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Abstract

In this paper, we develop a kind of branch-and-bound algorithm for solving con-

cave minimization problems. We show that the algorithm converges to an optimal

solution of this multiextremal global optimization problem, and that it generates

a high-quality heuristic solution even if it is forced to terminate. Therefore, the

algorithm can be used in two ways, as an exact algorithm and as a heuristic tool.

We also report some numerical results of a comparison with an existing algorithm,

and show the performance as a heuristic tool.

Key words: Global optimization, concave minimization, branch-and-bound al-

gorithm, simplicial algorithm, heuristic algorithm.

1 Introduction

Since the pioneer work of Tuy [17], various algorithms have been proposed to solve

concave minimization problems, where a concave function f is minimized globally on a

polyhedral subset D of R
n. If the objective function f is linear, the problem is just a

linear program and can be solved in polynomial time [2]. In the nonlinear case, however,

the only clue to a globally optimal solution is that it exists among vertices of the feasible

set D. Since the maximum number of vertices of D is exponential in n [3], it is easy to

imagine how difficult the problem is to solve. In fact, it is known to be NP-hard in the

sense of computational complexity, even when f is quadratic and D is a box [16].

The most popular method for solving this global optimization problem is the branch-

and-bound, commonly used in solving integer programs. However, while the latter
∗E-mail: takahito@cs.tsukuba.ac.jp
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Figure 1: Changes in the incumbent value in the simplicial algorithm.

reduces to a set of obvious subproblems as branching continues, the concave minimization

problem does not in general. As a consequence, the branch-and-bound algorithm often

exhibits long-tail convergence, as is shown in Figure 1. This figure demonstrates how

the incumbent value is updated while a concave quadratic minimization problem of 20

nonlinear variables is solved using a simplicial algorithm [4], a variant of the branch-and-

bound algorithm contained in any textbook on global optimization (see e.g., [5, 8, 18]).

The algorithm takes 3, 897 iterations for this particular instance, but it actually obtains

a globally optimal solution in 483 iterations. All the rest of the iterations are spent only

in checking its optimality.

It is true that many applications require a globally optimal solution in high-precision,

even at the expense of long-tail convergence as in the above branch-and-bound algorithm.

Meanwhile, there should also be many applications where a good feasible solution is

enough if it is available in a small amount time. In this paper, to balance those competing

needs, we develop a new kind of branch-and-bound algorithm for solving the concave

minimization problem. We show that the algorithm converges to a rigorous optimal

solution, and besides that it generates a high quality heuristic solution if it is forced

to terminate in the early stage of iterations. In other words, the proposed algorithm

can be used in two ways, as an exact algorithm and as a heuristic tool. In the next

section, we will explain the basic workings of the usual simplicial algorithm, which

provides a framework for our algorithm. In Section 3, we will make necessary changes

and improvements to this algorithm in such a way as (i) to save efforts in the bounding
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operation, (ii) to strengthen the upper bound (incumbent value), not the lower bound,

and (iii) to preserve the convergence property. In Section 4, we will present a detailed

description of the algorithm incorporating these three devices and a convergence proof.

In Section 5, we will report some numerical results of a comparison of the algorithm with

an existing one, and show the performance as a heuristic tool. Lastly, we will summarize

the paper in Section 6, with some concluding remarks.

2 Simplicial algorithm for concave minimization

Let f be a concave function defined on an open subset of R
n including a polyhedron:

D = {x ∈ R
n | Ax = b, x ≥ 0},

where A ∈ R
m×n and b ∈ R

m. The problem considered in this paper is a minimization

of f over D, i.e., ∣∣∣∣∣
minimize f(x)

subject to x ∈ D.
(1)

We assume that f is continuously differentiable, D is nonempty and bounded. Therefore,

(1) has a globally optimal solution among veritces of D, though many of those are just

locally optimal.

One of the most popular methods for locating a globally optimal solution is the

simplicial branch-and-bound algorithm, originally proposed in [4]. In this algorithm, we

first define an n-simplex ∆1 including D. The domain of f is assumed to be large enough

to include this simplex. Let v1
1, . . . ,v

1
n+1 denote the vertices of ∆1. Then we have

∆1 = conv({v1

1, . . . ,v
1

n+1}) ≡
{
x ∈ R

n | x = V1
λ, eT

λ = 1, λ ≥ 0
}

,

where V1 = [v1
1, . . . ,v

1
n+1], and e ∈ R

n+1 is the all-ones vector. As subdividing ∆1 into

smaller simplices {∆k | k ∈ K} such that

⋃

k∈K

∆k = ∆1, int(∆r) ∩ int(∆s) = ∅, r 6= s,

we compute a lower bound w(∆k) of f on D ∩∆k for each k ∈ K, where int( · ) denotes

the set of interior points. We will discuss how to compute w(∆k) later in detail.

Suppose a feasible solution x̃ ∈ D is given. If f(x̃) ≤ w(∆k), then we see that no

x ∈ D ∩ ∆k satisfies f(x) < f(x̃). Therefore, if f(x̃) ≤ w(∆k) for every k ∈ K, we

can conclude that x̃ is a globally optimal solution. If not, we subdivide ∆k for some

appropriate k ∈ K further into smaller simplices and replace ∆k by those. The algorithm

is outlined as follows:
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Prototype of the simplicial algorithm. Compute a lower bound w(∆1) and let x̃

be a feasible solution found in the process. Let L := {∆1}, k := 1, and repeat Steps 1–3.

Step 1 (subproblem selection) Take a simplex ∆k with the least value of w from L.

Step 2 (bounding operation) If f(x̃) ≤ w(∆k), then terminate. Otherwise, go to Step 3.

Step 3 (branching operation) Subdivide ∆k into two subsimplices ∆1 and ∆2. Compute

w(∆1) and w(∆2) and update the incumbent x̃ if possible. Add ∆1 and ∆2 to L.

Let k := k + 1.

When there is no ∆ with w(∆) < f(x̃) in the list L, the current incumbent x̃ is

a globally optimal solution of (1). In general, however, it does not happen, and the

algorithm would generate an infinite nested sequence {∆kq | q = 1, 2, . . . } such that

∆k1 ⊃ ∆k2 ⊃ · · · , (2)

where ∆kq denotes the simplex selected at Step 1 of the kqth iteration. If
⋂

∞

q=1
∆kq is

a singleton for every infinite nested sequence, the algorithm is guaranteed to be con-

vergent. The only known subdivision rule with such exhaustiveness is bisection. Let

∆k = conv({vk
1, . . . ,v

k
n+1}). At Step 3, we may select the longest edge, say [vk

r ,v
k
s ], and

divide it at a fixed ratio of α ∈ (0, 1/2]. Letting v = (1 − α)vk
r + αvk

s , we have

∆1 = conv({vk
i | i 6= r} ∪ {v}), ∆2 = conv({vk

i | i 6= s} ∪ {v}).

Another well-known subdivision rule is ω-subdivision, which subdivides ∆k radially

into n+1 subsimplices and has no exhaustiveness property. It has been noted for a long

time that ω-subdivision is practically more efficient than bisection, but the convergence

was a theoretical open question until 2000 (see [8, 13] for more details).

3 Linear relaxation and local search

In the usual simplicial branch-and-bound algorithm, the lower bound w(∆) of f on D∩∆

is computed by minimizing a convex envelope g of f on ∆, which is a maximal convex

function underestimating f on ∆. In our case where f is concave, g is an affine function,

which agrees with f at the n + 1 vertices v1, . . . ,vn+1 of ∆. By noting that each x ∈ ∆

can be written as x = Vλ for some λ ≥ 0 such that eT
λ = 1, we have the value of g at

x ∈ ∆ as follows

g(x) =
n+1∑

i=1

λif(vi).
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Thereby, w(∆) is given as the optimal value of a linear program:

Q(∆)

∣∣∣∣∣∣∣∣∣∣

minimize

n+1∑

i=1

λif(vi)

subject to AVλ = b, Vλ ≥ 0

eT
λ = 1, λ ≥ 0,

which is a linear relaxation of a subproblem of (1):

P(∆)

∣∣∣∣∣
minimize f(x)

subject to x ∈ D ∩ ∆.

Although Q(∆) yields a fairly tight lower bound of P(∆) and ∆ ∈ L might be fath-

omed at an early iteration of the algorithm, our purpose is not necessarily to accelerate

the convergence but to obtain a better feasible solution in a smaller amount of time.

We will therefore try to simplify the relaxation of P(∆). This leads to a deterioration in

the lower bound of P(∆), but has some redeeming merits, especially when the simplicial

algorithm is used as a heuristic tool.

3.1 Simplified linear relaxation

Let us denote the centroid of ∆ by u =
∑n+1

i=1
vi/(n + 1) and define

h(x) = ∇f(u)x + δ,

where

δ = min{f(x) −∇f(u)x | x ∈ ∆}. (3)

Note that the right-hand side of (3) is a concave minimization, but the feasible set ∆

has only n + 1 vertices, at least one of which gives δ. Let us replace f by h in P(∆) and

further drop the constraint x ∈ ∆. Then we have another linear relaxation of P(∆):

R(∆)

∣∣∣∣∣
minimize ∇f(u)x + δ

subject to Ax = b, x ≥ 0.

Let z(∆), wQ(∆) and wR(∆) denote the optimal value of P(∆), Q(∆) and R(∆), re-

spectively. The former two values are considered to be +∞ if D ∩ ∆ = ∅.

Lemma 3.1. Among z(∆), wQ(∆) and wR(∆) exists a relationship:

wR(∆) ≤ wQ(∆) ≤ z(∆). (4)
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Proof. By definition, both objective functions g and h of Q(∆) and R(∆) underestimate

f on ∆, but the former is a maximal underestimating function. Moreover, the feasible

set D ∩ ∆ of P(∆) and Q(∆) is a subset of the feasible set D of R(∆). Hence, the

relationship (4) is a natural consequence.

In terms of bound tightness, our proposed relaxation R(∆) is inferior to the usual

Q(∆), as shown in Lemma 3.1. However, R(∆) has the following advantages:

(i) the objective function h is easy to obtain if gradient vectors of f are given analyt-

ically,

(ii) the feasible set D remains unchanged regardless of the variation of ∆, and

(iii) the structure of the target problem (1) is inherited to R(∆).

In the simplicial algorithm, we need to repeatedly solve the same type of relaxed prob-

lems. If we adopt R(∆) instead of Q(∆), this computational burden is reduced consid-

erably because the optimal solution to the preceding relaxed problem is feasible for the

current R(∆). We could recover its optimality for R(∆) in a very few simplex pivots.

If the target problem (1) has some favorable structure as in minimum concave-cost net-

work flow problems [6, 7, 12, 14], this burden would be further reduced. Certainly, if the

convex envelope g is represented explicitly as a function in x, we can give the properties

(ii) and (iii) to Q(∆), just by dropping the constraint x ∈ ∆. Unfortunately, to obtain

the explicit form of g, we have to solve a linear system of size n + 1, and besides its

solution becomes numerically unstable as ∆ grows smaller [9, 10].

3.2 Improving of the incumbent by local search

The last property (iii) also means that any optimal basic solution x0 of R(∆) is a feasible

basic solution of the target problem (1) and might be a locally optimal solution. Even

if not, we can reach a better solution, by visiting some adjacent vertices of D from x0.

Let c = ∇f(x0) and consider a linear program associated with (1):

∣∣∣∣∣
minimize cx

subject to Ax = b, x ≥ 0.
(5)

Let B denote the basis of x0, the index set of m basic variables in x0, and let N =

{1, . . . , n} \ B. Also denote by (AB,AN ), (cB, cN) and (xB,xN), respectively, the cor-

responding partitions of A, c and x. Then we have a feasible dictionary of (5):

∣∣∣∣∣
xB = b′ − A′

NxN

z = cBb′ + (cN − cBA′

N )xN ,
(6)
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where A′

N = A−1

B AN and b′ = A−1

B b. The basic solution x0 is given as (x0
B,x0

N ) = (b′, 0)

via this dictionary.

Proposition 3.2. If cN − cBA′

N > 0, then x0 is a locally optimal solution of (1).

Proof. Let x′ be an arbitrary point in D \ {x0}. Then there exist a unit vector d and a

positive number t such that x′ = x0 + td. Since (x′
B,x′

N) = (b′− tA′

NdN , tdN), we have

f(x′) − f(x0) = ∇f(x0)(x′ − x0) + ‖x′ − x0‖β(t)

= t[(cN − cBA′

N)dN + β(t)],

where β(t) ≤ 0 by the concavity of f and limt→0 β(t) = 0. If dN ≤ 0, then x′ 6∈ D

or x′ = x0. Therefore, we may assume that dN ≥ 0 and dN 6= 0. This implies

(cN −cBA′

N)dN > 0, and besides (cN −cBA′

N)dN +β(t) ≥ 0 for sufficiently small t > 0.

Hence, we have f(x′) − f(x0) ≥ 0 if x′ is in some neighborhood of x0.

Suppose in the dictionary (6) that for some s ∈ N we have

cs − cBa′

s < 0, (7)

where a′
s denotes the corresponding column of A′

N . Then we perform a simplex pivot in

some appropriate row, say corresponding to an r ∈ B, of a′
s. Let x1 denote the resulting

feasible basic solution. Since f is concave, we have

f(x1) − f(x0) ≤ ∇f(x0)(x1 − x0) =
(
cj − cBA−1

B aj

)
(x1

s − x0

s). (8)

If the pivot is nondegenerate, i.e., x1
s − x0

s = x1
s > 0, then (8), together with (7), implies

f(x1) < f(x0). After updating B = B ∪ {s} \ {r} and N = N ∪ {r} \ {s}, we again

replace c = ∇f(x0) by c = ∇f(x1), and perform a simplex pivot in the dictionary (6)

with respect to the new (B, N) if possible. Continuing this process with the help of some

cycling prevention rule for the simplex method (see e.g., [1]), we have a finite sequence

of feasible basic solutions {x` | ` = 0, 1, . . . , p} such that

f(x0) ≥ f(x1) ≥ · · · ≥ f(xp),

and the following holds in the dictionary (6) with c = ∇f(xp):

cN − cBA′

N ≥ 0. (9)

If the inequality holds strictly in (9), then Proposition 3.2 guarantees the local optimality

of xp. Even if not, we could improve the incumbent x̃ with xp, except when all the pivots

are degenerate.
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4 Convergence and heuristic application

Let K be a predetermined number of iterations and ε ≥ 0 a tolerance for the value of

f . Our proposed simplicial branch-and-bound algorithm is described as follows:

algorithm simplicial bb

begin

compute an n-simplex ∆1 = conv({v1
1, . . . ,v

1
n+1}) including D;

let δ1 := min{f(x) −∇f(u1)x | x ∈ ∆} for the centroid u1 of ∆1;

solve R(∆1) of minimizing h1(x) := ∇f(u1)x + δ1 and obtain wR(∆1);

let x1 denote the feasible basic solution satisfying h1(x1) = wR(∆1);

x̃
1 := local search(x1); z̃1 := f(x̃1); L := {∆}; k := 1;

while k ≤ K do begin / ∗ Step 1 ∗ /

select a simplex ∆k = conv({vk
1, · · · ,vk

n+1}) with the least value of wR from L;

let hk(x) = ∇f(uk)x + δk denote the objective function of R(∆k);

let xk denote the feasible basic solution satisfying hk(xk) = wR(∆k); /∗Step 2∗/

if z̃k − wR(∆k) ≤ ε then k := K + 1

else begin

subdivide ∆k into ∆1 and ∆2 according to the bisection rule; / ∗ Step 3 ∗ /

for i = 1, 2 do begin

let δ := min{f(x) −∇f(u)x | x ∈ ∆i} for the centroid u of ∆i;

solve R(∆i) of minimizing h(x) := ∇f(u)x + δ and obtain wR(∆i);

let xi denote the feasible basic solution satisfying h(xi) = wR(∆i);

x̃i := local search(xi)

end;

L := L ∪ {∆1, ∆2}

end;

select x̃
k+1 ∈ arg min{f(x) | x = x̃1, x̃2, x̃

k} and let z̃k+1 := f(x̃k+1);

L := L \ {∆k}; k := k + 1

end;

output (x̃k, z̃k)

end;

function local search(x)

begin

let B denote the basis for x and N := {1, . . . , , n} \ B;

let (cB, cN) and (AB,AN) denote the partitions of c := ∇f(x) and A;

A′

N := A−1

B AN ; b′ := A−1

B b;

while cN − cBA′

N ≥ 0 does not hold do begin
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select a column a′
s of A′

N such that cs − cBa′
s < 0;

perform a pivot in an appropriate row of a′
s, corresponding to an r ∈ B;

B := B ∪ {s} \ {r}; N := N ∪ {r} \ {t};

update (cB, cN ), (AB,AN), A′

N and b′ according to the new (B, N);

Let x denote the basic solution with (xB,xN) = (b′, 0) and let c := ∇f(x)

end;

return x

end;

4.1 Convergence proof

If K = +∞ and ε = 0, the algorithm simplicial bb does not terminate in general and

generates an infinite nested sequence {∆kq | q = 1, 2, . . . } as in (2), like the usual

simplicial algorithm with the bisection rule. However, we can show that the difference

between the incumbent value z̃kq and the lower bound wR(∆kq) diminishes to zero in

a subsequence of {∆kq | q = 1, 2, . . . }. This leads to the convergence of the algorithm

simplicial bb.

Lemma 4.1. Let {∆k | k ∈ K} be any infinite nested sequence of simplices generated

by the algorithm simplicial bb. Then there exists a subsequence {k1, k2, . . . } ⊂ K such

that

lim
q→∞

[
z̃kq − wR(∆kq)

]
= 0. (10)

Proof. For every q = 1, 2, . . . , we can assume

f(xkq) ≥ z̃kq > wR(∆kq) = ∇f(ukq)xkq + δkq . (11)

Let vkq denote the vertex of ∆kq defining δkq . Then we have

δkq = f(vkq) −∇f(ukq)vkq .

Recall that we adopt the bisection rule and have {v} =
⋂

k∈K ∆k. Then ukq → v and

vkq → v as q → +∞, because ukq and vkq are points in ∆kq . By the continuity of f and

∇f , as q → +∞, we have

∇f(vkq) → ∇f(v), δkq → f(v) −∇f(v)v.

We can also assume xkq → x ∈ D as q → +∞, because xk’s are generated in the

compact set D. Therefore, as q → +∞, we have

wR(∆kq) → ∇f(v)(x − v) + f(v) ≥ f(x),
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by noting the concavity of f . This, together with (11), implies (10).

Theorem 4.2. Suppose K = +∞ and ε = 0. If the algorithm simplicial bb terminates at

the kth iteration, then x̃
k is a globally optimal solution of (1). If not, every accumulation

point of the sequence {x̃k | k = 1, 2, . . . } is a globally optimal solution.

Proof. If simplicial bb terminates, the assertion is obvious. Let us assume that it does

not terminate. Then simplicial bb generates at least one infinite nested sequence {∆k |

k ∈ K} satisfying (10) for some subsequence {k1, k2, . . . } ⊂ K. Let z̃ = limq→∞ z̃kq and

assume, to the contrary, that z̃ > f(x′) for some x′ ∈ D. For every q = 1, 2, . . . , this

point x′ belongs to some ∆ ∈ L and we have

z̃kq > f(x′) ≥ wR(∆) ≥ wR(∆kq),

because ∆kq is selected as a simplex with the least value of wR at iteration kq. However,

z̃kq − wR(∆kq) → 0 as q → +∞, which is a contradiction. Therefore, we have

z̃ ≤ f(x), ∀x ∈ D.

Let x̃ be any accumulation point of {x̃k | k = 1, 2, . . . } and assume that {x̃kr | r =

1, 2, . . . } converges to x̃. Even in this subsequence, as r → +∞, we have

f(x̃kr) = z̃kr → z̃,

because {z̃k | k = 1, 2, . . . } is nonincreasing. Hence, x̃ is a globally optimal solution to

(1).

Corollary 4.3. If K < +∞ or ε > 0, the algorithm simplicial bb terminates after finitely

many iterations. Especially when K = +∞ and ε > 0, it yields a globally ε-optimal

solution x̃
k of (1).

4.2 Application as heuristic tools

In order to use simplicial bb to solve (1) heuristically, we need only to set K to a finite

number. As will be seen in the next section, the algorithm requires few iterations and

yields a feasible solution of almost the same value as an optimal solution in most cases.

Even for a rather small K, we could expect feasible solutions of enough accuracy in

actual applications. This is mainly due to the fact that local search works well after

solving R(∆) as a heuristic tool. In fact, the algorithm simplicial bb can be thought of

as a kind of multistart algorithm where the starting points are generated systematically

by branch-and-bound. The centroids uk’s of all simplices ∆k ∈ L serve as those starting

points.
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If we select uk’s randomly from the initial simplex ∆1, as in the genuine multistart

algorithm, we can obtain a complete heuristic algorithm for (1). It is described simply

as follows:

algorithm simplicial ms

begin

compute an n-simplex ∆1 = conv({v1
1, . . . ,v

1
n+1}) including D;

δ := 0;

for k = 1, . . . , K do begin

select a point u randomly from ∆1 and let h(x) := ∇f(u)x;

solve R(∆1) of minimizing h(x) and obtain its optimal basic solution xk;

x̃
k := local search(xk)

end;

select x̃ ∈ argmin{f(x) | x = x̃
1, . . . , x̃K} and let z̃ := f(x̃);

output (x̃, z̃)

end;

Note in this description that we may ignore the constant δ in the objective function h

of R(∆1) because we do not need lower bounds of f any more. In other words, R(∆1)

is solved just to provide a feasible basic solution for the function local search.

5 Numerical results

In this section, we will report some numerical results of having compared the algorithms

simplicial bb, simplicial ms and an ordinary simplicial branch-and-bound algorithm with

bisection, referred to as textbook bb. The test problem was a concave quadratic mini-

mization problem of the form:

∣∣∣∣∣
minimize f(x) + ωdyy

subject to Ax + By ≤ b, (x,y) ≥ 0,
(12)

where

f(x) =
1

2
xTCx + dxx,

and A ∈ R
m×p, B ∈ R

m×q, b ∈ R
m, C ∈ R

p×p, dT

x ∈ R
p, dT

y ∈ R
q, and ω is a positive

weight. The total number of variables is n = p+q+m, including m slack variables. The

matrix C = [cij] was symmetric and tridiagonal, i.e., c11 = cii = −1.0, and ci,i−1 = ci−1,i

was a uniformly random number in the interval [−1.0, 0.0] for i = 2, . . . , p. Also, each

component of (dx,dy) was drawn randomly from the uniform distribution on [−1, 0, 0.0].

To make the feasible set bounded, b was set to [1, . . . , 1, p + q]T and all components in
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Figure 2: Changes in the incumbent value in the proposed algorithm.

the last row of [A,B] were fixed at ones. Other components were all random numbers in

the interval [−0.5, 1.0], where the percentages of zeros and negative numbers were about

20% and 10%, respectively.

Computer codes of simplicial bb, simplicial ms and textbook bb were written using

GNU Octave (version 2.1.73), a MATLAB-like computational tool [15], and run on a

single-processor workstation (Athlon64, 2.4GHz). Notice on the problem (12) that the

nonlinear function f depends only on x ∈ R
p. Therefore, using the decomposition

technique [8, 18], we defined the initial simplex ∆1 so as to include the projection of

the feasible set onto the space R
p of x, and carried out essential operations related to

subsimplices ∆’s in R
p, in each code. As for the optimality criterion in simplicial bb and

textbook bb, we adopted z̃k−wR(∆k) ≤ ε|z̃k|, instead of z̃k−wR(∆k) ≤ ε, to prevent the

magnitude of z̃k from affecting the convergence, where ε was fixed at 10−5. Incidentally,

the example in Section 1 is an instance of (12) with (m, n, p, ω) = (40, 100, 20, 3.0), and

if simplicial bb is applied to it, the incumbent value changes as in Figure 2.

First, let us see the performance of simplicial ms as an exact algorithm on small-scale

instances with (m, n) = (40, 120). Figures 3 and 4 show the variation in the average

number of iterations and average computational time in seconds, respectively, required

by simplicial bb and textbook bb to solve ten instances when p was fixed at 16 and ω

ranged from 1.0 to 10.0. Figures 5 and 6 show it when ω was fixed at 3.0 and p ranged

from 8 to 22. We see from these figures that simplicial bb takes considerably more

iterations than textbook bb while there is not so much difference in the computational
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Figure 3: The numbers of iterations when (m, n, p) = (40, 120, 16).
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Figure 4: Computational time (seconds) when (m, n, p) = (40, 120, 16).
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Table 1: Performance for 32 iterations of simplicial bb and simplicial ms.

p = n/6 p = n/3 p = n/2

m n ω pivot time pivot time pivot time

100 300 1.0 bb 4810.9 5.1314 5923.5 6.293 5151.7 5.736

ms 4877.3 4.471 6083.8 5.552 5534.6 5.320

200 600 1.0 bb 7995.1 30.23 11677 45.09 15906 63.73

ms 8126.2 28.52 12115 43.58 15157 56.55

200 600 3.0 bb 3326.1 12.44 4356.4 16.33 5219.0 19.83

ms 3254.1 11.42 4422.2 15.42 5207.0 18.17

300 900 1.0 bb 14408 115.4 21634 173.5 27147 222.9

ms 15216 115.3 21379 164.7 27045 214.6

300 900 3.0 bb 7937.4 63.34 10962 87.60 13027 104.6

ms 8335.4 63.89 11055 83.41 12895 97.38

400 1,200 3.0 bb 15800 209.2 20224 267.7 22856 302.5

ms 15171 191.4 20484 258.8 22842 288.8

time. This dominance relation is reversed when ω is less than about 3.0. In fact, the

average computational time of textbook bb was well over 2, 000 seconds for problem

instances with ω ≤ 2.0. Once ω is fixed, however, both codes behaves alike, as shown in

Figure 6. As a whole, the algorithm simplicial bb appears to have potential for efficiency,

at least comparable to the usual simplicial branch-and-bound algorithm.

Let us turn next to the performance of simplicial bb as a heuristic algorithm. We fixed

the number K of iterations at 32 in simplicial bb, simplicial ms, and solved instances of size

up to (m, n, p) = (400, 1200, 600), using both codes. Table 1 lists the average number of

simplex pivots (pivot) and average computational time in seconds (time) required by sim-

plicial bb (bb) and simplicial ms (ms) to solve ten instances. Both codes carry out almost

the same number of pivoting operations, but simplicial bb takes a little more computa-

tional time because of additional operations involved in branch-and-bound. To investi-

gate the quality of solutions, we extract some outputs (for instances #1 and #2) of both

codes and list them in Table 2, which includes the incumbent value (output) and lower

bound (bound) at termination, and the iteration number at which the incumbent was

last updated (update). For problem instances of size (m, n, p, w) = (200, 600, 100, 3.0)

and (300, 900, 150, 3.0), we also add the optimal values, which were computed using a

code of the algorithm developed in [9]. We observed for every instance of these two sizes

that both simplicial bb and simplicial ms generated a feasible solution of the same value

as an optimal solution. Unfortunately, each instance of the other sizes is too large to

solve to optimality using our available computer codes. However, simplicial bb always
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Table 2: Outputs after 32 iterations of simplicial bb and simplicial ms.

m n p ω opt.val. output bound update

200 600 100 3.0 #1 -7.441762 bb -7.441762 -11.550959 1

ms -7.441762 — 31

#2 -7.844702 bb -7.844702 -11.819086 1

ms -7.844702 — 1

300 900 150 3.0 #1 -7.708254 bb -7.708254 -11.948366 1

ms -7.708254 — 1

#2 -7.689507 bb -7.689507 -11.776019 1

ms -7.689507 — 1

300 900 450 1.0 #1 — bb -2.704720 -7.620925 21

ms -2.704726 — 10

#2 — bb -2.681544 -7.643540 27

ms -2.681603 — 25

300 900 450 3.0 #1 — bb -6.355546 -11.316951 1

ms -6.355546 — 1

#2 — bb -6.567183 -11.560518 2

ms -6.567183 — 13

400 1,200 600 3.0 #1 — bb -6.996379 -11.794577 1

ms -6.996379 — 1

#2 — bb -6.982920 -11.796606 1

ms -6.982920 — 1

maintains the lower bound, which provides an indication, though rough, of the accuracy

of outputs. Namely, we see from Table 2 that the ratio of the output value of simpli-

cial bb to the optimal value is greater than 0.35 when ω = 1.0 and it rises to greater

than 0.6 when ω = 3.0. This is an important strength of simplicial bb, not shared by

other heuristic algorithms.

6 Conclusion

To enhance the computational efficiency of the branch-and-bound algorithm, various

techniques of tightening the lower bound have been developed so far. In contrast to

those, we have loosened it, and instead tightened the upper bound in this paper. As a

result, we have shown that good feasible solutions are obtained in the quite early stage

of iterations and the algorithm can be used as a heuristic tool as well. The algorithm
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simplicial bb is our answer to the present situation where none can ask for theoretically

efficient algorithms for the concave minimization problem. However, it is not a final

one because there remain two substantive issues to be improved in simplicial bb. First,

its computational efficiency still pales in comparison with other exact algorithms. To

put simplicial bb into practical use as an exact algorithm, we need to incorporate some

procedures of tightening the lower bound, such as a Lagrangian-based one in [9, 10, 12].

The other issue is memory consumption of the implementation. Since simplicial bb stores

an exponential number of ∆k’s in the worst case, it may suffer from a combinatorial

explosion in memory consumption, before yielding a solution, if we try to solve a large

scale instance to optimality. This is a critical issue shared by many branch-and-bound

algorithms for the concave minimization problem. The reverse search technique in [11]

could be a hint towards a possible resolution.
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