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Abstract

We develop a new kind of branch-and-bound algorithm to solve a linear pro-

gram with an additional reverse convex constraint. The proposed algorithm is

based on a polynomial-space pivoting algorithm for enumerating feasible bases of

a linear program. We show that it generates a globally optimal solution after

finitely many pivoting operations with polynomial space.
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1 Introduction

A reverse convex program is an optimization problem whose feasible set is the difference

of two convex sets, and hence is also called a d.c. optimization problem. It is known that

any continuous optimization problem over a compact set can be described within this

class [7, 11, 12]. Included as an important subclass is a linear program with an additional

reverse convex constraint (LPARC), in which a linear function cx is maximized on the

difference of a polyhedron D and an open convex set C. This is certainly a special class

but still contains various optimization problems. In fact, any linear 0-1 integer program

belongs to LPARC because a binary constraint x ∈ {0, 1} is equivalent to a system

including a reverse convex constraint: 0 ≤ x ≤ 1, x2 − x ≥ 0. This also implies that

LPARC is NP-hard in the sense of computational complexity [4].

∗The author was partially supported by the Grand-in-Aid for Scientific Research (C) 17560050 from
the Japan Society for the Promotion of Sciences. E-mail: takahito@cs.tsukuba.ac.jp

1



Since the feasible set D\C is nonconvex, LPARC usually has multiple locally optimal

solutions, many of which fail to be globally optimal. The algorithms commonly used

to find a globally optimal solution can be classified mainly into two types. The first

type repeatedly computes a locally optimal solution x◦ and checks its global optimality:

D ∩ {x ∈ R
n | cx ≥ cx◦} ⊂ C (or D ∩ {x ∈ R

n | cx = cx◦} ⊂ C) [5, 8, 10],

where C is the closure of C. The second type is branch-and-bound, which recursively

partitions a simpler polyhedron including D and computes lower and upper bounds for

LPARC restricted in each partition set [6, 9, 13]. Both involve enumerating vertices of

the intersection of D with a half space, a plane, or a polyhedral cone for example, and

cannot be executed effectively without using branch-and-bound implicitly or explicitly.

Even for an instance of modest scale, therefore, each of these approaches easily suffers

from combinatorial explosion far before yielding an expected solution.

The branch-and-bound algorithm we propose in this paper is totally different from the

above approaches. It simply enumerates vertices of D in some orderly way, as searching

for an optimal solution to LPARC. The reason why such a näıve method has not been

succeeded so far is naturally due to the combinatorial explosion in the number of vertices.

However, we will show that it can be realized with polynomial space complexity, using

Bland’s pivoting rule [2] in the simplex algorithm. After some preliminaries in the next

section, we explain in Section 3 a vertex enumeration algorithm proposed by Avis and

Fukuda [1]. Using it as a procedure for generating a branching tree, we develop a branch-

and-bound algorithm for solving LPARC exactly in a finite time with space complexity

O(mn), where (m, n) is the size of the linear system defining D. In Section 4, we close

the paper by giving a detailed algorithm description and some remarks.

2 Some preliminaries

The class of problems, LPARC, is generally formulated as follows:

∣∣∣∣∣∣∣

maximize cx

subject to Ax ≤ b, x ≥ 0

f(x) ≥ 0,

(1)

where A ∈ R
m×n, b ∈ R

m and cT ∈ R
n. Let

D = {x ∈ R
n | Ax ≤ b, x ≥ 0}, C = {x ∈ R

n | f(x) < 0}.

We assume that D is nonempty and bounded, and f is a continuous quasiconvex function

defined on an open set including D. Although both D and C are convex, the feasible set

is their difference D \C, and hence can be nonconvex and even disconnected. Therefore,
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(1) is a typical multiextremal global optimization problem. If the last constraint f(x) ≥ 0

is removed, the problem (1) reduces to an ordinary linear program:

∣∣∣∣∣
maximize cx

subject to Ax ≤ b, x ≥ 0,
(2)

which is obviously far easier to solve, and has an optimal solution x in D by assumption.

If x happens to lie outside C, then x is also an optimal solution to (1). To exclude such

trivial cases, we assume throughout the paper that

D \ C 6= ∅, (3)

max {cx | x ∈ D \ C} < max {cx | x ∈ D} . (4)

Then we have the following well-known result (see e.g., [5, 7, 11] for proof):

Proposition 2.1. Under assumptions (3) and (4), the boundary ∂C of C contains all

optimal solutions to (1), at least one of which lies on some edge of D.

We see immediately from this proposition that (1) can be solved in finite time if we

search for the optimal solution, say x∗, along edges of D in some orderly way, because

there are only a finite number of edges. A simple but reliable way to realize it would be

enumeration of the vertices of D. The edges can then be examined from their end points.

To give a short sketch of our proposed method, let us recall Bland’s pivoting rule [2],

commonly used to avoid cycling in the simplex algorithm for solving linear programs like

(2) [3]. Brand’s rule enable us to reach an optimal solution to (2) in finitely many steps

starting from any vertex of D. This implies that there exists a unique path consisting

of some edges in D from each vertex to an optimal one. If the optimal solution x to

(2) is unique, we can therefore constitute a spanning tree T rooted at x on a graph

G associated with the vertices and edges of D (see Figure 1). To be more precise, the

nodes of this graph G correspond one-to-one with the feasible bases for (2), not with

the vertices of D. Anyway, we can visit all vertices of D along the feasible bases tree T .

Our algorithm is a kind of combinatorial branch-and-bound using this spanning tree T

as a branching tree.

3 Search for an optimal solution

Let us introduce a vector y ∈ R
m of m slack variables xn+1, . . . , xn+m into the linear

program (2). Then we have its standard form:

∣∣∣∣∣
maximize cx

subject to Ax + y = b, x ≥ 0, y ≥ 0,
(5)
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Figure 1: Feasible bases tree T on the polytope D.

whose optimal solution is denoted by (x,y). We assume for simplicity that (5) is both

primal and dual nondegenerate at (x,y). This implies that x is the unique optimal

solution to (2). Let (x1,y1) be a feasible basic solution to (5) and assume x1 ∈ C. Such

a basic solution must be in D by assumption (4). Let B denote the basis, the index

set of m basic variables in (x1,y1), and let N = {1, . . . , n + m} \ B. Also denote by

(AB,AN), (cB, cN) and (xB,xN) the partitions of columns of [A, I], [c, 0] and [xT,yT],

respectively in accordance with the pair (B, N), where I ∈ R
m×m is the identity matrix.

Then AB ∈ R
m×m is nonsingular and we have a feasible dictionary of (5):

∣∣∣∣∣
xB = b − ANxN

z = z1 + cNxN ,
(6)

where

b = A−1

B b, AN = A−1

B AN , z1 = cBA−1

B b, cN = cN − cBA−1

B AN .

Letting xN = 0 in (6), then we have the basic solution (x1,y1), whose objective function

value is given by z1. To improve (x1,y1) in the simplex algorithm, we have to select an

index r ∈ B and an s ∈ N appropriate to change. Bland’s pivoting rule specifies this

pivot (r, s) uniquely in a very simple manner:

(a) s ∈ N is the smallest index among all candidates to enter the basis, i.e.,

s = min {j ∈ N | cj > 0} ;
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(b) r ∈ B is the smallest index among all candidates to leave the basis, i.e.,

r = min
{
i ∈ B | bi = aisd

}
,

where d = min
{
bi/ais | ais > 0, i ∈ B

}
.

We refer to the pivot (r, s) satisfying (a) and (b) as the Bland pivot in dictionary (6).

If (a) is not applicable in (6), then the current basis B is optimal for (5) and we have

(x,y) = (x1,y1). Even otherwise, we have the following (see [2, 3] for proof):

Proposition 3.1. If the simplex algorithm is applied to (6), then it generates a finite

sequence of feasible bases of (5) under Bland’s pivoting rule. The last feasible basis in

this sequence is optimal for (5).

Reverse Bland pivot and the feasible bases tree

Let us discuss how to constitute the feasible bases tree T mentioned in Section 2. We

think of each feasible basis of (5) as a node of the graph G, and assume an arc between

any two bases sharing exactly m− 1 indices among {1, . . . , n + m}. By proposition 3.1,

the simplex algorithm traces a unique path on G from each node to the one corresponding

to the basis B of (x,y). Note that B is unique, because (5) is assumed to be primal

nondegenerate at (x,y). Therefore, T consisting of those paths is connected and spans

all nodes in G. Suppose (x1,y1) 6= (x,y) and the basis B is yielded from some feasible

basis B2 by applying a pivoting operation to the associated dictionary at its Bland pivot

(r, s). Such B2 might not be unique if exists. Avis and Fukuda [1] named (s, r) as a

reverse Bland pivot in dictionary (6) and proposed to enumerate the feasible bases of

(5) recursively in lexicographic order of reverse Bland pivots from B. This is essentially

equivalent to depth-first search along the spanning tree T from the root node B.

To check if (s, r) is actually a reverse Brand pivot in (6), we have only to perform a

pivoting operation at (s, r). Assuming asr > 0, then we have

∣∣∣∣∣∣∣

xr = bs/asr − 1/asrxs −
∑

j∈N\{r} asj/asr

xi = (bi − airbs/asr) + air/asrxs −
∑

j∈N\{r}(aij − airasj/asr)xj, i ∈ B \ {s}

z = (z1 + crbs/asr) − cr/asrxs +
∑

j∈N\{r}(cj − crasj/asr)xj,

(7)

which is another dictionary of (5) adjacent to (6). We may simply check in (7) if

(r, s) satisfies (a) and (b). This brutal method requires O(mn) arithmetic operations.

However, from the following lemma, we can see in time O(m + n) whether it is worth

carrying out or not.
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Lemma 3.2. If (s, r) is a reverse Bland pivot in (6), then

cr < 0, (8)

bs = asrd, (9)

where d = min
{
bi/air | air > 0, i ∈ B

}
.

Proof. If (9) does not hold, then bi −airbs/asr < 0 for some i ∈ B \ {s}; and hence (7) is

infeasible. Also, r cannot be a candidate to enter the basis in (7) unless (8) holds.

For each (i, j) ∈ B × N in lexicographic order, we test conditions (8) and (9) with

(s, r) = (i, j), and perform a pivoting operation if necessary. If (i, j) turns out to be a

valid reverse Bland pivot in (6), then we move to the node B2 = B ∪{j} \ {i} on G. We

refer to B2 as a child of B. If no reverse Bland pivots are found in (6), the current basis

B is a leaf of T . In that case, we may backtrack along T according to Bland’s usual

rule. Thus, we can eventually constitute the feasible bases tree T of the linear program

(5) with space complexity only O(mn) for a dictionary.

Procedures necessary for branch-and-bound

Our purpose is not to enumerate the feasible bases of (5), but to find an optimal solution

to the reverse convex program (1). We need to do some additional computation to locate

the edge of D on which Proposition 2.1 suggests the optimal solution x∗ lies. Suppose

(s, r) has passed both tests (8) and (9) in Lemma 3.2, i.e., dictionary (7) is now feasible.

Let B2 = B ∪ {r} \ {s} and (x2,y2) denote the corresponding basic solution. Since C is

a convex set and x1 is assumed to be in C, the segment [x1,x2] does not intersect ∂C if

x2 ∈ C. However, if x2 6∈ C, it might be the edge of D suggested by Lemma 2.1. We

therefore compute an intersection with ∂C, regardless whether (s, r) is a valid reverse

Bland pivot or not in (6).

Lemma 3.3. The segment [x1,x2] intersects ∂C at a unique point if x1 ∈ C and x2 6∈ C.

Proof. Suppose [x1,x2] intersects ∂C at different points v1 and v2 such that cTx1 ≤

cTv1 ≤ cTv2 ≤ cTx2. Since x1 belongs to the open set C, there is some open sphere S

of center x1 such that S ⊂ C. Let S̃ denote the convex hull of S and v2. Then we have

v1 ∈ S̃ \ {v2} ⊂ C, which contradicts v1 ∈ ∂C.

Let v denote the unique intersection point of [x1,x2] with ∂C. If cv > cx◦ for the best

feasible solution x◦ to (1) found so far, we update the incumbent x◦ with v.

Even if (s, r) fails the tests in Lemma 3.2, the basic solution (x2,y2) can be feasible

and [x1,x2] might intersect ∂C. However, we can neglect it without overlooking x∗.
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Lemma 3.4. Suppose (s, r) fails (8), (9) or both. Then no optimal solutions lie on the

segment [x1,x2] unless x2 is optimal for (1).

Proof. If (s, r) fails (9), then dictionary (7) is infeasible as shown in the proof of Lemma

3.2, and so [x1,x2] ∩ D = {x1} ⊂ C. Suppose (s, r) fails only (8) and [x1,x2] intersects

∂C at v. Since cr ≥ 0 and asr > 0, we have

cx1 = z1 ≤ cv ≤ cx2 = z1 + crbs/asr,

but cx2 < cx∗ if x2 is not optimal for (1).

Then what should we do if x2 is an optimal solution to (1) in this lemma? In that case,

we may continue pivoting operations as usual at valid reverse Bland pivots. Then we

must reach B2 in finite steps from B via some different path than including B because

(x2,y2) is a feasible basic solution to (5) and B2 ∈ T . In either case, we can ignore the

segment [x1,x2] completely unless (s, r) passes both tests (8) and (9).

In addition to the above observations, we have the following:

Lemma 3.5. Suppose (s, r) passes both (8) and (9). If for the incumbent x◦ we have

z1 + crd ≤ cx◦, (10)

where d = min
{
bi/air | air > 0, i ∈ B

}
, then B2 and all its descendants in T have no

solutions better than x◦.

Proof. The value of x2 corresponding to B2 is given by z1 + crd, as seen in dictionary

(7). It is never improved as long as we follow (8) and (9).

We also see from this lemma that if (10) holds, there are no solutions better than x◦ on

the segment connecting two points given by each adjacent descendants of B2. Therefore,

we need not move to B2 from B on T even if (s, r) is a valid reverse Bland pivot in (6)

and B2 is a legitimate child of B. In other words, the value z1 + crd serves as an upper

bound on cx∗ to fathom the node B2 of the branching tree T . It is worth noting that

this bounding operation spends little time if dictionary (7) is in hand.

Treatments for degenerate case

Since Bland’s pivoting rule terminates the simplex algorithm once an optimal basis is

found, the above procedure might not work when the linear program (5) has multiple

optimal bases. This can actually occur if (5) is primal or dual degenerate at (x,y).

Even in that case, each path to an optimal basis on G is still unique under Bland’s

rule. However, the union T of those paths becomes a spanning forest, not a spanning
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tree, of G. Therefore, to search for the optimal solution x∗ to (1), we have to collect all

optimal bases for (5) and then start our algorithm from each. It is possible to generate

all optimal bases for (5) if we enumerate feasible bases of a degenerate system:

∣∣∣∣∣
Ax + y = b, x ≥ 0, y ≥ 0

cx = cx,

using a dual form of Bland’s rule. The details are omitted, because they are technically

somewhat involved, but introduced in [1]. A more practical method would be, however,

to avoid degeneracy itself by giving a little perturbation to b and c.

4 Algorithm and remarks

Finally, let us summarize the discussion of the previous sections into an algorithm.

algorithm TREE SEARCH

begin

solve the linear program (5) to obtain an optimal solution (x,y);

let x◦ denote any feasible solution to (1);

for each feasible basis B of value cx in (5) do begin

let N := {1, . . . , n} \ B;

call procedure REVERSE BLAND to update x◦

end;

output x∗ := x◦ as an optimal solution to (1)

end;

procedure REVERSE BLAND

begin

let (x1,y1) denote the basic solution for dictionary (6) associated with (B, N);

let z1 := cBA−1

B b;

for each (s, r) ∈ B × N in lexicographic order do begin

if cr < 0 in (6) then begin

let d := min
{
bi/air | air > 0, i ∈ B

}
;

if bs/asr = d then begin

perform a pivoting operation at (s, r) in (6) and obtain dictionary (7);

let (x2,y2) denote the basic solution for (7);

if x2 6∈ C then begin

compute the intersection point v of [x1,x2] with ∂C;

if cv > cx◦ then x◦ := v;
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end;

if (r, s) is the Bland pivot in (7) and z1 + crd > cx◦ then begin

let B := B ∪ {r} \ {s} and N := N ∪ {s} \ {r};

call procedure REVERSE BLAND to update x◦;

let B := B ∪ {s} \ {r} and N := N ∪ {r} \ {s};

end;

perform a pivoting operation at (r, s) in (7)

end

end

end;

return x◦;

end;

In practice, it might not be so easy to compute the intersection point v of [x1,x2]

with ∂C, depending on the function f defining C, but we assume here that it can be done

in finite time. Then finiteness of this recursive algorithm is guaranteed by Proposition

3.1 and Lemma 3.2, and optimality of the output x∗ is by Proposition 2.1 and Lemmas

3.3–3.5. These, together with the fact that it is not necessary to keep anything other

than a dictionary and the incumbent x◦, lead to the following:

Theorem 4.1. Algorithm TREE SEARCH occupies O(mn) space and yields a globally

optimal solution x∗ to problem (1) after finitely many pivoting operations.

Since algorithm TREE SEARCH has not yet been implemented nor compared with

other existing algorithms, we cannot make a definitive conclusion regarding the practical

efficiency. However, we should remark that TREE SEARCH visits only vertices of D

contained in C. Therefore, it is expected to work well on instances of (1) where C cuts

off only a few vertices from D. In contrast to this, for instances where C contains a

larger number of vertices of D, the performance of TREE SEARCH could get worse, and

in the worst case, it might visit all vertices but one. To put algorithm TREE SEARCH

into practical use, we need to devise some sort of procedure for reducing the volume of

D ∩ C. A promising one is to cut off a portion of D ∩ C using a plane which passes

through intersection points of ∂C with n extreme rays of a full-dimensional simplicial

cone vertexed in C and including D. The details will be reported elsewhere, with

numerical results for comparison with some other algorithms.
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