (this paper shows many examples)

or changed to any other language˜– typed or untyped, first-order
or higher-order.

The structure of the paper §2 shows that even the cliche example
of power already needs to propagate effects beyond a binder. We
use the simplicity of the example to introduce the notation and our
code generation library, and in §2.4, to demonstrate our key idea˜–
hypothetical code generation and the rank-2 types of binding-form
generators. §3 turns from mere exceptions to mutable state as the
effect, storing open code in mutable variables across binders. This
ability prompts the worry that code with unbound variables or with
accidental bindings would be generated, but we demonstrate that
attempts to write such a faulty generator are flagged as type errors.
§4 describes our main example, let-insertion across binders. §5
justifies that a well-typed generator always generates well-typed
code. We define lexical scope and show how our static types ensure
it. We then discuss related work and conclude.

For lack of space, the presented examples are not fully self-
contained. For brevity and clarity, we have adopted some conven-
tions for presenting the code. The implicitly quantified type vari-
able repr in type signatures represents a type that is a member
of SSym or another ‘symantics’ class [8]; we almost always omit
the corresponding constraint. We assume that the type variable
m is constrained to be Applicative. We sometimes drop trivial
injection-projection functions induced by newtype. Appendix A
presents our library’s public interface, the signatures of all its pub-
lic functions, in full. The reader may refer to it if notational con-
fusion arises. Furthermore, the complete code is available as the
supplementary material to the paper and online at http://okmij.
org/ftp/tagless-final/TaglessStaged/.

2. Warm-up
We say that the code generator belongs to the metalanguage and the
generated code belongs to the target language. Because our target
language is a subset of our metalanguage (as is often the case), we
call the metalanguage staged: the generator is the present stage and
the generated code is the future stage.

We begin with a simplistic example of effectful code genera-
tion, permitting the generator to fail and report an error, a character-
string carrying exception that could be caught. The failure to finish
the already started code generation is common in practice, espe-
cially when generation takes input from the user. Since the effect,
the exception, carries a text string rather than a piece of code, there
is no danger whatsoever of scope extrusion. The system λ� of [19]
could be trivially ad hoc extended to allow such effects to propa-
gate beyond binders. Mint [51] has done such an extension, in the
context of Java code generation. Our present approach, unlike that
of [19, 51], does generalize to exceptions and other effects that do
carry open code, §3. The simplicity of the example helps us intro-
duce the code generation library and the idea of the approach.

2.1 Code generation library
We will be using the code-combinator approach [47, 52]. For now,
we introduce four combinators:

class SSym repr where
int :: Int -> repr Int
add :: repr (Int -> Int -> Int)
mul :: repr (Int -> Int -> Int)
($$) :: repr (a->b) -> (repr a -> repr b)

infixl 2 $$

We define them using the “tagless final” approach [8], considering
the future-stage code to be an domain-specific language embedded
into Haskell. The language so far has integer literals, application,
and two higher-order constants representing addition and multipli-



cation functions. The future-stage language is simply-typed, with
the indicated types. Whereas (1 + 2)::Int, which is the same
as (+) 1 2, is a Haskell expression for the present-stage addition,
exS1 of the characteristic type below

exS1 :: SSym repr => repr Int
exS1 = add $$ int 1 $$ int 2

represents the future-stage Int expression adding of two inte-
gers. We should have said, however pedantic for now, that exS1
is the present-stage Haskell expression that, when evaluated, pro-
duces a value representing the future-stage addition. The types,
inferred by Haskell compiler, make it clear when a Haskell ex-
pression represents a future-stage value. (We shall elide the con-
straint SSym repr.) (For the reader familiar with MetaOCaml §B
describes the correspondence of our code generation approach and
MetaOCaml. Bracket-and-escape syntax for the future-stage code
is a syntactic sugar for code combinators, [9].)

The tagless-final approach permits several concrete realizations
for our embedded language. For example, we may define instances
of SSym instantiating repr with the type constructors R and C
below:

newtype R a = R{unR :: a}
newtype C a = C{unC :: Int -> Exp}

The R-realization is the identity, ostensibly conflating the future
and the present stages. Since Haskell is non-strict, it is more pre-
cise to say that the R-realization represents future-stage code as
the present-stage ‘thunk.’ The C-realization uses Template Haskell
(TH) datatype Exp that is essentially abstract syntax tree of Haskell
code.1 The values of Exp can be pretty-printed or spliced into
another Haskell code. We rely on pretty-printing to see what we
have generated; for example, instantiating repr to C in exS1
as unC exS1 0 and pretty-printing the resulting Exp gives us
"(GHC.Num.+) 1 2". (We shall elide the part ”GHC.Num.” when
showing the code.) The C-representation, unlike R, describes truly
future-stage code. Whereas the R is the typed generator of the typed
code, C is the generator of untyped Template-Haskell expressions;
C is still a typed generator. The representation that is polymorphic
over repr, such as exS1 above, abstracts the differences between
R and C, ensuring at the same time that the generated code is well-
typed [8] since R can generate only well-typed ‘code’.

2.2 Lambda and power
We have not yet provided any way to build abstractions. That is the
aspect in which our code generating library differs sharply from
the state of the art, such as MetaOCaml or Template Haskell or the
system of [52]. Here we recall the of the state art; §2.3 demonstrates
its shortcomings.

We add a new code generating combinator:

class LamPure repr where
lamS :: (repr a -> repr b) -> repr (a->b)

We will be using HOAS, relying on Haskell functions to represent
functions bodies of our EDSL. For instance, the twice eta-expanded
future-stage addition is represented as

exS2 :: repr (Int->Int->Int)
exS2 = lamS(\x -> lamS(\y -> add $$ x $$ y))

In HOAS, we use Haskell variables for future-stage variables; we
can tell the stage from their type, Int or repr Int. The great

1 The integer environment counts the level of a lambda-expression, to be
considered shortly in the generated code, making sure that the variable
names chosen when generating lambda-expressions are distinct within the
expression. One may think of it as a weaker version of gensym, or as the
annotations of all variable names by their level.

benefit is that we can use human-readable names when we write
code generators. For that reason, HOAS is very popular, extensively
used by [52] and a few others; the MetaOCaml and TH quotation
syntax for future-stage lambda-expressions is essentially syntactic
sugar for HOAS ([52] have shown the correspondence, see also
App. B). The tagless-final approach uses HOAS too [8]; that paper
(and the accompanying code) describe the instances of LamPure
for our two concrete realizations, R and C. The latter instance lets us
see the generated code; for exS2, we get "\x 0 -> \x 1 -> (+)
x 0 x 1" (the C interpreter makes its own variable names). The
alternative to HOAS is de Bruijn indices, which were too described
in [8]. One would not want to write more than a couple of lines of
code with deBruijn indices.

We now can write our running example, which is the staged
power function. The example is immensely popular, having become
a cliche. We shall see it still harbors a few surprises. The ordinary
integer power function raises its argument x to the n-th power:

power :: Int -> Int -> Int
power 0 x = 1
power n x = x * power (n-1) x

We would like to write the (future-stage) code for power, special-
ized to the presently known value of the exponent. In other words,
we want to generate a future-staged function that raises its argu-
ment to the a priori known power. Since we know n already at the
present stage, we should unroll the recursion, leaving only multi-
plication to the future-stage. Staging the power is straightforward,
and described in perhaps any book or paper on partial evaluation

spower :: Int -> repr Int -> repr Int
spower 0 x = int 1
spower n x = mul $$ x $$ spower (n-1) x

The types again tell the level: the first argument of spower is
a present-stage integer, but the second argument and the result
are future-level. One may view int, $$ as a sort of binding-time
annotations. We need to obtain the future-stage argument x from
somewhere; it is bound at the future-stage:

spowern :: Int -> repr (Int -> Int)
spowern n = lamS (\x -> spower n x)

The code generated for spowern 3

"\\x_0 -> (*) x_0 ((*) x_0 ((*) x_0 1))"

is indeed as desired: the recursion is unrolled the statically known
number of times.

2.3 The faulty power
Alas, the original power and its staged variant are partial functions.
Evaluating either power (-1) 2 or spower (-1) fails to termi-
nate. The latter is unsatisfactory: we do wish our compiler and code
generators always terminate. If a code generator is inherently par-
tial it should report an exception to the calling function, which may
catch that exception and handle, e.g., by generating code differ-
ently. The fact that the error reporting arises in the cliche power
example testifies to the pervasiveness of this concern.

The question is how to report an exceptional condition encoun-
tered during code generation. We could call the ‘function’ error
– which is denotationally is the same as non-termination and will
crash the program (errors cannot be caught in the pure code).
A crashed code generator is hardly better than a non-terminating
one. The principled approach with the well-defined semantics is to
model partiality explicitly, using the so-called Error monad (or Er-
ror applicative), lifting all values of the type t to Either ErrMsg
t. We re-write our power reporting an error on the negative expo-
nent (and relying on the fact that Either ErrMsg is a functor).



type ErrMsg = String
powerF :: Int -> Int -> Either ErrMsg Int
powerF 0 x = Right 1
powerF n x | n > 0 = fmap (x *) (powerF (n-1) x)
powerF _ _ = Left "negative exponent"

which we stage as before

spowerF :: Int -> repr Int -> Either ErrMsg (repr Int)
spowerF 0 x = Right (int 1)
spowerF n x | n > 0 =

fmap (mul $$ x $$) (spowerF (n-1) x)
spowerF _ _ = Left "negative exponent"

The type of the result tells that the exception is reported during
the code generation (not when the generated code is run)˜– which
is what we want. It is when we try to complete the example, gen-
erating the future-stage function, that we encounter a problem:
\n -> lamS (\x -> spowerF n x) cannot be typed. Indeed,
the type of (\x -> spowerF n x) is repr Int -> Either
ErrMsg (repr Int) whereas the type of lamS demands its ar-
gument to be of the type repr Int -> repr Int. We are fully
stuck.

2.4 Hypothetical code generation
We now present our code generation library that solves the above
problem. We get a hint by examining the implementation of lamS
for the R-representation of LamPure (unlike the C representation,
it has no phantom types that could be cast away, and so is the
strictest.)

instance LamPure R where
lamS f = R $ \x -> unR (f (R x))

The argument to lamS is a function that gives us the code for
the function’s body if we give it the code for the bound variable.
We have to introduce the future-stage binding-form, the R (\x ->
...) part, so we obtain the bound variable, which we can then pass
to f. That is the source of the problem: we have already committed
to yielding the future-stage binding form, before we started the
generation of the abstraction’s body, which may fail to generate
any code. The obvious solution then is to generate the code for the
body of the abstraction first; only when we have succeeded should
we introduce the future-stage binding form. We have to generate
the body of the abstraction first, and bind the variable later.

The problem becomes of generating the body of the abstraction
without knowing the bound variable. We have to assume the bound
variable, and generate the code upon the assumption. The future-
stage binder will discharge the assumption.

We introduce the type HV h repr a representing a future-stage
value of the type a in the generator environment h. The latter
records the assumptions of the bound variables. It is essentially the
type environment for future-stage variables. The type HV h repr
a is isomorphic to h -> repr a. It is defined more generally

newtype J m repr a = J{unJ :: m (repr a)}
type HV h = J ((->) h)

as a composition of two type constructors, (->) h and repr.
Defining such a composition in Haskell requires the introduction
of an auxiliary newtype, J, with bijections J and unJ witnessing
the isomorphism between J m repr and the composition of m and
repr. We elide these bijections for clarity.

Our goal is to lift our code combinators to the type HV h repr
a. We do the lifting generically, noting that for each applicative
functor [30] m and for each member of SSym repr their composi-
tion is too the member of SSym:

instance (Applicative m, SSym repr)
=> SSym (J m repr) where

int = pure . int
add = pure add
mul = pure mul
x $$ y = ($$) <$> x <*> y

We shall use this generic instance several times; for now we observe
that (->) h is an applicative functor.

We also introduce the function to map, contravariantly, the type
environment

hmap :: (h2 -> h1) -> HV h1 repr a -> HV h2 repr a
hmap f e = \h2 -> e (f h2)

and to obtain the future-stage code in the empty environment

runH :: HV () repr a -> repr a
runH m = m ()

The type environment h is, as usual, a sequence of elements
representing the type of a corresponding to-be-bound variable. We
represent the sequence as a nested tuple, whose elements are of the
type future-stage code, for the bound variable, when it becomes
known. We introduce a newtype-wrapper H so to attach a phantom
type s, to be discussed later. The data constructor H is not exported
from TSCore.hs and not available for the programmer.

newtype H r s a = H (r a)

href :: HV (H repr s a,h) repr a
href = \ (H x,h) -> x

We have also introduced href, to refer to the top assumption (the
most-recently ‘bound’ variable). It, as H elimination form discard-
ing our s, is also used only internally and not exported. Appendix
A enumerates the public interface of our library, which treats the
type H as abstract.

Before we describe how all this machinery is used and how to
represent abstractions, we recall that our goal is effectful code gen-
eration. We will represent effects by an applicative functor, m: a
Haskell value of the type J m (HV h repr) a represents a gener-
ator, in the generating applicative m, of the future-stage expression
of the type a in the future-stage environment h. Since HV h repr
is a member of SSym, so is J m (HV h repr) as we have just de-
fined. That code reveals why we represent effects using applicative
rather than monad. The generator of an application needs to gen-
erate the future-stage operator and the future-stage operand; both
generators may incur effect, and the effect of generating operand
may depend on the effect of generating the operator; the generator
of the operand cannot depend on the code for the operator (after all,
our approach provides no means of inspecting the generated code).
As a syntactic sugar, we introduce an infix operator (+:) for the
generator of addition

x +: y = add $$ x $$ y

and ditto for the multiplication (*:). The code for addition of two
integers can be generated as int 1 +: int 2.

We come to the crucial point: defining the combinator for gener-
ating future-stage lambda, letting effects from generating the body
propagate. The definition is simple:

lam :: (forall s. HV (H repr s a,h) repr a
-> J m (HV (H repr s a,h) repr) b)

-> J m (HV h repr) (a->b)
lam f = fmap (\body -> \h ->

lamS (\x -> body (H x,h)))
(f href)

We assume the code for the bound variable and pass it to the
argument of lam, letting it generate the body of the abstraction,
incurring an effect. The result is the value of the type J m (HV



(H repr s a,h) repr) b, which we convert to the desired J m
(HV h repr) (a->b) using the existing tools. It is here that we
use lamS to discharge the assumption of the bound variable. That
discharge is “pure” and has no effects; that is why fmap suffices.
We must stress that the key idea was the code generator type, which
has the form m (h -> repr a) rather than more ‘obvious’ (h
-> m (repr a)). The former lets us perform generation effects
without knowing of bound variables (without looking at bound
variables), which is precisely how staged code generation should
proceed.

The type of lam is peculiar. First of all, argument of lam, the
generator for the body, has the type HV (H repr s a,h) repr
a -> ... rather than J m (HV (H repr s a,h) repr) a ->
.... The bound variable is represented as a code value, rather than
a potentially effectful code expression. That is to be expected. To
use the (potentially) bound variable in code expression, we have to
lift it:

var :: HV h repr a -> J m (HV h repr) a
var = pure

More prominent is the second-rank type of lam, reminiscent of
that of runST [26]. The quantification over type variable s prevents
the bound variable, or the promise of the bound variable, to be
precise, from leaking out of the abstraction.

Here is the first example of our final code generating combina-
tors:

ex0 :: J m (HV h repr) (Int -> Int)
ex0 = lam(\x -> int 1 +: var x)

(the shown signature has been inferred). We can see the generated
code by instantiating repr to C and m to the Identity applica-
tive. To re-write exS2, with nested lambdas, we need an explicit
weakening form

weaken :: J m (HV h repr) a -> J m (HV (h’,h) repr) a
weaken m = fmap (hmap snd) m

witnessing the fact that more bound-variable assumptions can be
added at any time. We then write:

exA2 = lam(\x -> lam(\y -> weaken (var x) +: var y))

The placement of weaken in the above code is type-directed. With-
out weaken, the type checker rejects the code, showing in the error
message the mismatch of the environments. Therefore, we could
have defined var through an overloaded function weakens, which
automatically inserts the necessary number of weaken applications
(similar to the lIO in [22]):

var :: Extends h h’ => HV h repr a -> J m (HV h’ repr) a
var = weakens . pure

with the constraint Extends h h’ witnessing that h’ is either h or
an extension of it with more hypotheses. At present, we prefer be-
ing explicit, to facilitate formalization. For practical programming,
hiding weaken is of course preferable.

More interesting use of weaken is code transformer, which takes
a future-stage expression, which may contain potentially bound
variables, and uses it in an expression with more potentially bound
variables. This example was described in [18, §2.3].

ef :: J m (HV h repr) Int -> J m (HV h repr) (Int -> Int)
ef z = lam (\x -> weaken z +: var x)
ef2 = lam (\x -> lam (\y ->

ef (weaken (var x) *: var y)))

It is unproblematic, the generated code is:

"\\x_0 -> \\x_1 -> \\x_2 -> (+) ((*) x_0 x_1) x_2"

2.5 Succeeding faulty power
We now complete our running example. We re-write spowerF
using the more general code combinators. The code is essentially
unchanged, only the type is more general, reflecting effectful and
hypothetical code generation.

spowerAF :: Int -> J (Either ErrMsg) (HV h repr) Int
-> J (Either ErrMsg) (HV h repr) Int

spowerAF 0 x = int 1
spowerAF n x | n > 0 = x *: spowerAF (n-1) x
spowerAF _ _ = Left "negative exponent"

Generating the future-stage function, the power specialized to the
given n, now type checks, with the following (inferred) signature:

spowerAFn :: Int ->
J (Either ErrMsg) (HV h repr) (Int -> Int)

spowerAFn n = lam (\x -> spowerAF n (var x))

According to the type, we obtain code in an applicative Either
ErrMsg. Supplying the value for n and instantiating repr to C
shows the code. In particular, the result of spowerAFn (-1) is
Left "negative exponent", the expected exception. The prob-
lem solved.

3. Moving open code
The warm-up example in §2 was rather simple, and could be imple-
mented with the existing techniques, such as Mint [51] or a trivial
ad hoc extension of [19]. The code generation library introduced
in §2 permits however the manipulation of essentially open code in
any applicative. The generation applicative can truly be anything,
far beyond throwing text-string exceptions. In this section we in-
stantiate the generation applicative to that of reference cells, and
demonstrate storing open code and retrieving it across the binders,
while statically ensuring the generation of well-scoped code. We
demonstrate that scope extrusion becomes a type error. That is be-
yond any existing higher-order code-generation approach with safe
code motion.

Our running example is of assertion-insertion, a special case of
if-insertion. It has been described in detail in [19], which argued
that in practice assertion has to be inserted beyond the closest
binder. Such an insertion was left to future work˜– which becomes
the present work in this section.

For the sake of the example, we extend our future-stage lan-
guage with the form assertPos

class AssertPos repr where
assertPos :: repr Int -> repr a -> repr a

(the tagless-final approach makes extending the EDSL trivial, by
defining a new type class and its instances for the existing inter-
preters, R and C in our case). The expression assertPos test m
checks to see if the value of test is positive. If so, the second argu-
ment, m, is evaluated and its value is returned. Otherwise, a run-time
error is raised and the program is aborted. As we did in §2.4, we de-
fine an instance of AssertPos for a composition of repr with any
applicative m. We also extend our future-stage language with the
integer division operation (/:).

Our goal is to write a guarded division, which checks to make
sure the divisor is positive. The first version is

guarded_div1 :: J m (HV h repr) Int ->
J m (HV h repr) Int -> J m (HV h repr) Int

guarded_div1 x y = assertPos y (x /: y)

to be used as

lam (\y -> complex_exp +: guarded_div1 (int 10) (var y))



The first version is unsatisfactory: we check for the divisor right
before doing the division. If the divisor is zero, we crash the pro-
gram wasting all the (potentially long) computations done before.
It helps to report the error as soon as possible, when we learn the
value of the divisor. We have to move the assertion code.

We can accomplish the movement with reference cells. We allo-
cate a reference cell holding a code-to-code transformer, originally
identity. We generate code passing the generator the reference cell.
After the generator is finished, we retrieve the resulting transformer
and apply it to the result of the generated code. The generator may
add assertions by modifying the contents of the cell, composing the
current transformer with assertPos test. The following code
implements the idea, using the IO as the generating applicative,
and its reference cells IORef (we could have used the ST s or any
other monad with reference cells).

assert_locus ::
(IORef (J IO repr a -> J IO repr a) -> J IO repr a)
-> J IO repr a

assert_locus m = do
assert_code_ref <- newIORef id
mv <- m assert_code_ref
transformer <- readIORef assert_code_ref
transformer (return mv)

We re-define guarded division to insert the positive divisor assertion
at the given locus

add_assert :: IORef (a -> a) -> (a->a)
-> J IO repr b -> J IO repr b

add_assert locus transformer m =
modifyIORef locus ( . transformer) >> m

guarded_div2 locus x y =
add_assert locus (assertPos y) $ x /: y

Here is the example:

exdiv2 = lam (\y -> assert_locus $ \locus ->
complex_exp +: guarded_div2 locus (int 10) (var y))

The generated code demonstrates that assert is inserted before the
complex_exp, right under the binder, as desired. We stress that the
code transformer, assertPos (var y), includes the open code.
We do store functions that contain open code. The reference cell
that accumulates the transformer is used in the example completely
inside a binder. There is no risk of scope extrusion then. The above
example is implementable in the approach of [19].

Now we can generalize. First we slightly generalize guarded di-
vision, inserting the generic weakens §2.4. The inferred signature,
shown slightly abbreviated, tells the difference

guarded_div3 :: (Extends h h1, ...) =>
IORef (J IO (HV h repr) a -> J IO (HV h repr) a)
-> J IO (HV h1 repr) Int
-> J IO (HV h repr) Int
-> J IO (HV h1 repr) Int

guarded_div3 locus x y =
add_assert locus (assertPos y) $
x /: weakens y

The divisor and the dividend expressions do not have to be in the
same environment; the environment of the dividend, h’, may be
weaker, by an arbitrary amount. The generalized guarded_div3
can be used in place of guarded_div2 in the above example. We
can also write a more general example

exdiv3 = lam (\y -> assert_locus $ \locus ->
lam (\x ->

complex_exp +:
guarded_div3 locus (var x) (var y)))

with an extra binding. The generated code shows the assertion
y>0 is inserted right after the binding of y, at the earliest possi-
ble moment˜– exactly as desired. Thus the function with the open
code, assertPos (var y) has moved across the binder, lam (\x
-> ...). If we make a mistake and switch var x and var y as the
arguments of guarded_div3, thus attempting to move assertPos
(var x) beyond the binder for x, the type checker reports a prob-
lem

Inferred type is less polymorphic than expected
Quantified type variable ‘s’ is mentioned
in the environment:
locus :: IORef (J IO (HV (H repr s Int, h) repr) a

-> J IO (HV (H repr s Int, h) repr) a)
In the first argument of ‘lam’, namely
‘(\ x -> complex_exp +:

guarded_div3 locus (var y) (var x))’

telling us that the type of locus mentions the s that is quantified
by the x’s binding form. In other words, the x binding leaks. Scope
extrusion indeed becomes a type error. (The generated code is
spelled in full as regression tests of the generators, in the code
accompanying the article.)

The example is of course simplistic, but easily extensible. For
example, by representing the transformer differently, so that the
generator, before recording a new assertion could check if there is
already the same or a stronger assertion recorded. The technique
thus extends to code generation with constraints (supercompila-
tion). The locus, describing where the assertion is to be inserted,
could be bundled with the bound variable in a new data structure.
So, we don’t have to pass locus around separately. Alternatively,
one could use a form of dynamic binding, which could be imple-
mented via the continuation monad as the generating applicative.
Code generation with continuations is described next.

4. Inserting let across binders
We have come to the ultimate application, let-insertion, or the
generation of code containing explicit sharing of the results of some
sub-expressions, thus eliminating duplication of the code for these
sub-expressions. If the generated code is imperative, controlling
code duplication is not only desirable but necessary. For that rea-
son, let-insertion is used extensively in partial evaluation, staging
[44] and other meta-programming. It has long been discovered in
the partial evaluation community that the principled (rather than
tree hacking) let-insertion requires writing the code or the gener-
ator in the continuation-passing style [4] (see detailed explanation
in [7, Section 3.1]) or else use control operators [27]. Continuation-
passing style cannot insert future-stage let beyond the closest
future-stage binder without risking scope extrusion. Likewise, us-
ing control operators with the restriction to ensure the absence of
scope extrusion [19] keeps inserted let under the closest binder.
However, let-insertion across binders may be necessary; the lat-
ter paper described several such cases as open problems. We now
demonstrate the solution, with the same safety guarantees.

First we add the future-stage let_ to our DSL, which, from the
signature, below, looks like a combination of lam and application˜–
which is what let is.

let_ :: J m (HV h repr) a
-> (forall s. HV (H repr s a,h1) repr a

-> J m (HV (H repr s a,h) repr) b)
-> J m (HV h repr) b

Whereas the generator using Haskell’s let

let x = int 1 +: int 2 in x *: x
-- "(*) ((+) 1 2) ((+) 1 2)"



produces the code (shown underneath in the comments) with the
obvious code duplication, the generator relying on future-stage let

let_ (int 1 +: int 2) $ \x -> var x *: var x
-- "let z_0 = (+) 1 2\n in (*) z_0 z_0"

shares the result of the addition without re-computing it. The code
generation for the addition also happens once in the latter case
and twice in the former case (which is noticeable if the addition
generator is effectful, e.g., printing a trace message).

Second, we should write the generator in the continuation-
passing style, or in the applicative CPS w (which is the standard
Haskell delimited continuation monad, taken here as Applicative):

newtype CPS w a = CPS{unCPS :: (a -> w) -> w}
runCPS :: CPS a a -> a
runCPS m = unCPS m id

The let-insertion primitive, to be called genlet’ here, has been
well-explained in [7, 44]. Re-writing it in our library is straightfor-
ward:

genlet’ e = CPS $ \k ->
runCPS $ let_ e (\x -> pure (k x))

Alas, in our library, which is more general and precise, this code
does not type-check. Before we get to the problem let us show that
at least the intention is correct, by comparing with gennolet:

gennolet :: J (CPS w) (HV h repr) a
-> J (CPS w) (HV h repr) a

gennolet e = CPS $ \k -> unCPS e (\v -> k v)

which is the identity function (gennolet e is two η-expansions
away from e). The expression gennolet e evaluates the generator
e and passes the result v to the continuation of gennolet e. Ac-
cording to its type, v is a future-stage expression, potentially quite
complex. The expression genlet’ e too evaluates e; it generates
the future-stage let-expression binding the code generated by e to
a fresh, future-stage variable, passing the code of that variable to
the continuation k; the continuation thus receives an atomic future-
stage expression (the variable reference).

Let us now examine the typing problem of genlet’. The con-
tinuation k has the type a->w, or, more explicitly, HV ha repr
a -> HV hw repr w. The continuation thus is a transformer for
future-stage values (in general, ha is different from hw: the trans-
formed code may have different environment). The type of let_
shows that the body of let_ has the environment (H repr s
a,h) with a private slot H repr s a for the let-bound variable.
Here lies the problem: first, we need to find a way to ‘convert’ the
captured continuation from the type HV ha repr a -> HV hw
repr w to HV (H repr s a, ha) repr a -> HV (H repr s
a, hw) repr w. Second, we have to ensure that the ‘weakened
continuation’ never looks at the slot H repr s a in the environ-
ment but merely passes it along. Only then the Haskell type-checker
will be satisfied that the ‘name’ of the let-bound variable (the quan-
tified type variable s, to be precise) does not ‘leak’.

The general solution to this problem, allowing safely layering
delimited control and let-insertion on top of other effects such as
exceptions, tracing, or another (outer) level of delimited control,
shown in the accompanying code (file TSCPST.hs), is quite com-
plex. We describe here a simplified version, to convey general intu-
itions. The simplification is only valid for (single-level), pure CPS
type, rather than for the CPS transformer. The trick is to pass the H
repr s a slot for the let-bound variable using the metalanguage
(Haskell) environment. Examining the ill-typed definition genlet’
and noting the type of x, which is HV (H repr s a,hx) repr a
(we can chose hx to be anything, for example, ()) and the desired
type for k x, which is HV (H repr s a,h) repr b points out
the way to ‘route’ H repr s a around k, thus fixing the code:

genlet :: J (CPS (HV hw repr w)) (HV hw repr) a
-> J (CPS (HV hw repr w)) (HV ha repr) a

genlet e = CPS $ \k -> runCPS $ let_ e (\x ->
pure $ \ (h1,hw) -> k (\ha -> x (h1,())) hw)

No ‘weakening’ of k is required then. What remains is to define
a convenient combinator to mark the place where let is to be
inserted:

reset :: J (CPS (repr a)) repr a -> J (CPS w) repr a
reset m = pure $ runCPS m

We now show a few examples of let-insertion across the binders,
the simplest being

reset $ lam (\x -> var x +: genlet (int 2 +: int 3))
-- let z_0 = (+) 2 3 in
-- \x_1 -> (+) x_1 z_0

with the generated code shown in comments. The let-insertion
point, marked by reset, may be arbitrarily number of binders away
from the genlet expression:

reset $ lam (\x -> lam (\y ->
var y +: weaken(var x) +: genlet (int 2 +: int 3)))

-- let z_0 = (+) 2 3 in
-- \x_1 -> \x_2 -> (+) ((+) x_2 x_1) z_0

The right-hand-side of the binder may contain variables; that is, we
may let-bind open code. Here the type-checker watches that we do
not move such open expressions too far. For example, the following
code attempts to let-bind var x +: int 3 at the place marked by
reset, which is outside the x’s binder.

reset $ lam (\x ->
(lam (\y -> var y +: weaken (var x) +:

genlet (var x +: int 3))))

Inferred type is less polymorphic than expected
Quantified type variable ‘s’ escapes

In the first argument of ‘lam’, namely
‘(\ x -> (lam ...))

The type checker reports the error, pointing out the binder whose
variable escapes. We must move the insertion point within that
binder, moving the reset:

lam (\x ->
reset (lam (\y -> var y +: weaken (var x) +:

genlet (var x +: int 3))))
-- \x_0 -> let z_1 = (+) x_0 3 in
-- \x_2 -> (+) ((+) x_2 x_0) z_1

One may use several genlet expression and even nest them:

lam (\x -> reset (lam (\y ->
int 1 +: genlet (var x +: genlet (int 3 +: int 4))
+: genlet (int 5 +: int 6))))

-- \x_0 -> let z_1 = (+) 3 4 in
-- let z_2 = (+) x_0 z_1 in
-- let z_3 = (+) 5 6 in
-- \x_4 -> (+) ((+) 1 z_2) z_3

The generated code shows the consequences of our simplification:
since one of the let-bound expressions contain the variable x, we
must insert reset under the binder for x, ever preventing let-
insertion beyond that point. Some of the let-bound expressions are
closed, and could be let-bound outside of lam (\x->...).

To permit multiple let-insertion at multiple points, we have to
use CPS hierarchy [12], obtained by generalizing CPS to CPS
transformer

newtype CPST w m a = CPS{unCPS :: (a -> m w) -> m w}



(for Applicative m) and iterating these transformers. Unfortunately,
our simple fix for genlet does not generalize to CPS transformer.
The fix relied on the fact that the continuation k mapped a future-
stage code value HV ha repr a to another a future-stage code
value. In other words, the application k x has no (visible) control
effects. That is no longer true for the CPS transformer: the result of
k x is an effectful expression.

The accompanying code shows a general solution, with the
following rank-3 type of the applicative CPS transformer:

newtype CPSA w m a =
CPSA{unCPSA :: forall hw.

(forall h1. m (h1->hw->a) -> m (h1->hw->w))
-> m (hw -> w)}

Before looking at the code, the reader is encouraged to derive
an applicative instance for CPSA w m as an exercises. The type
arguments w and a are intended to be HV types. The earlier example
of nested genlet now looks as follows

lam (\x -> reset (lam (\y ->
int 1 +: genlet (var x +:

(liftJA $ genlet (int 3 +: int 4)))
+: (liftJA $ genlet (int 5 +: int 6)))))

-- let z_0 = (+) 3 4 in
-- let z_1 = (+) 5 6 in
-- \x_2 -> let z_3 = (+) x_2 z_0 in
-- \x_4 -> (+) ((+) 1 z_3) z_1

generating code in which different let-bound expressions are moved
to different places, as far a spossible, crossing a number of future-
stage binders, including the binders introduced by earlier genlet.

5. Safety properties
We state the static safety properties of our code generators.

Proposition 1 If the evaluation of an expression e :: J m (HV
() repr) a terminates and yields the value v :: repr a, then
the top-level Template-Haskell splice $(unC v 0) evaluates with-
out errors and produces an expression of the type a.

That is, a well-typed generator produces only well-typed code,
specifically, a well-typed generator in the empty environment pro-
duces a well-typed closed code, which compiles, or can be spliced
in, with no errors. The proof is along the lines of [8]. Here is the
outline: first we verify by inspection that the Template Haskell code
produced in the C realization of repr corresponds to the ‘code’
produced in the R realization. That is, the top-level splice of the
result of unC (int n) 0 is the same as unR (int n) for any in-
teger n. Likewise for other primitive forms. Because Haskell enjoys
subject reduction and R involves no staging, a well-typed genera-
tor (polymorphic over repr) will produce well-typed Haskell code
with repr instantiated to˜R. Thus the same generator, with repr
instantiated to˜C, will produce well-typed Template Haskell code.

5.1 Non-examples of lexical scope
Guaranteeing the generation of well-typed and closed code is not
enough however. The generated code may be closed, but its bind-
ings could be ‘mixed-up’ or ‘unexpected’. It is a quite subtle prob-
lem to define what it means exactly to generate code with expected
bindings; the literature, which we review in this section, relies on
negative examples, of intuitively wrong binding or violations of
lexical scope. In the next section, we enforce a notion of lexical
scope using static types.

As the first example of intuitively wrong behavior we use the
one from [9, Section 3.3]. The example, unfortunately admitted
in the system of [9], exhibits the problem that bindings “vanish

or occur ‘unexpectedly’ ”. The example can be translated to our
library:

exCX f = unsafeLam(\y -> unsafeLam (\x -> f (var x)))

where unsafeLam is the unsafe version of the lam future-stage
abstraction constructor, without the higher-rank type (without the
forall s). We introduce unsafeLam for the sake of this problem-
atic example, because otherwise, happily, it will not type check. We
may apply exCX to different functions, obtaining the code shown in
the comments beneath the generator:

exCX_c1 = exCX id
-- "\\x_0 -> \\x_1 -> x_1"

exCX_c2 = exCX (fmap.hmap $ \(y,(x,z)) -> (x,(y,z)))
-- "\\x_0 -> \\x_1 -> x_0"

The binding structure of the generated code depends on the argu-
ment passed to exCX at run time. Thus scope is not lexical in the
sense that the mapping between binding and reference occurrences
of variables cannot be determined just by looking at the code for
exCX or its type. Speaking of the type, here is the inferred type of
exCX (omitting the constraints per our convention):

exCX :: (m (HV (H repr s1 b,(H repr s a,h)) repr b)
-> m (HV (H repr s1 b,(H repr s a,h)) repr c))

-> m (HV h repr (a -> b -> c))

The type says that the argument of exCX maps future-stage code
valid in the environment with at least two slots into future-stage
code in the same environment˜– or in the environment of the same
structure. If we instantiate the type variables appropriately, swap-
ping two slots in the environment preserves its structure. That is
why exCX_c2 above was accepted. If the type environment is just
a sequence and variables are identified by the offsets in the se-
quence, swapping two elements in the environment preserves the
property that each free variable in a term corresponds to a slot in
the environment. Alas, swapping changes the mapping between the
variable references and the slots. If the type system of the staged
language enforces merely the well-formedness property that each
free future-stage variable should correspond to some slot in the
(explicit) future-stage environment, we lose lexical scoping for the
generated code. We cannot statically tell the correspondence be-
tween binding and reference occurrences of future-stage variables.
We thus give further, clearer evidence for the argument of Pouil-
lard and Pottier [40] that well-scoped de Bruijn indices do not per
se ensure that the variable names are handled “in a sound way.”
(The system of Chen and Xi [9] used raw de Bruijn indices for
variables; therefore, they could demonstrate the problem by choos-
ing f to be either the identity or the de Bruijn shifting function. In
our system, a variable reference is a projection from the environ-
ment rather than an abstract numeral, which makes the example a
bit more complicated.)

We must stress that without unsafeLam, the problematic exam-
ple does not type in our system! If we use our regular lam, the type
checker immediately complains of the escaping quantified variable
s. Because the openness of the future-stage code is apparent in type
and the environment slots contain s, transformers of open code
must have higher-rank. We must give an explicit signature. For ex-
ample, we can specify

exCX2 :: (forall h. m (HV h repr b) -> m (HV h repr c))
-> m (HV h repr (a -> b -> c))

exCX2 f = lam(\y -> lam (\x -> f (var x)))

that the function f does not even depend on the environment. We
may apply exCX2 to the identity function but we cannot write
the analogue of exCX_c2. We may try to give the signature that
specifically permits the environment-shuffling f:



-- ill-typed!
exCX4 :: (forall h1 h2. m (HV (h1,(h2,h)) repr a)

-> m (HV (h2,(h1,h)) repr a))
-> m (HV h repr (a -> a -> a))

It is rejected by the type checker because of the attempt to iden-
tify the s associated with˜x and the s associated with˜y. These two
s are independently quantified and not unifiable. Thus, our system
disallows exCX_c2. The mapping between bound and reference oc-
currences of the variables is statically apparent in our system. Since
we identify future-stage variables with quantified type variables s,
the scope of future-stage variables is the quantification scope of
the corresponding s type variables, which is evident from the type.
Present-stage code types tell future-stage variable scopes.

Let us take another example of an effectful code generator, from
Kim et˜al. [21, §6.4]. Written with our library, it is as follows:

exKYC1 :: IO (HV h repr (Int -> Int -> Int))
exKYC1 = do

a <- int 1 >>= newIORef
f <- unsafeLam (\x -> unsafeLam (\y ->

(weaken (var x) +: var y)
>>= writeIORef a >> int 2))

g <- unsafeLam (\y -> unsafeLam (\z -> readIORef a))
return g

-- "\\x_0 -> \\x_1 -> (+) x_0 x_1"

The generator stores the open code (weaken (var x) +: var
y) in an outside reference cell a and inserts the code under the
scope of two different abstractions, in g. Kim et˜al. argue that a
(Lisp) programmer might have expected that only variable y is
captured by the new abstraction in g; if the programmer used the
system of Chen and Xi [9], then both variables would be captured
(producing the code shown on the comment line).

We view this example as a blatant violation of lexical scope:
leaking bound variables from under their binders, and especially
capturing them by different binders, is an offence. We can only
write exKYC1 if we deliberately break our library; inserting even
one regular, safe lam provokes the ire of the type checker.

The file Unsafe.hs in the accompanying code has the complete
code for these examples. The file describes a third example, which
uses a control effect (throwing an exception) to smuggle a bound
variable beyond its binder. Unlike exKYC1 above, the smuggling is
far less textually obvious and so is easy for a human programmer
to overlook. The problem is detected by the type checker, if we use
lam rather than the deliberately broken unsafeLam.

5.2 Lexical scope
We now make precise the notion of lexical scope that was intu-
itively violated in the examples of the previous section. We instru-
ment code generators with integer labels. We introduce an instru-
mented lamS from §2.2 that accepts a label; we also add a form
to the target language that checks if a code value has the expected
label (crashing the program otherwise).

type Label = Int
class LamLPure repr where

lamSL :: Label -> (repr a -> repr b) -> repr (a->b)
check_label :: Label -> repr a -> repr a

The label assignment is done by the instrumented lam form, the
effectful code generator.

lamL :: (forall s. HV (H repr s a,h) repr a
-> J (State Label m) (HV (H repr s a,h) repr) b)
-> J (State Label m) (HV h repr) (a->b)

lamL f = do
l <- newLabel

fmap (\body -> \h -> lamSL l (\x -> body (H x,h)))
(f (hrefL l))

hrefL l = \ (H x,h) -> check_label l x

A fresh label is obtained before generating the abstraction body,
and used to label the variable to be used in the body, and the gener-
ated abstraction itself. For example, the instrumented generator

exL0 :: J (State Label m) (HV h repr)
(Int -> Int -> Int)

exL0 = lamL(\x -> lamL(\y -> weaken (var x) +: var y))

yields a repr (Int -> Int -> Int) code value

lamSL 0 (\v0 -> lamSL 1 (\v1 ->
add $$ (check_label 0 v0) (check_label 1 v1)))

which, upon instantiation of repr to C, produces the TH code
and checks the labelling, that v0 is indeed bound by a binder
labelled with 0, etc. One may regard that checking as a verification
pass after the generation has completed. In the example above,
the verification succeeds; that is, the check_label assertions all
succeed. If, however, we use the instrumented interpreter˜– and
the deliberately broken unsafeLamL˜– with the examples exCX_c2
and exKYC1 of the previous section, the verification fails because
some variables turn out with unexpected labels.

The verification formalizes our intuitions, testing that the la-
belling of binders and bound variables performed before the code
generation is preserved in the generated code. Successful verifica-
tion assures us that all bindings in the generated code meet our
expectations; that is, the correspondence of future-stage variables
to their binding forms is preserved during the generation, no matter
the effects. The verification pass takes place after the code has been
generated. One desires however to statically assure its success. Our
type system does so using the rank-2 type of lam.

Proposition 2 If the evaluation of an expression e :: J (State
Label m) (HV () repr) a terminates and thus yields the future-
stage code value v :: repr a, then the verification of v succeeds.

Since well-typed generators yield verifiable code, we can dispense
with the verification and erase the labels.

The proof of the proposition depends on the correspondence
between a fresh label and the quantified type variable s, seen in
the lamL code. Binders and variables are labeled with l, and so
are their types with the corresponding s. The type checker ensures
that each lamL correspond to unique s, unifiable only with itself.
Finally we notice that the s elimination forms, href and hrefL,
are used only in lam, not exported from TSCore and not available
to the user of our library.

6. Related work
6.1 Code generation with effects
The present paper is the last in the line of research on effectful
program generation. The most notable in this line is [14, 48], who
developed an off-line partial evaluator for programs with mutation.
Partial evaluator can perform some of the source code mutations
at specialization time, if possible. Such operations may involve
code, including open code. Scope extrusion is prevented by careful
programming of the partial evaluator (followed by the proof). The
partial evaluator is not extensible and is not maintained; if new
specializations are desired, a user has little choice but to thoroughly
learn the implementation, extend it, and redo the correctness proof.

Staged languages attempt to ease the burden, giving the user
code-generating facilities without requiring the user to become
compiler writer. The latter requirement implies that the generated
code should be well-formed and well-typed and free from unbound



variables, so the end user should not need to examine it. Since the
unrestricted use of effects quickly leads to generation of code with
unbound variables, it has been a persistent problem to find the right
balance between the restrictions on effects and expressiveness. So
far, that balance has been tilted away from expressiveness. We
can judge the expressiveness by several benchmarks: (1) Faulty
power (§2): throwing simple exceptions in code generators; (2)
Gibonacci [44], an epitome of code generation with memoization;
(3) assert-insertion beyond the closest binder, §3; (4) let-insertion
beyond the binder, §4. Only the present work implements all four
benchmarks; even assert-insertion was not reachable before with
statically assured generators.

The work [15] presents a type-and-effect systems for meta-
programming with exceptions, allowing exception propagation be-
yond future-stage binders. Exceptions are treated as atomic con-
stants, and cannot include open code. The system permits Faulty
power but not the other benchmark in our suite. [5, 6] permitted
mutations but only of the closed code; the approach cannot there-
fore implement the Gibonacci benchmark.

Mint [51] is a staged imperative language, hence permitting
generators with effects such as mutation and exceptions. Mint does
support the Faulty power. Mint severely restricts the code values
that may be stored in mutable variables or thrown in exceptions,
by imposing so-called weak separability. Even closed code values
cannot be stored in reference cells allocated outside a binder. There-
fore, Mint cannot implement the Gibonacci benchmark.

Swadi et˜al. [44] and Kameyama et˜al. [19] described the sys-
tems that permit the use of control effects, and hence mutation,
restricting them within a binder: the generator of a binder is always
pure. The first system used continuation-passing (or, monadic)
style, whereas the latter was in direct style. Both systems imple-
ment Gibonacci; neither implements faulty power, although the
system [19] can be trivially extended for that case (imposing the
same restrictions on values are thrown from under the binder as
those of Mint). The two systems hit the local optimum, allowing
writing moderately complex generators, e.g., [7].

The parallel line of work [21] attempts to formalize and make
safe Lisp practice of generating code with concrete symbolic
names. The variable capture is specifically allowed and future-stage
lexical scope is not assured statically.

6.2 Contextual systems
In our approach, code generators may produce open future-stage
code and have the type that includes the future-stage typing envi-
ronment. Moreover, the type contains the ‘names’, or the type-level
s proxies, for term’s free future-stage variables. The latter fact in
particular relates our work to the contextual modal type theory [33].
Unlike the latter work, our ‘unquotation’ (which is implicit in the
use of cogen combinators) is much more concise; we also support
some polymorphism over environments, and thus, modularity. We
also never destruct or pattern-match on code values (see next sec-
tion for more discussion). Recording the ‘names’ of variables in
the type of a term also relates our system with record systems with
first-class labels [28]. Unlike them, we do not need negative, fresh-
ness constraints because our labels s are always chosen fresh by
the type checker.

Environment classifiers [46] is an elegant simplification of con-
textual model type theories, which indexes open code and contexts
by classifiers that stand for extensible sets of free variables (rather
than variables themselves). Alas, the classifiers as originally pro-
posed are not precise enough to statically assure well-scoped gen-
erated code in the presence of generator effects. The present paper
may be viewed as the system of environment classifiers with im-
proved precision.

6.3 Programming with names
The nominal tradition has been extensively reviewed in [40]. Using
the latter’s criteria, our approach can be classified as using explicit
contexts, with ‘names’ inhabiting every type (the consequence of
HOAS), and no costly primitives. The type system ensures not only
that a closed generator generates closed code, but also that the code
generator preserves the lexical scope §5.2.

Our approach has many similarities with that of [40], in par-
ticular, their de Bruijn-index implementation. Our environment h
is quite like World, used to parameterize future-stage terms and
their types. We use the concrete representation of a world as a
nested tuple; hence, world inclusion is apparent and can be decided
by Haskell type checker, rather than taken to be a primitive as it
is in [40]. We both use rank-2 type for the future-stage binding
form. Pouillard and Pottier’s import⊆ is quite like our weaken,
and ⊆−trans corresponds to our Extends.

The main difference, which explains the others, is the different
foci of ours and nominal approaches. We are interested in domain-
specific languages for code generation. The programmer building
generator from given blocks is not necessarily an expert in the
target language; therefore, keeping the generated code abstract and
non-inspectable is the advantage. It also enables richer equational
theory (see below). One of the main intended applications for the
nominal systems is writing theorem provers, code verifiers, etc. The
ability to inspect, traverse and transform terms, which may contain
bindings, is a must then.

The framework of [40] provides for the generation of fresh
names, comparing them, moving them across the worlds. We per-
mit none of that. Our approach is purely generative: the generated
code is black-box and cannot be inspected. Comparing variables
names for equality, computing the set of free variables of a term are
in principle unimplementable in our approach. The first benefit of
the pure generative restriction is simplicity. The framework of [40]
required the power of dependent typed to ensure some of the sound-
ness of dealing with names and so was implemented in Agda. The
remaining invariants were not expressed and had to be ensured by
an off-line proof of the implementation. Pure FreshML [39], an ex-
perimental language, attained the soundness of name manipulation
by introducing a specialized logic and expressing logical assertions
in types, extending the type checking. One can say the same about
Delphin and Beluga [36, 38]. In contrast, we implement our code
generation library in ordinary Haskell. Safety depends only on lim-
iting the access to the H data constructor, so that the phantom s type
cannot be cast away.

The main benefit of generative approach is a richer equational
theory: as argued in [45, 50] inspection of the generated code makes
the equational theory trivial. Indeed, if one could compute the set
of free variables of a term, one could distinguish two β -equivalent
terms, lam (\x -> int 1) $$ var y and int 1. (Our library
has a function to show the code, but its type is not polymorphic
in repr.) Experience showed that pure generative approach, albeit
seemingly restrictive, does not prevent generation of highly optimal
code [23, 24].

The system of [40] and the other nominal systems reviewed
therein do not specify how and if they permit let-insertion across
binders while ensuring lexical scope. Perhaps solving this problem
requires additional primitives or environment polymorphism.

We should specifically contrast our approach with well-scoped
de Bruijn indices, [9]. Although the approach ensures that all vari-
ables in the generated code are bound, the binding may be unantic-
ipated, see §5.1. The problem was indicated in the review of [40],
although it has been pointed out by [21] and already in [9]. Al-
though our representation of future-stage environment by nested
tuples is reminiscent of well-scoped deBruijn-index approach, our
use of rank-2 type for future-stage binders prevents unintended per-



mutations of the tuples or forgetting to add weaken and ensure that
‘variable references’, represented as projections from the environ-
ment, always match their environment slot.

Interestingly, Chen and co-authors gave up on HOAS (which
was used by the authors in [52]) because “In general, it seems rather
difficult, if not impossible, to manipulate open code in a satisfactory
manner when higher-order code representation is chosen.” Second,
HOAS representation makes it possible to write code that does
“free variable evaluation, a.k.a. open code extrusion”. The authors
use de Bruijn indices, however cumbersome they are for practical
programming (which the authors admit and try to sugar out). The
sugaring still presents the problems (reviewed in §5.1). We demon-
strate how to solve both problems, manipulation of open code and
prevention of free variable elimination, without giving up conve-
niences of HOAS. [9] need type annotations even for local defi-
nitions. Also, [9] acknowledge that their language is experimental
and integrating to the full-fledged language is left for future work.

6.4 Hygienic macros
The long tradition of code generation, or macros, in Lisp systems
has long pointed out the dangers of variable capture and the need to
maintain the hygiene of macro-expansion [25]. Alas, defining what
it means precisely has been elusive [16, 17]. The latter papers argue
that a type system for macros is necessary to define and maintain
lexical scope. The macro system of Herman and Wand [17] is, like
ours, pure generative.

7. Conclusions
We have presented the most expressive statically safe code gener-
ation approach. It permits arbitrary effects during code generation,
including those that store or move open code. For the first time we
demonstrate safe let-insertion across an arbitrary number of gen-
erated binders. The approach statically assures that the generated
code is well-typed and contains no unbound variables or unexpect-
edly bound ones. A generator or even a generator fragment that
would violate these assurances is rejected by the type checker.

We have fulfilled the dream of Taha and Nielsen [46]: “that the
notion of classifiers will provide a natural mechanism to allow us
to safely store and communicate open values, which to date has not
been possible.” Our approach is to make classifiers more precise,
associating them with each binding rather than a set of bindings.
Classifiers, or quantified type variables, act as names for free vari-
ables; the quantification scopes of these type variables correspond
to the binding scopes of the respective generated variables. In other
words, present-stage types tell future-stage scopes.

Although our approach makes the ‘names’ of free variables ap-
parent in the types of open code, it avoids the common drawback
of context calculi: the need to state freshness-of-names constraints.
They are implicit and enforced by the type checker. Although our
approach exposes future-stage binding environments in the types
of the generator, it permits environment polymorphism and stati-
cally prevents weakening too little or too much. Our approach fur-
ther departs from statically scoped de Bruijn indices by permitting
human-readable names for the variables. In fact, our approach vin-
dicates HOAS, which has been regarded as unsuitable for assured
and expressive code generation.

We have implemented the approach as a Haskell library. It may
be regarded as a blueprint for a safe subset of Template Haskell.
The approach can be implemented in any other language with
first-class polymorphism, such as OCaml. Our use of mature lan-
guages, our guarantee that the generated code compiles, the human-
readable variable names afforded by HOAS, and the generator
modularity enabled by environment polymorphism together let do-
main experts today implement efficient domain-specific languages.

As for theory, we demonstrated an applicative CPS hierarchy
that does not treat abstraction as a value, permitting effects to ex-
tend past a binder. That result has many implications, for example,
for the analysis of quantifier scope in linguistics.

References
[1] Balat, Vincent, and Olivier Danvy. 2002. Memoization in

type-directed partial evaluation. In GPCE, 78–92. LNCS
2487.

[2] Balat, Vincent, Roberto Di˜Cosmo, and Marcelo˜P. Fiore.
2004. Extensional normalisation and type-directed partial
evaluation for typed lambda calculus with sums. In POPL,
64–76.

[3] Begel, Andrew, Steven McCanne, and Susan˜L. Graham.
1999. BPF+: Exploiting global data-flow optimization in a
generalized packet filter architecture. SIGCOMM Computer
Communication Review 29(4):123–134.

[4] Bondorf, Anders. 1992. Improving binding times without
explicit CPS-conversion. In Lisp & functional programming,
1–10.

[5] Calcagno, Cristiano, Eugenio Moggi, and Tim Sheard. 2003.
Closed types for a safe imperative MetaML. Journal of Func-
tional Programming 13(3):545–571.

[6] Calcagno, Cristiano, Eugenio Moggi, and Walid Taha. 2000.
Closed types as a simple approach to safe imperative multi-
stage programming. In ICALP, 25–36. LNCS 1853.

[7] Carette, Jacques, and Oleg Kiselyov. 2011. Multi-stage pro-
gramming with functors and monads: Eliminating abstraction
overhead from generic code. Science of Computer Program-
ming 76(5):349–375.

[8] Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan.
2009. Finally tagless, partially evaluated: Tagless staged in-
terpreters for simpler typed languages. Journal of Functional
Programming 19(5):509–543.

[9] Chen, Chiyan, and Hongwei Xi. 2005. Meta-programming
through typeful code representation. Journal of Functional
Programming 15(6):797–835.

[10] Choi, Wontae, Baris Aktemur, Kwangkeun Yi, and Makoto
Tatsuta. 2011. Static analysis of multi-staged programs via
unstaging translation. In POPL ’11: Conference record of
the annual ACM symposium on principles of programming
languages, ed. Thomas Ball and Mooly Sagiv, 81–92. New
York: ACM Press.

[11] Cohen, Albert, Sébastien Donadio, Marı́a˜Jesús Garzarán,
Christoph˜Armin Herrmann, Oleg Kiselyov, and David˜A.
Padua. 2006. In search of a program generator to imple-
ment generic transformations for high-performance comput-
ing. Science of Computer Programming 62(1):25–46.

[12] Danvy, Olivier, and Andrzej Filinski. 1990. Abstracting con-
trol. In Lisp & functional programming, 151–160.

[13] ———. 1992. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Science
2(4):361–391.

[14] Dussart, Dirk, and Peter Thiemann. 1996. Imperative func-
tional specialization. Tech. Rep. WSI-96-28, Universität
Tübingen.

[15] Eo, Hyunjun, Ik-Soon Kim, and Kwangkeun Yi. 2006. Type
and effect system for multi-staged exceptions. In APLAS, 61–
78. LNCS 4279.

[16] Herman, David. 2010. A theory of typed hygienic macros.
Ph.D. thesis, Northeastern University, Boston, MA.

[17] Herman, David, and Mitchell Wand. 2008. A theory of hy-
gienic macros. In ESOP ’08: Proc. european symp. on pro-
gramming.



[18] Kameyama, Yukiyoshi, Oleg Kiselyov, and Chung-chieh
Shan. 2008. Closing the stage: From staged code to typed
closures. In PEPM, 147–157.

[19] ———. 2009. Shifting the stage: Staging with delimited
control. In PEPM, 111–120. New York: ACM Press.

[20] Keller, Gabriele, Hugh Chaffey-Millar, Manuel M.˜T.
Chakravarty, Don Stewart, and Christopher Barner-Kowollik.
2008. Specialising simulator generators for high-performance
Monte-Carlo methods. In PADL. LNCS.

[21] Kim, Ik-Soon, Kwangkeun Yi, and Cristiano Calcagno. 2006.
A polymorphic modal type system for Lisp-like multi-staged
languages. In POPL, 257–268.

[22] Kiselyov, Oleg, and Chung-chieh Shan. 2008. Lightweight
monadic regions. In Symposium on Haskell, ed. Andrew Gill,
1–12.

[23] Kiselyov, Oleg, Kedar˜N. Swadi, and Walid Taha. 2004. A
methodology for generating verified combinatorial circuits. In
EMSOFT, 249–258.

[24] Kiselyov, Oleg, and Walid Taha. 2005. Relating FFTW and
split-radix. In ICESS, ed. Zhaohui Wu, Chun Chen, Minyi
Guo, and Jiajun Bu, 488–493. LNCS 3605.

[25] Kohlbecker, Eugene, Daniel˜P. Friedman, Matthias Felleisen,
and Bruce Duba. 1986. Hygienic macro expansion. In LFP,
151–161. New York: ACM Press.

[26] Launchbury, John, and Simon˜L. Peyton˜Jones. 1995. State in
Haskell. Lisp and Symbolic Computation 8(4):293–341.

[27] Lawall, Julia˜L., and Olivier Danvy. 1994. Continuation-
based partial evaluation. In Lisp & functional programming,
227–238.

[28] Leijen, Daan. 2004. First-class labels for extensible rows.
Tech. Rep. UU-CS-2004-51, Department of Computer Sci-
ence, Universiteit Utrecht.

[29] Lengauer, Christian, and Walid Taha, eds. 2006. Special issue
on the 1st MetaOCaml workshop (2004), vol. 62(1) of Science
of Computer Programming.

[30] McBride, Conor, and Ross Paterson. 2008. Applicative pro-
gramming with effects. Journal of Functional Programming
18(1):1–13.

[31] Miller, Dale, and Gopalan Nadathur. 1987. A logic program-
ming approach to manipulating formulas and programs. In
IEEE symposium on logic programming, ed. Seif Haridi, 379–
388. Washington, DC: IEEE Computer Society Press.

[32] Moggi, Eugenio. 1991. Notions of computation and monads.
Information and Computation 93(1):55–92.

[33] Nanevski, Aleksandar, Frank Pfenning, and Brigitte Pientka.
2008. Contextual modal type theory. Transactions on Com-
putational Logic 9(3):23:1–49.

[34] Peyton˜Jones, Simon˜L. 2010. New directions for Tem-
plate Haskell. http://hackage.haskell.org/trac/ghc/
blog/Template\%20Haskell\%20Proposal.

[35] Pfenning, Frank, and Conal Elliott. 1988. Higher-order ab-
stract syntax. In PLDI ’88, vol. 23(7) of ACM SIGPLAN No-
tices, 199–208. New York: ACM Press.

[36] Pientka, Brigitte. 2008. A type-theoretic foundation for pro-
gramming with higher-order abstract syntax and first-class
substitutions. In POPL, 371–382.

[37] POPL. 2003. POPL ’03: Conference record of the annual
ACM symposium on principles of programming languages.

[38] Poswolsky, Adam, and Carsten Schürmann. 2009. System
description: Delphin - A functional programming language for
deductive systems. Electr. Notes Theor. Comput. Sci 228:113–
120.

[39] Pottier, François. 2007. Static name control for freshML. In
LICS, 356–365. IEEE Computer Society.

[40] Pouillard, Nicolas, and François Pottier. 2010. A fresh look
at programming with names and binders. In ICFP, 217–228.
New York: ACM Press.

[41] Püschel, Markus, José M.˜F. Moura, Jeremy Johnson, David
Padua, Manuela Veloso, Bryan˜W. Singer, Jianxin Xiong,
Franz Franchetti, Aca Gačić, Yevgen Voronenko, Kang Chen,
Robert˜W. Johnson, and Nick Rizzolo. 2005. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE
93(2):232–275.

[42] Solar-Lezama, Armando, Liviu Tancau, Rastislav Bodı́k, San-
jit˜A. Seshia, and Vijay˜A. Saraswat. 2006. Combinatorial
sketching for finite programs. In ASPLOS, 404–415. New
York: ACM Press.

[43] Sumii, Eijiro, and Naoki Kobayashi. 2001. A hybrid approach
to online and offline partial evaluation. Higher-Order and
Symbolic Computation 14(2–3):101–142.

[44] Swadi, Kedar, Walid Taha, Oleg Kiselyov, and Emir Pašalić.
2006. A monadic approach for avoiding code duplication
when staging memoized functions. In PEPM, 160–169.

[45] Taha, Walid. 2000. A sound reduction semantics for untyped
CBN multi-stage computation. In PEPM, 34–43.

[46] Taha, Walid, and Michael˜Florentin Nielsen. 2003. Environ-
ment classifiers. In [37], 26–37.

[47] Thiemann, Peter. 1999. Combinators for program generation.
Journal of Functional Programming 9(5):483–525.

[48] Thiemann, Peter, and Dirk Dussart. 1999. Par-
tial evaluation for higher-order languages with state.
http://www.informatik.uni-freiburg.de/

~thiemann/papers/mlpe.ps.gz.
[49] Wadler, Philip˜L. 1992. The essence of functional program-

ming. In POPL, 1–14.
[50] Wand, Mitchell. 1998. The theory of fexprs is trivial. Lisp

and Symbolic Computation 10(3):189–199.
[51] Westbrook, Edwin, Mathias Ricken, Jun Inoue, Yilong Yao,

Tamer Abdelatif, and Walid Taha. 2010. Mint: Java multi-
stage programming using weak separability. In PLDI ’10.
New York: ACM Press.

[52] Xi, Hongwei, Chiyan Chen, and Gang Chen. 2003. Guarded
recursive datatype constructors. In [37], 224–235.



A. Public interface of code generation library
The public interface of our code generation library: ‘Staged Haskell’

class SSym repr where
int :: Int -> repr Int
add :: repr (Int -> Int -> Int)
mul :: repr (Int -> Int -> Int)

($$) :: repr (a->b) -> (repr a -> repr b)
infixl 2 $$

class LamPure repr where
lamS :: (repr a -> repr b) -> repr (a->b)

newtype J m repr a = J{unJ :: m (repr a)}

newtype R a = R{unR :: a}
newtype C a = C{unC :: VarCounter -> Exp}
runCS :: C a -> String

type HV h = J ((->) h)
newtype H r s a -- abstract

hmap :: (h2 -> h1) -> HV h1 repr a -> HV h2 repr a

weaken :: Applicative m =>
J m (HV h repr) a -> J m (HV (h’,h) repr) a

(+:),(*:) :: (SSym repr) =>
repr Int -> repr Int -> repr Int

lam :: (Functor m, SSym repr, LamPure repr) =>
(forall s. HV (H repr s a,h) repr a ->

J m (HV (H repr s a,h) repr) b)
-> J m (HV h repr) (a->b)

var :: (Applicative m, SSym repr) =>
HV h repr a -> J m (HV h repr) a

class Extends h h’ where
weakens :: Applicative m =>

J m (HV h repr) a -> J m (HV h’ repr) a

runC :: Applicative i => J i (HV () C) a -> i String
runR :: Applicative i => J i (HV () R) a -> i a

class AssertPos repr where
assertPos :: repr Int -> repr a -> repr a

class SymDIV repr
(/:) :: (Applicative m, SSym repr, SymDIV repr) =>

J m (HV h repr) Int -> J m (HV h repr) Int
-> J m (HV h repr) Int

class SymLet repr where
let_ :: (SSym repr, SymLet repr, Applicative m) =>

J m (HV h repr) a
-> (forall s. HV (H repr s a,h1) repr a ->

J m (HV (H repr s a,h) repr) b)
-> J m (HV h repr) b

type Label = Int
class LamLPure repr
newtype State l m a = State{unState :: l -> m (a,l)}
lamL :: (Functor m,Monad m,SSym repr,LamLPure repr) =>

(forall s. HV (H repr s a,h) repr a
-> J (State Label m) (HV (H repr s a,h) repr) b)

-> J (State Label m) (HV h repr) (a->b)
runCL :: (Functor m, Monad m) =>

J (State Label m) (HV () C) a -> m String

B. Connection with MetaOCaml
Our code combinators can be expressed using brackets, escapes and
cross-staged persistence (for selected types, e.g. Int in case of int)
of MetaOCaml.

let int x = <x>
let add = <(*)>
let ($$) x y = <~x ~y>

let lamS f = <fun x -> ~(f <x>)>

Like MetaOCaml, we also keep track of the (future stage) en-
vironment, distinguishing a closed expression like <1> from the
open expression <x>. We keep a far detailed track than does Meta-
OCaml, tracking each free variable rather than a set of variables of
the same classifier. Thus our type HV h repr a is roughly equiva-
lent to (’h,’a) code value of MetaOCaml. Roughly because our
h has a lot more structure than just the single environment classifier.

We are more precise than MetaOCaml in another aspect, keep-
ing track of effects of code generation as well. In MetaOCaml, as
in OCaml in general, all expressions are effectful. Therefore, our
type m (HV h repr a) corresponds to a general MetaOCaml ex-
pression, with effects, that will generate the code of type a in the
future-stage environment h.


