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Abstract. This paper presents a polymorphic type system for a language with de-
limited control operators, shift and reset. Based on the monomorphic type system by
Danvy and Filinski, the proposed type system allows pure expressions to be polymor-
phic. Thanks to the explicit presence of answer types, our type system satisfies various
important properties, including strong type soundness, existence of principal types
and an inference algorithm, and strong normalization. Relationship to CPS transla-
tion as well as extensions to impredicative polymorphism are also discussed. These
technical results establish the foundation of polymorphic delimited continuations.
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1 Introduction

Delimited continuation operators enable us to manipulate control of programs in a concise
manner without transforming them into continuation-passing style (CPS). In particular,
shift and reset, introduced by Danvy and Filinski [5], have strong connection to CPS, and
thus most of the control effects compatible with CPS can be expressed using shift and reset
[7]. They have been used, for example, to program backtracking [5], A-normalization in
direct style [1], let-insertion in partial evaluation [1], and type-safe “printf” in direct style
[2].

Despite the increasing interest in the use of delimited continuations in typed program-
ming languages, there has been little work that investigates their basic properties without
sacrificing their expressive power. The original type system for shift and reset by Danvy and
Filinski [4] is the only type system that allows modification of answer types but is restricted
to monomorphic types. Polymorphism in the presence of call/cc has been discussed in
the context of ML [10] but strong type soundness [21] does not hold for their type system.
Gunter, Rémy, and Riecke [9] proposed typed cupto operator with strong type soundness
theorem as well as various properties, but their type system is restricted to a fixed answer
type for each prompt. As such, none of the above type systems can type check, for instance,
the “printf” program written with shift and reset.

To establish the basic properties of shift and reset without sacrificing their expressive
power, we present in this paper a polymorphic type system, an extension of the monomorphic



type system by Danvy and Filinski, and show that it satisfies a number of basic properties
needed to use them in ordinary programming languages. In particular, we show strong type
soundness, existence of principal types and an efficient type inference algorithm, and strong
normalization among others. The polymorphism does not break the semantic foundation of
the original monomorphic type system: CPS translation is naturally defined for our poly-
morphic calculus and preserves types and equivalence. Because of its natural connection to
CPS, our framework can be extended to a calculus with impredicative polymorphism [8].

Unrestricted polymorphism in the presence of control operators leads to an unsound type
system [10]. We introduce and employ a new criteria called “purity” restriction instead of
more restrictive value restriction. An expression is said to be pure if it has no control-effects
[18]. By allowing pure expressions to be polymorphic, an interesting non-value term can be
given a polymorphic type.

Based on these results, we have implemented a prototypical type inference algorithm,
and applied it to many interesting programs to obtain their principal types.

The rest of this paper is organized as follows: Section 2 illustrates a few programming
examples to give intuition about the type structure for shift and reset. In Section 3, we
formalize a predicatively polymorphic calculus for shift and reset, and prove its properties
such as type soundness. We then study a CPS translation for our calculus in Section 4. In
Section 5, we extend our study to cover impredicative polymorphism under two evaluation
strategies. In Section 6, we compare our work with related work and give conclusion.

Proofs of the theorems in this paper can be found in the appendix.

2 Programming Examples

Polymorphism is inevitable in programming [17]. A simple example of polymorphism is found
in list manipulating functions: a reverse function works for a list of elements of any type.
In this section, we introduce the control operators, shift and reset, and show examples of
polymorphism that involves control operators.

2.1 List Append: Answer Type Modification

Consider the following program [4] written in OCaml syntax:

let rec append lst = match lst with
[] -> shift (fun k -> k)

| a :: rest -> a :: append rest

This program is a curried version of list append, written with control operators. Here, shift
captures its current continuation and passes it to its argument (typically a one-argument
function fun k -> . . .) in the empty context. Unlike callcc, however, continuations are
captured only up to its enclosing reset (hence called delimited continuations).

When append is invoked in a delimited context as follows:

let append123 = reset (fun () -> append [1; 2; 3])

append recursively stores each element of its argument into the control stack. When all
the elements are stacked, the control stack could be thought of as a term with a hole:
1 :: 2 :: 3 :: •, waiting for the value for the [] case. Then, shift (fun k -> k) captures it,
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turns it into an ordinary function λx.1 :: 2 :: 3 :: x, and returns it. The returned continuation
append123 is the partially applied append function: given a list, it appends 1, 2, and 3 to it
in the reversed order.

When shift is used in a program, it typically has an impact on the answer type of its
enclosing context. Before shift (fun k -> k) is executed, the context 1 :: 2 :: 3 :: • was
supposed to return a list (given a list for •). In other words, the answer type of this context
was a list. After shift (fun k -> k) is executed, however, what is returned is the captured
continuation λx.1 :: 2 :: 3 :: x of type int list -> int list. In other words, execution
of shift (fun k -> k) modifies the answer type from ’a list to ’a list -> ’a list,
where ’a is the type of the elements of the list.

To accommodate this behavior, Danvy and Filinski used a function type of the form S /
A -> T / B [4]. It is the type of a function from S to T, but modifies the answer type from
A to B when applied. Using this notation, append has the type ’a list / ’a list -> ’a
list / (’a list -> ’a list) for all ’a: given a list of type ’a list, append returns a
list of type ’a list to its immediate context; during this process, however, the answer type
of the context is modified from ’a list to ’a list -> ’a list.

Gunter, Rémy, and Riecke mention the type of context (prompt) in their type system
[9]. However, they fix the answer type and do not take the answer type modification into
account, limiting the use of control operators. To characterize the full expressive power of
shift and reset, it is necessary to cope with two answer types together with polymorphism.

2.2 List Prefix: Answer Type Polymorphism

Once answer types are included in a function type, polymorphism becomes more important in
programming. First of all, the conventional function type S -> T is regarded as polymorphic
in the answer type [18]: S / ’a -> T / ’a for a new type variable ’a. This indicates that
even a simple, apparently monomorphic, function like:

let add1 x = x + 1

has to be treated as polymorphic in the answer type. Otherwise, it cannot be used in different
contexts as in:

reset (fun () -> add1 2; ()); reset (fun () -> add1 3; true)

The first occurrence of add1 is used at type int / unit -> int / unit whereas the second
one at type int / bool -> int / bool. To unify them, add1 has to be given a polymorphic
type: int / ’a -> int / ’a.

Answer type polymorphism plays an important role in captured continuations, too. Con-
sider the following program [3]:

let rec visit lst = match lst with
[] -> shift (fun h -> [])

| a :: rest -> a :: shift (fun k -> (k []) :: reset (k (visit rest)))

let rec prefix lst = reset (visit lst)

When applied to a list, e.g., [1; 2 3], prefix returns a list of its prefixes: [[1]; [1; 2];
[1; 2; 3]]. In this example, there are two occurrences of shift. Intuitively, the continua-
tion captured by the second shift represents consing of elements read so far. It is applied
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twice: once to an empty list to construct a current prefix and once to construct a list of
longer prefixes. Finally, the first occurrence of shift initiates the construction of prefixes
by returning an empty list of type ’a list list, discarding the current continuation.

It is important that the captured continuation k is polymorphic in its answer type. A
closer look at the function reveals that k is used in two different contexts: the first occurrence
of k has type ’a list / ’a list list -> ’a list / ’a list list whereas the second
one has type ’a list / ’a list -> ’a list / ’a list. This demonstrates that without
answer type polymorphism in the captured continuations, the above program does not type
check.

2.3 Printf

Finally, we present a type-safe printf program written in direct style with shift and reset
(detailed in [2]). Given a representation of types:

let int x = string_of_int x
let str (x : string) = x

the following program achieves the behavior of printf in a type-safe manner:

let % to_str = shift (fun k -> fun x -> k (to_str x))
let sprintf p = reset p

Namely, the following programs are all well-typed:

sprintf (fun () -> "Hello world!")
sprintf (fun () -> "Hello " ^ % str ^ "!") "world"
sprintf (fun () -> "The value of " ^ % str ^ " is " ^ % int) "x" 3

and give "Hello World!" for the first two and "The value of x is 3" for the last. De-
pending on % appearing in the formatting text, sprintf returns a different type of values.

The dependent behavior of sprintf is well understood by examining its type: (unit
/ string -> string / ’a) -> ’a. The formatting text is represented as a thunk that
modifies the final answer type into ’a according to the occurrence of %. Then, the type of the
return value of sprintf is polymorphic to this ’a. The dependent behavior of sprintf is only
achievable through the support of both the answer type modification and polymorphism.

3 Predicative Polymorphism with Shift/Reset

We now introduce polymorphic typed calculi for shift and reset, and study their properties
such as type soundness. Following the literature, we distinguish two versions of polymor-
phism: predicative polymorphism (let-polymorphism) found in ML and impredicative poly-
morphism which is based on the second order lambda calculus (Girard’s System F [8]). In
this section, we give the predicative version λ

s/r
let . The impredicative version will be given in

later sections.
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v ::= c | x | λx.e | fix f.x.e value

e ::= v | e1e2 | Sk.e | 〈e〉 | let x = e1 in e2

| if e1 then e2 else e3 expression

α, β, γ, δ ::= t | b | (α/γ → β/δ) monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 1. Syntax of λ
s/r
let .

3.1 Syntax and Operational Semantics

We assume that the sets of constants (denoted by c), variables (denoted by x, y, k, f), type
variables (denoted by t), and basic types (denoted by b) are mutually disjoint, and that each
constant is associated with a basic type. We assume bool is a basic type which has constants
true and false.

The syntax of λ
s/r
let is given by BNF in Figure 1. A value is either a constant, a variable, a

lambda abstraction, or a fixpoint expression fix f.x.e which represents a recursive function
defined by the equation f(x) = e. The variables f and x are bound in fix f.x.e. An
expression is either a value, an application, a shift expression, a reset expression, a let
expression, or a conditional. The expressions Sk.e and 〈e〉, resp., correspond to OCaml
expressions shift (fun k -> e) and reset (fun () -> e), resp. Types are similar to
those in ML except that the function type is now annotated with answer types as (α/γ →
β/δ). Free and bound variables (type variables, resp.) in expressions (types, resp.) are defined
as usual, and FTV(α) denotes the set of free type variables in α.

We give call-by-value operational semantics for λ
s/r
let . First we define evaluation contexts

(abbreviated as e-contexts), pure e-contexts, and redexes as follows:

E ::= [ ] | vE | Ee | 〈E〉 | let x = E in e | if E then e else e e-context
F ::= [ ] | vF | Fe | let x = F in e | if F then e else e pure e-context
R ::= (λx.e)v | 〈v〉 | 〈F [Sk.e]〉 | let x = v in e

| if true then e1 else e2 | if false then e1 else e2

| (fix f.x.e)v redex

A pure e-context F is an evaluation context such that no reset encloses the hole. Therefore,
in the redex 〈F [Sk.e]〉, the outermost reset is guaranteed to be the one corresponding to
this shift, i.e., no reset exists inbetween.

A one-step evaluation in λ
s/r
let is E[R] Ã E[e] where R Ã e is an instance of reductions

in Figure 2 where e[v/x] denotes the ordinary capture-avoiding substitution. For example,
prefix [1; 2] is reduced as follows. (We use fix implicitly through recursion, and assume
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(λx.e)v Ã e[v/x]

(fix f.x.e)v Ã e[fix f.x.e/f ][v/x]

〈v〉 Ã v

〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉
let x = v in e Ã e[v/x]

if true then e1 else e2 Ã e1

if false then e1 else e2 Ã e2

Fig. 2. Reduction rules for λ
s/r
let

that lists and other constructs are available in the language).

prefix [1; 2]
Ã 〈1 :: Sk.(k[] :: 〈k (visit [2])〉)〉
Ã 〈let k = λx.〈1 :: x〉 in k[] :: 〈k (visit [2])〉〉
Ã 〈(λx.〈1 :: x〉)[] :: 〈(λx.〈1 :: x〉)(visit [2])〉〉
Ã+ 〈[1] :: 〈(λx.〈1 :: x〉)(2 :: Sk.(k[] :: 〈k (visit [])〉))〉〉
Ã 〈[1] :: 〈let k = λx.〈(λx.〈1 :: x〉)(2 :: x)〉 in k[] :: 〈k (visit [])〉〉〉
Ã 〈[1] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)[] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)(visit [])〉〉〉
Ã+ 〈[1] :: 〈[1; 2] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)(Sh.[])〉〉〉
Ã 〈[1] :: 〈[1; 2] :: let h = λx.〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)x〉 in []〉〉
Ã 〈[1] :: 〈[1; 2] :: []〉〉 Ã+ [[1]; [1; 2]]

The notion of reduction Ã is defined as the compatible closure3 of those in Figure 2,
and Ã∗ (and Ã+, resp.) denotes the reflexive-transitive (transitive, resp.) closure of Ã.

3.2 Type System

We begin with Danvy and Filinski’s monomorphic type system for shift and reset [4]. Since
the evaluation of an expression with shift and reset may modify answer types, a type judg-
ment in their type system involves not only a type of an expression being typed, but also
answer types before and after evaluation. Symbolically, a judgment takes the form:

Γ ; α ` e : τ ; β

which means that, under the type context Γ , the expression e has type τ and the evaluation
of e changes the answer type from α to β. A rationale behind this formulation is that, the
CPS counterpart of e has type (τ∗ → α∗) → β∗ under the type context Γ ∗ in the simply
typed lambda calculus, where ( )∗ is the CPS translation for types and type contexts defined
in the next section.

Introducing polymorphism into their type system is, however, not straightforward since
the subject reduction property fails for the system with unrestricted uses of let-polymorphism
3 A binary relation is compatible if it is closed under term-formation, for instance, whenever e1

and e2 are related by this relation, λx.e1 and λx.e2 are related.
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and side effects such as references and control effects. In the literature, there are many pro-
posals to solve this problem by restricting the let-expression let x = e1 in e2 or by changing
its operational semantics, some of which are:

– Value restriction [20]: e1 must be a value.
– Weak type variables [19]: the type variable in the type of e1 can be generalized only

when it is not related to side effects.
– Polymorphism by name [15]: the evaluation of e1 is postponed until x is actually used

in e2, thus enforcing the call-by-name evaluation to e1.

We take an alternative approach: we restrict that e1 in let x = e1 in e2 must be free
from control effects, that is, pure. Intuitively, an expression is pure when it is polymorphic
in answer types.4 In Danvy and Filinski’s type system, we can define that e is pure if the
judgment Γ ; α ` e : τ ; α is derivable for any type α. Typical examples of pure expressions
are values but the expression 〈e〉 is also pure, since all control effects in e are delimited by
reset. To represent purity of expressions, we introduce a new judgment form Γ `p e : τ .

Now let us formally define the type system of λ
s/r
let . A type context (denoted by Γ ) is

a finite list of the form x1 : A1, · · · , xn : An where the variables x1, · · · , xn are mutually
distinct, and A1, · · · , An are (polymorphic) types. Judgments are either one of the following
forms:

Γ `p e : τ judgment for pure expression
Γ ; α ` e : τ ; β judgment for general expression

Figure 3 lists the type inference rules of λ
s/r
let where τ ≤ A in the rule (var) means

the instantiation of type variables by monomorphic types. Namely, if A ≡ ∀t1. · · · ∀tn.ρ
for some monomorphic type ρ, then τ ≡ ρ[σ1, · · · , σn/t1, · · · , tn] for some monomorphic
types σ1, · · · , σn. The type Gen(σ; Γ ) in the rule (let) is defined by ∀t1. · · · ∀tn.σ where
{t1, · · · , tn} = FTV(σ) − FTV(Γ ).

The type inference rules are a natural extension of the monomorphic type system by
Danvy and Filinski [4]. Pure expressions are defined by one of the rules (fix), (fun), or
(reset).5 They can be freely turned into general expressions through the rule (exp). Pure
expressions can be used polymorphically through the rule (let). It generalizes the standard
let-polymorphism found in ML. We can allow a let expression let x = e1 in e2 even when
e1 is not pure, in which case it is macro-expanded to (λx.e2)e1 where e1 is treated monomor-
phically. Finally, the rule (shift) is extended to cope with the answer type polymorphism of
captured continuations: k is given a polymorphic type ∀t.(τ/t → α/t).

Examples. We show the principal types for the examples shown in Section 2.
Using the type inference rules (augmented with rules for lists, etc.), we can deduce that

append (rewritten with fix) has type ’a list / ’b -> ’a list / (’a list -> ’b),6

4 Thielecke studied the relationship between answer type polymorphism and the absence of control
in depth [18].

5 We could have introduced a more general rule such as: if Γ ; t ` e : τ ; t is derivable for t 6∈
FTV(Γ, τ), then Γ `p e : τ . It would then allow expressions that are not syntactically values nor
reset expressions but in fact pure, such as Sk.k3. We did not take this approach, because we can
always insert reset around pure expressions to make them syntactically pure.

6 This is the principal type for append. In the typical case where the call to append is immediately
enclosed by reset as is the case for append123, ’b is instantiated to ’a list.
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(x : A ∈ Γ and τ ≤ A)

Γ `p x : τ
var

(c is a constant of basic type b)

Γ `p c : b
const

Γ, f : (σ/α → τ/β), x : σ; α ` e : τ ; β

Γ `p fix f.x.e : (σ/α → τ/β)
fix

Γ, x : σ; α ` e : τ ; β

Γ `p λx.e : (σ/α → τ/β)
fun

Γ ; γ ` e1 : (σ/α → τ/β); δ Γ ; β ` e2 : σ; γ

Γ ; α ` e1e2 : τ ; δ
app

Γ `p e : τ

Γ ; α ` e : τ ; α
exp

Γ, k : ∀t.(τ/t → α/t); σ ` e : σ; β

Γ ; α ` Sk.e : τ ; β
shift

Γ ; σ ` e : σ; τ

Γ `p 〈e〉 : τ
reset

Γ `p e1 : σ Γ, x : Gen(σ; Γ ); α ` e2 : τ ; β

Γ ; α ` let x = e1 in e2 : τ ; β
let

Γ ; σ ` e1 : bool; β Γ ; α ` e2 : τ ; σ Γ ; α ` e3 : τ ; σ

Γ ; α ` if e1 then e2 else e3 : τ ; β
if

Fig. 3. Type Inference Rules of λ
s/r
let .

where ’a list -> ’b is a shorthand for ’a list / ’c -> ’b / ’c for a new type variable
’c. Given this type, the type of append123, i.e., reset (fun () -> append [1; 2; 3]),
becomes int list -> int list (or int list / ’c -> int list / ’c). Since it is pure,
append123 can be given a polymorphic type in its answer type ’c. Notice that append123
is not bound to a value but an effectful expression enclosed by reset. If we employed value
restriction, append123 could not be polymorphic, and thus could only be used in a context
with a fixed answer type.

Next, the principal type for visit is ’a list / ’b -> ’a list / ’b list.7 To deduce
this type, we need to use the rule (shift) to give k a polymorphic type in its answer type.
Then, the type of prefix becomes ’a list -> ’a list list. In other words, it accepts
a list of any type ’a. Since it is pure (that is, answer type polymorphic), it can be used in
any context.

Finally, the principal type for % is somewhat complicated:

(’a / ’p -> ’s / ’q) / ’t -> ’s / (’a / ’p -> ’t / ’q)

In the typical case where to_str is pure (’p=’q) and has type ’a -> string, and the
output ’t is string, the above type becomes:

(’a -> string) / string -> string / (’a -> string)

This type describes the behavior of %: given a representation of a type (of type ’a ->
string), it changes the answer type from string to a function that receives a value of the
specified type ’a. Then, sprintf returns a function of this final answer type, thus accepting
an argument depending on the occurrence of %.

3.3 Properties

We have introduced the polymorphic calculus λ
s/r
let with shift and reset. We claim that our

calculus provides a good foundation for studying the interaction between polymorphism and
delimited continuations. To support this claim, we prove the following properties:
7 Again, ’b is typically instantiated to ’a list.
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– Subject reduction (type preservation).
– Progress and unique decomposition.
– Principal types and existence of a type inference algorithm.
– Preservation of types and equality through CPS translation.
– Confluence.
– Strong normalization for the subcalculus without fix.

We first show type soundness, i.e., subject reduction and progress.

Theorem 1 (Subject Reduction). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2, then
Γ ; α ` e2 : τ ; β is derivable. Similarly, if Γ `p e1 : τ is derivable and e1 Ã∗ e2, then
Γ `p e2 : τ is derivable.

The above theorem not only assures that a well-typed program does not go wrong (so-called
weak type soundness [21]) but also guarantees that the evaluated term has the same type
as the original term (strong type soundness [21]). This is the consequence of having answer
types explicitly in our type system. We need three lemmas to prove this theorem.

Lemma 1 (Weakening of Type Context). Suppose Γ1 ⊂ Γ2 and Γ2 is a valid type
context. If Γ1; α ` e : σ; β is derivable, then Γ2; α ` e : σ; β is derivable. Similarly for
Γ1 `p e : σ.

Lemma 2 (Substitution for Monomorphic Variables). Suppose Γ1 ⊂ Γ2, Γ2 is a valid
type context, and Γ1 `p v : σ is derivable.

If Γ2, x : σ; α ` e : τ ; β is derivable, then Γ2; α ` e[v/x] : τ ; β is derivable. Similarly,
if Γ2, x : σ `p e : τ is derivable, then Γ2 `p e[v/x] : τ is derivable.

Lemma 3 (Substitution for Polymorphic Variables). Suppose Γ1 ⊂ Γ2, Γ2 is a valid
type context, and Γ1 `p v : σ is derivable.

If Γ2, x : Gen(σ; Γ1); α ` e : τ ; β is derivable, then Γ2; α ` e[v/x] : τ ; β is derivable.
Similarly for Γ2, x : Gen(σ; Γ1) `p e : τ .

We next prove the progress property, which states that evaluation of a program does not
get stuck. Although a program is usually defined as an expression with no free variables, we
need to refine it, since, for instance, Sk.k3 cannot be reduced further due to the absence of
an enclosing reset. Here, we define a program to be an expression with a toplevel reset of
the form 〈e〉 which has no free variables.

Theorem 2 (Progress and Unique Decomposition). If `p 〈e〉 : τ is derivable, then
either e is a value, or 〈e〉 can be uniquely decomposed into the form E[R] where E is an
evaluation context and R is a redex.

By Theorems 1 and 2, we can conclude that our type system is sound (Type Soundness).
Although our type system may look rather complex, we can smoothly extend Hindley-

Milner type inference algorithm W to accommodate λ
s/r
let . The extended algorithm W ′ takes

two arguments as its inputs: Γ (for a valid context) and e (for a raw expression) such that
all free variables in e are contained in Γ . Then, W ′ either fails or returns a tuple (θ; α, τ, β)
where θ is a substitution for type variables, and α, τ , and β are types.
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Theorem 3 (Principal Type and Type Inference). We can construct a type inference
algorithm W ′ for λ

s/r
let such that:

1. W ′ always terminates.
2. if W ′ returns (θ; α, τ, β), then Γθ; α ` e : τ ; β is derivable. Moreover, for any

(θ′; α′, τ ′, β′) such that Γθ′; α′ ` e : τ ′; β′ is derivable, (Γθ′, α′, τ ′, β′) ≡ (Γθ, α, τ, β)φ for
some substitution φ.

3. if W ′ fails, then Γθ; α ` e : τ ; β is not derivable for any (θ; α, τ, β).

We have implemented a prototypical type inference algorithm system for our language
based on this theorem. The principal types shown in Section 3.2 are all inferred by it.

Finally, we can show confluence for λ
s/r
let , and strong normalization for the subcalculus

without fix. This is in contrast to cupto operator, where strong normalization does not
hold.8

Theorem 4 (Confluence and Strong Normalization).
1. The reduction Ã in λ

s/r
let is confluent.

2. The reduction Ã in λ
s/r
let without fix is strongly normalizing.

4 CPS translation of λ
s/r
let

The semantics of control operators have often been given through a CPS translation. In
their first proposal, Danvy and Filinski gave the precise semantics of shift and reset in terms
of a CPS translation [5, 6]. In this section, we show that it can be naturally extended to
polymorphic setting.

Harper and Lillibridge [11] were the first to systematically study CPS translations
in polymorphic language with control operators. They introduced CPS translations from
Fω+call/cc to Fω, and proved that, under a condition similar to the value restriction, a
call-by-value CPS translation preserves types and semantics (equality). We follow Harper
and Lillibridge to give a type-and-equality preserving CPS translation for polymorphic cal-
culi with shift and reset.

The CPS translation for λ
s/r
let is a Plotkin-style, call-by-value translation, and is defined

in Figures 4 and 5, where the variables κ, m and n are fresh. The target calculus (the
image) of the translation is λlet, the minimum lambda calculus with let-polymorphism and
conditional expressions.9

The type (α/γ → β/δ) is translated to the type of a function which, given a parameter
of type α∗ and a continuation of type β∗ → γ∗ returns a value of type δ∗. For instance,
the type of the visit function (in the prefix example) ’a list / ’b -> ’a list / ’b
list is CPS translated to ’a list -> (’a list -> ’b) -> ’b list.

The translation of reset is the same as that in Danvy and Filinski’s. For shift, we use
a let-expression rather than substitution, so that the captured continuation λnκ′.κ′(κn)
may be used polymorphically in the body [[e]](λm.m). This is essential to retain enough
polymorphism for delimited continuations.
8 See http://okmij.org/ftp/Computation/Continuations.html#cupto-nontermination.
9 λlet may be obtained from λ

s/r
let by eliminating shift, reset, and answer types α and β in Γ ; α `

e : τ ; β and (σ/α → τ/β). Since all expressions are pure in λlet, we do not distinguish two kinds
of judgments.
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b∗ = b for a basic type b

t∗ = t for a type variable t

((α/γ → β/δ))∗ = α∗ → (β∗ → γ∗) → δ∗

(∀t.A)∗ = ∀t.A∗

(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 4. CPS translation for types and type contexts.

c∗ = c

v∗ = v

(λx.e)∗ = λx.[[e]]

(fix f.x.e)∗ = fix f.x.[[e]]

[[v]] = λκ.κv∗

[[e1e2]] = λκ.[[e1]](λm.[[e2]](λn.mnκ))

[[Sk.e]] = λκ.let k = λnκ′.κ′(κn) in [[e]](λm.m)

[[〈e〉]] = λκ.κ([[e]](λm.m))

[[let x = e1 in e2]] = λκ.let x = [[e1]](λm.m) in [[e2]]κ

[[if e1 then e2 else e3]] = λκ.[[e1]](λm.if m then [[e2]]κ else [[e3]]κ)

Fig. 5. CPS translation for values and expressions.

The translation of the let expression let x = e1 in e2 needs care to take polymorphism
into account. We use a let-expression to express the polymorphism in the source term, and
supply the identity continuation λm.m to the CPS transform [[e1]]. This is typable in the
target calculus, since a pure expression is translated to an expression of type ∀t.((τ → t) →
t).

We can prove that the CPS translation preserves types and equality:

Theorem 5 (Preservation of Types). If Γ ; α ` e : τ ; β is derivable in λ
s/r
let , then

Γ ∗ ` [[e]] : (τ∗ → α∗) → β∗ is derivable in λlet.
If Γ `p e : τ is derivable in λ

s/r
let , then, Γ ∗ ` [[e]] : (τ∗ → γ) → γ is derivable for an

arbitrary type γ in λlet.

Theorem 6 (Preservation of Equality). If Γ ; α ` e1 : τ ; β is derivable and e1 Ã∗ e2

in λ
s/r
let , then [[e1]] = [[e2]] in λlet where = is the least congruence relation which contains Ã

in λlet.10

5 Impredicative Polymorphism with Shift and Reset

The second order lambda calculus (Girard’s System F) is a solid foundation for advanced
concepts in programming languages, since its impredicative polymorphism is strictly more
10 The reduction Ã in λlet is the reduction Ã restricted to the expressions in λlet.
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α, β, γ, δ ::= · · · | ∀t.α ::= · · · | ∀t.α type

v ::= · · · | Λt.e ::= · · · | Λt.v value

e ::= · · · | e{α} ::= · · · | Λt.e | e{α} expression

λ
s/r,Std
2 (standard) λ

s/r,ML
2 (ML-like)

Fig. 6. Syntax of λ
s/r,Std
2 and λ

s/r,ML
2 .

Γ `p e : τ

Γ `p Λt.e : ∀t.τ
tabs, t 6∈ FTV(Γ )

Γ ; α ` e : ∀t.τ ; β

Γ ; α ` e{σ} : τ [σ/t]; β
tapp

Fig. 7. Type inference rules for new constructs.

expressive than the predicative one. In this section, we study an extension of (call-by-value
version of) System F with shift and reset. It is an explicitly typed calculus rather than an
implicitly typed calculus like λ

s/r
let . Hence, we add two constructs to the expressions: Λt.e for

type-abstraction and e{α} for type-application. Following Harper and Lillibridge [11], we
consider two calculi with impredicative polymorphism that differ in evaluation strategies.
The first calculus, λ

s/r,Std
2 , adopts the “standard” strategy: Λt.e is treated as a value, and

hence we do not evaluate under Λ. The second one, λ
s/r,ML
2 , adopts the “ML-like” strategy:

Λt.e is a value only when e is a value, and hence we evaluate under Λ.
The syntax of λ

s/r,Std
2 and λ

s/r,ML
2 extends that of λ

s/r
let with the new constructs listed

in Figure 6. We annotate bound variables with types, for instance, λx : α. e. We elimi-
nate let expressions, since they can be macro-defined: for instance, the expression let f =
λx.x in (ff)0 in λ

s/r
let is represented11 as (λf : ∀t.(t → t). f{int → int}(f{int})0)(Λt.λx :

t. x). Monomorphic and polymorphic types are merged, since the type quantifier ∀ may
occur at any place in types. The definitions for values and expressions reflect the difference
between the two calculi.

The type inference rules for new constructs are common to λ
s/r,Std
2 and λ

s/r,ML
2 , and are

given in Figure 7. As can be seen by the rule (tabs), the body e in Λt.e is restricted to a pure
expression. For λ

s/r,ML
2 , this restriction is necessary12 to ensure the type soundness due to a

similar reason as Harper and Lillibridge [11] who proposed to put a kind of value restriction
when abstracting types. Unfortunately, their calculus under the value restriction is not very
interesting, since the standard and ML-like strategies completely agree on the restricted
calculus. We relax the restriction so that e in Λt.e may be an arbitrary pure expression,
which makes the two strategies differ on some expressions.

Operational semantics is defined in Figure 8 with a new reduction rule:

(Λt.e){α} Ã e[α/t]

where e[α/t] denotes the capture-avoiding substitution for types. For λ
s/r,ML
2 , the subex-

pression e in the reduction rule is restricted to a value.
11 We assume that 0 is a constant of type int.
12 For λ

s/r,Std
2 , the restriction is not necessary, and we could have defined a more liberal type system.

In the present paper, however, we choose a uniform, simpler syntax.
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E ::= · · · | E{α} ::= · · · | E{α} | Λt.E e-context

F ::= · · · | F{α} ::= · · · | F{α} pure e-context

R ::= · · · | (Λt.e){α} ::= · · · | (Λt.v){α} redex

λ
s/r,Std
2 λ

s/r,ML
2

Fig. 8. Evaluation Contexts and Redexes.

Polymorphism in λ
s/r,Std
2 is a generalization of Leroy’s “polymorphism by name” [15]:

consider the expression let f = 〈e〉 in (ff)0 for an expression e of type t → t and a constant
0 of type int. It is represented by (λf : ∀t.(t → t).(f{int → int})(f{int})0)(Λt.〈e〉) in
λ

s/r,Std
2 , and it is easy to see that the evaluation of e is postponed until a type is applied to

Λt.〈e〉.

Polymorphism in λ
s/r,ML
2 is a generalization of that for ML. Taking the same example,

the outermost β-redex is computed only after 〈e〉 is computed and returns a value. Then,
the variable f is substituted for the value of Λt.〈e〉, and the body (f{int → int})(f{int})0
is computed.

We can show type soundness for λ
s/r,Std
2 and λ

s/r,ML
2 .

Theorem 7 (Type Soundness). Subject reduction property and progress property hold for
λ

s/r,Std
2 and λ

s/r,ML
2 .

We define a CPS transformation for λ
s/r,Std
2 and λ

s/r,ML
2 in Figures 9 and 10. The target

calculus of the translation is System F augmented with basic types, constants, fix and
conditionals. Equality of the target calculus is the least congruence relation which includes
call-by-value βη-equality, β-equality for types ((Λt.e){α} = e[α/t]), and equality for fix and
conditionals. Since the target calculus is explicitly typed, the CPS translation for expressions
is annotated by types as [[e]]α,τ,β , which is well-defined when Γ ; α ` e : τ ; β is derivable for
some Γ . It is interesting to see how the difference of evaluation strategies affect the difference
of CPS translations in Figures 9 and 10.

Note that the CPS translation for λ
s/r,ML
2 is a natural extension of that for λ

s/r
let : for

instance, [[let f = 〈e〉 in (ff)0]] in λ
s/r
let is equal (up to the call-by-value βη-equality) to

[[(λf : ∀t.(t → t).(f{int → int})(f{int})0)(Λt.〈e〉)]] in λ
s/r,Std
2 .

We can show that the CPS transformations for the two calculi preserve types and equality.
Let T be λ

s/r,Std
2 or λ

s/r,ML
2 .
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(∀t.τ)∗ = ∀t.∀s.((τ∗ → s) → s) for a fresh type variable s

[[Λt.e]]α,∀t.τ,α = λκ : ((∀t.τ)∗ → α).κ(Λt.Λs.[[e]]s,τ,s)

[[e{σ}]]α,τ [σ/t],β = λκ : ((τ [σ/t])∗ → α∗).[[e]]α,∀t.τ,β(λu : (∀t.τ)∗.u{σ∗}{α∗}κ)

Fig. 9. CPS translation for λ
s/r,Std
2 .

(∀t.τ)∗ = ∀t.τ∗

[[Λt.e]]α,∀t.τ,α = λκ : ((∀t.τ∗) → α).κ(Λt.[[e]]τ,τ,τ (λm : τ∗.m))

[[e{σ}]]α,τ [σ/t],β = λκ : ((τ [σ/t])∗ → α∗). [[e]]α,∀t.τ,β(λu : ∀t.τ∗.κ(u{σ∗}))

Fig. 10. CPS translation for λ
s/r,ML
2 .

Theorem 8 (Preservation of Types and Equality).

1. If Γ ; α ` e : τ ; β is derivable in T , then Γ ∗ ` [[e]]α,τ,β : (τ∗ → α∗) → β∗ is derivable in
the target calculus.

2. If Γ `p e : τ is derivable in T , then Γ ∗ ` [[e]]s,τ,s : (τ∗ → s) → s is derivable for any type
variable s in the target calculus.

3. If Γ ; α ` e : τ ; β is derivable in T , and e Ã∗ e′, then [[e]]α,τ,β = [[e′]]α,τ,β under the
equality of the target calculus.

6 Conclusion

We have introduced predicative and impredicative polymorphic typed calculi for shift and
reset, and investigated their properties such as type soundness and relationship to CPS
translations. We have extended Danvy and Filinski’s monomorphic type system for shift
and reset to polymorphic one, and have shown that a number of pleasant properties hold
for the polymorphic calculi. We have shown that our calculi have a natural representation
for the “purity” of expressions, and that the purity restriction suffices for the type systems
to be sound, thus generalizing value restriction used in Standard ML and OCaml.

In the literature, a number of authors have tackled the unsoundness problem of polymor-
phism and effects [19, 15, 20, 11]. We have proposed a simple solution based on the notion
of “purity”, which is, in the presence of the reset operator, less restrictive than the notion
of “syntactic values” in ML. We have also investigated two evaluation strategies for impred-
icative calculi, each of which generalizes ML’s and Leroy’s solutions for the unsoundness
problem.

Several authors have studied polymorphic calculi with control operators for delimited
continuations. Introducing polymorphism into a calculus with shift and reset has been im-
plicit by Danvy who gave many programming examples (see, for instance, [3]). In fact, his
interesting examples encouraged us to formulate the calculi in the present paper. Filinski [7]
implemented shift and reset in SML/NJ, thus enabling one to write polymorphic functions
with shift and reset. However, the expressivity of his system is limited since the answer type
is fixed once and for all. The same goes for the calculus with cupto by Gunter et al. [9].
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Kiselyov et al. [14] have implemented shift and reset in OCaml, and their examples made
use of let-polymorphism. However, their paper did not give formal accounts for polymor-
phism. As far as we know, the present paper is the first to provide a systematic study on
the interaction of polymorphism and control operators for delimited continuations.

Although we believe that our calculus serves as a good foundation for studying polymor-
phic delimited continuations calculi, this is only the first step; we need deeper understanding
and better theories. The first author of the present paper has studied logical relations based
on Danvy and Filinski’s monomorphic type system [1], but it is not apparent if his result
extends to the polymorphic case. Hasegawa [12] studied parametricity principle for the sec-
ond order, call-by-name λµ-calculus (similar to System F + call/cc), and obtained the
notion of “focal parametricity”. Although he works in call-by-name, we hope to find some
connection between our work and his results in the future. A recent work by Mogelberg and
Simpson [16] treats a similar notion in call-by-value.

Acknowledgments. We would like to thank Olivier Danvy and Masahito Hasegawa for
helpful comments and suggestions. This work was partly supported by JSPS Grant-in-Aid
for Scientific Research (C) 18500005 and 16500004.
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A Proofs of Theorems and Lemmas

In this appendix, we give detailed proofs of theorems and lemmas for interested readers.

Proof (Lemma 1). This lemma can be proved by induction on the derivation of Γ1; α ` e :
σ;β. The only tricky case is the rule (let) in which the type variables in FTV(Γ2) − FTV(Γ1)
may clash with the type variables being generalized by this rule, i.e., those type variables in
FTV(σ)−FTV(Γ ) in this rule. However, since these type variables are so called eigen variables,
and can be systematically renamed to fresh type variables, we can manage this case.

The other cases can be proved easily.

Lemmas 2 and 3 are proved by straightforward induction on the derivation, and the proof
is omitted.

Proof (Theorem 1). It suffices to prove that, for each reduction rule R Ã e, if Γ ; α ` R : τ ; β
is derivable, then Γ ; α ` e : τ ; β can be derived.

The cases when R is (λx.e1)v or let x = v in e1 can be proved using Lemmas 2 and 3.
The cases when R is 〈v〉 or conditionals are easy to prove.

The remaining case is when R ≡ 〈F [Sk.e1]〉 and e ≡ 〈let k = λx.〈F [x]〉 in e1〉. We
consider the following set of reductions:

(Sk.e1)e2 → Sk′.let k = λu.〈k′(ue2)〉 in e1

v(Sk.e1) → Sk′.let k = λu.〈k′(vu)〉 in e1

〈Sk.e〉 → 〈let k = λu.u in e〉
〈(λu.〈F [u]〉)e〉 → 〈F [e]〉

(λx.x)e → e

It is not difficult to see that the reduction R Ã e can be “decomposed” into these reductions.
In other words, we have:

〈F [Sk.e1]〉 →∗ 〈let k = λx.〈F [x]〉 in e1〉

which can be proved by induction on the pure evaluation context F . Then, it remains to
show the subject reduction property for these reductions, but all of them can be carried out
easily.

Proof (Theorem 2). We can prove that, if ; α ` e1 : τ ; β is derived (i.e., e1 has no free
variables), e1 is in one of the following forms: (1) a value v, (2) E[R] for some evaluation
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context E and redex R, or (3) F [Sk.e2] for a pure evaluation context F , a variable k and
an expression e2.

Suppose `p 〈e〉 : τ is derived. Then we have ;α ` 〈e〉 : τ ; α, and hence 〈e〉 must be one
of the three forms above. Since 〈e〉 has an outermost reset, the case (3) cannot happen, and
we obtain the conclusion of the theorem.

The type inference algorithm stated in Theorem 3 is given in Section B of the appendix.

Proof (Theorem 4). Confluence can be proved by Takahashi’s parallel reduction which is
omitted. (Note we do not have overlapping redexes.)

To prove strong normalization for λ
s/r
let without fix, we define a refined CPS translation,

which produces fewer administrative redexes (administrative redexes are those redexes gen-
erated at the translation time) than the CPS translation we gave in the main text of the
paper. There are several such CPS translations since Plotkin’s colon translation, and we use
a slightly modified version of Danvy and Filinski’s two-level lambda calculus [6].

In the two-level lambda calculus, λ and application (explicitly written as @ here) are
classified13 into “static” and “dynamic”, depending on whether they constitute administra-
tive redexes (i.e., they are generated at the translation time) or source redexes (i.e., they
exist in the source expression). The static lambda’s and @’s are annotated by overlines as λ
and @, while the dynamic ones as λ and @.

The target of the modified CPS translation consists of dynamic constructs and those
constructs which are not lambda’s and application symbols. (We will later define the precise
grammar of the target language after defining the refined CPS translation.)

The modified CPS translation [[e, K]] takes an expression e and an extra argument K
(representing the continuation), and returns an expression, which is defined by:

[[v,K]] = K@v∗

[[e1@e2, K]] = [[e1, λm1.[[e2, λm2.(m1@m2)@(λn. K@n)]]]]

[[〈e〉, K]] = K@[[e, λm.m]]
[[Sk.e,K]] = let m1 = true in

let k = λn.λκ′.κ′@(K@n) in [[e, λm.m]]

[[let x = e1 in e2, K]] = let x = [[e1, λm.m]] in [[e2,K]]

[[if e1 then e2 else e3, K]] = [[e1, λm.if m then [[e2,K]] else [[e3,K]]]]
x∗ = x

c∗ = c

(λx.e)∗ = λx.λκ.[[e, λm. κ@m]]

where m,m1,m2,n,κ, and κ′ are fresh variables. In the definition for shift, we have added a
redundant redex let m1 = true in · · · for the purpose of SN proof.

The complete CPS transform of an expression e is defined by C[[e]] ≡ λκ.[[e, λx.κ@x]].

13 In fact, Danvy and Filinski classified every construct into two classes, but here we need to classify
only lambda’s and applications, and other constructs are implicitly classified as “dynamic”.
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The grammar of the target language of the refined CPS translation is defined as follows:

d ::= c | x | n | n@d | (d@d)@(λn.d) | λx.λκ.d

| let x = d in d | let n = d in d | if d then d else d

| s

s ::= K@d

K ::= λn.d where n ∈ FV(d)

In the definition, x is a source variable (which appears in the source expression of the CPS
translation), n is an auxiliary variable (which is introduced by the CPS translation), d is a
dynamic expression, s is a static expression, and K is a (static) continuation.

It is important to note the side condition for K, n ∈ FV(d), which means that the
continuation K does not discard its argument n.

Let λ+
let be the typed calculus λlet with the function space being replaced by two function

spaces α→β (for static functions) and α→β (for dynamic ones), and, accordingly, lambda
abstractions and applications being replaced by two versions.

Then, we can easily prove the following for any expression e typable in λ
s/r
let :

– C[[e]] follows the grammar above (including the side condition of the arguments of con-
tinuations).

– C[[e]] typechecks in λ+
let.

– Subject reduction w. r. t. static β-reduction holds. Namely, if we reduce a static β-redex
(λx.e1)@e2 to e1[e2/x], then an expression typable in λ+

let reduces to an expression
still typable in λ+

let. Also if an expression before a static β-reduction satisfies the side
condition of the arguments of continuations, so does the expression after the reduction.

The reduction of static β-redex (λx.e1)@e2 → e1[e2/x] is Church-Rosser and strongly
normalizing in the target language, and we can take the unique normal form of each expres-
sion in the target language, which does not have any static constructs λ and @. Let us write
the unique normal form (w.r.t. static β reduction) of a term e by NF(e).

We are going to prove the key property that, for any reduction e1 Ã e2 in λ
s/r
let other

than the reset-value reduction (〈v〉 Ã v), and any continuation K generated by the grammar
above, we have NF([[e1, K]]) Ã+ NF([[e2,K]]) in the target calculus λlet

14.

– If the reduction is the call-by-value β reduction (the first reduction in Figure 2), or
reductions for let (the fifth reduction) or conditional (the sixth and seventh reductions),
then the key property can be proved easily.

– For the fourth reduction 〈F [Sk.e]〉 Ã 〈let k = λx.〈F [x]〉 in e〉, we first prove that
NF([[F [e], K]]) ≡ NF([[e, λm.[[F [m],K]]]]) for any pure e-context F , any expression e, and
any continuation K, which can be proved by induction on F .

14 Since we consider only normal forms wrt static β-redexes, all reductions in the target calculus
are dynamic β-reduction, let-reductions, or reductions for conditionals.
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Then we can prove:

NF([[〈F [Sk.e]〉,K]])

≡ NF(K@[[F [Sk.e], λm.m]])

≡ NF(K@[[Sk.e, λm′.[[F [m′], λm.m]]]])

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@((λm′.[[F [m′], λm.m]])@n) in [[e, λm.m]]))

≡ NF(K@(let m1 = true in let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]]))

Ã+ NF(K@let k = λn.λκ′.κ′@[[F [n], λm.m]] in [[e, λm.m]])

Note that, since K does not discard its argument, the reduction let m1 = true in e1 Ã
e1 is preserved, and at least one step reduction occurs during this sequence. We also have:

NF([[〈let k = λx.〈F [x]〉 in e〉,K]])

≡ NF(K@let k = λx.λκ.κ@[[F [x], λm.m]] in [[e, λm.m]])

and therefore the resulting expressions are the same up to α-equivalence, hence we have:

NF([[〈F [Sk.e]〉,K]]) Ã+ NF([[〈let k = λx.〈F [x]〉 in e〉,K]])

We also note that the reset-value reduction 〈v〉 Ã v will be CPS translated to identity, that
is, NF([[〈v〉, K]]) ≡ NF([[v,K]]) for a value v and a continuation K.

In summary we have:

– If e1 Ã e2 by the reduction other than reset-value, then NF(C[[e1]]) Ã+ NF(C[[e2]]).
– If e1 Ã e2 by the reset-value reduction, NF(C[[e1]]) ≡ NF(C[[e2]]).

We now prove the strong normalization for λ
s/r
let . Suppose there is an infinite reduction

sequence e1 Ã e2 Ã · · · in λ
s/r
let . Since the reset-value reduction (〈v〉 Ã v) cannot be ap-

plied to an expression infinite many times, the reduction sequence must contain infinitely
many reductions which are not reset-value. Then by the property above, we have an infi-
nite sequence NF(C[[e1]]) Ã+ NF(C[[e2]]) Ã+ · · · . But the target calculus λlet is a strongly
normalizing calculus, we get contradiction. Hence, λ

s/r
let does not have an infinite reduction

sequence.

Proof (Theorem 5). The two statements in the theorem are proved by simultaneous induction
on the derivation of Γ ; α ` e : τ ; β and that of Γ `p e : τ .

We only prove the case when the last rule of the derivation is the rule (let). Then
e ≡ (let x = e1 in e2), and we have derivations for Γ `p e1 : σ and Γ, x : Gen(σ, Γ ); α `
e2 : τ ; β. By induction hypothesis, we can derive Γ ∗ ` [[e1]] : (σ∗ → σ∗) → σ∗, and then
Γ ∗ ` [[e1]](λm.m) : σ∗. Again by induction hypothesis, we can derive Γ ∗, x : (Gen(σ, Γ ))∗ `
[[e2]] : (τ∗ → α∗) → β∗. Since (Gen(σ, Γ ))∗ ≡ Gen(σ∗, Γ ∗), we can apply the rule (let) to
obtain Γ ∗ ` [[let x = e1 in e2]] : (τ∗ → α∗) → β∗.

Proof (Theorem 6). This theorem can be proved in the same manner as in Kameyama and
Hasegawa [13], where the soundness and completeness of the CPS translation with respect
to the equality were proved.
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Proof (Theorem 7). To prove the subject reduction property, we need to consider two new
cases.

(Case-1: (Λt.e){α} Ã e[α/t])

We first note that λ
s/r,Std
2 and λ

s/r,ML
2 both enjoy the type substitution property which

means, if Γ ; α ` e : τ ; β is derivable then, for any substitution θ for type variables, we
can derive Γθ; αθ ` eθ : τθ; βθ. Then, the subject reduction property for Case-1 is easily
proved.

(Case-2: 〈F [Sk.e1]〉 Ã 〈let k = λx.〈F [x]〉 in e2〉)

In λ
s/r
let , this case has been proved by “decomposing” this big reduction into several

smaller reductions. In λ
s/r,Std
2 and λ

s/r,ML
2 , we have a new small reduction after this “de-

composition” as:

(Sk.e1){α} → Sk′.let k = λu.〈k′(u{α})〉 in e1

To prove the subject reduction property for this case is again straightforward.

Progress property can be proved in the same way as that for λ
s/r
let .

Proof (Theorem 8). Due to the modularity of the CPS translations, we only have to prove
the cases for new constructs.

The proof of the type-preservation part of the theorem is quite standard for both calculi.
The only problem was how to define them correctly.

The proof of the equation-preservation part of the theorem needs to treat two new
reductions that appeared in the proof of Theorem 7 above. In fact, we need to prove four
new cases (two new reductions for two calculi).

We frequently omit the type annotations in the following.

(Case-1 for λ
s/r,Std
2 : (Λt.e){α} Ã e[α/t])

[[(Λt.e){α}]]β,τ [α/t],β ≡ λκ.(λκ′.κ′(Λt.Λs.[[e]]))(λu.u{α∗}{β∗}κ)

Ã λκ.(λu.u{α∗}{β∗}κ)(Λt.Λs.[[e]])

Ã+ λκ.[[e]][α∗/t][β∗/s]κ
≡ λκ.[[e]][α∗/t]κ
= [[e[α/t]]]β,τ [α/t],β

From the third last to the second last line, we used the fact that e does not contain the type
variable s freely. From the second last to the last line, we used η-equality.

(Case-2 for λ
s/r,Std
2 : 〈F [Sk.e1]〉 Ã 〈let k = λx.〈F [x]〉 in e2〉)

Again we pick up the following smaller reduction by decomposing the big reduction.

(Sk.e1){α} → Sk′.let k = λu.〈k′(u{α})〉 in e1
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[[(Sk.e1){α}]]
≡ λκ.(λκ1.let k = λnκ2.κ2(κ1n) in [[e1]](λm.m))(λu.u{σ∗}{α∗}κ)

Ã+ λκ.let k = λnκ2.κ2(n{σ∗}{α∗}κ) in [[e1]](λm.m)
[[Sk′.let k = λu.〈k′(u{α})〉 in e1]]

Ã+ λκ.let k′ = λnκ1.κ1(κn) in

let k = λu.λκ3.κ3(u{σ∗}{α∗}(λw.k′w(λm.m))) in [[e1]](λm.m)

Ã+ λκ.let k = λu.λκ3.κ3(u{σ∗}{α∗}(λw.κw)) in [[e1]](λm.m)

The CPS translations of the two terms are equal up to call-by-value η-equality: λw.κw = κ.
(Case-1 for λ

s/r,ML
2 : (Λt.v){α} Ã v[α/t])

[[(Λt.v){σ}]]β,τ [σ/t],β ≡ λκ.(λκ1.κ1(Λt.(λκ2.κ2(v)∗)(λm.m)))(λu.κ(u{σ∗}))

Ã+ λκ.κ((Λt.v∗){σ∗})
Ã λκ.κ(v∗[σ∗/t])
≡ [[v[σ/t]]]

(Case-2 for λ
s/r,ML
2 : 〈F [Sk.e1]〉 Ã 〈let k = λx.〈F [x]〉 in e2〉)

Again we shall prove the following case.

(Sk.e1){α} → Sk′.let k = λu.〈k′(u{α})〉 in e1

[[(Sk.e1){α}]]
≡ λκ.(λκ1.let k = λnκ2.κ2(κ1n) in [[e1]](λm.m))(λu.κ(u{α∗}))
Ã+ λκ.let k = λnκ2.κ2(κ(n{α∗})) in [[e1]](λm.m)
[[Sk′.let k = λu.〈k′(u{α})〉 in e1]]

Ã+ λκ.let k′ = λnκ1.κ1(κn) in

let k = λu.λκ3.κ3((λw.k′w(λm.m))(u{α∗})) in [[e1]](λm.m)

Ã+ λκ.let k = λuκ3.κ3(λw.κw)(u{α∗}) in [[e1]](λm.m)

Again using call-by-value η-equality, the CPS translations of the two terms are equal.

B Type Inference Algorithm for λ
s/r
let

We can extend Hindley-Milner’s type inference algorithm W to λ
s/r
let . The extended algorithm

is called W ′ here.
W ′ receives two parameters as inputs: a valid context Γ and a raw expression e such

that all free variables in e are contained in Γ .
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W ′(Γ, e) either succeeds or fails. If it succeeds, it returns a quadruple (θ; α, τ, β) where
θ is a substitution for type variables, α, τ and β are types such that Γθ; α ` e : τ ; β is
derivable.

We define a few important cases for W ′. In the following, it should be silently understood
that, if any subcomputation (a recursive call to W ′ or unification) fails, then the whole
computation fails.

(Case 1: e is a variable x)
Since x appears in Γ , we can assume (x : ∀t1. · · · ∀tn.σ) ∈ Γ with monomorphic σ. Choose

fresh type variables s0, s1, · · · , sn. Then the algorithm returns ([ ]; s0, σ[s1, · · · , sn/t1, · · · , tn], s0)
where [ ] denotes the empty substitution.

(Case 2: e is e1e2)
Compute W ′(Γ, e1) to obtain (θ1; α1, τ1, β1), and compute W ′(Γθ1, e2) to obtain (θ2; α2, τ2, β2).
Choose fresh type variables t1 and t2, and unify: τ1θ2 = (τ2/t1 → t2/α2)θ2 and α1θ2 = β2.

Let θ3 be the most general unifier of these equations, and return (θ3◦θ2◦θ1; t1θ3, t2θ3, β1θ2θ3).
(Case 3: e is Sk.e1)
Choose fresh type variables t1, t2 and t3, and let Γ ′ be Γ, k : ∀t1.(t2/t1 → t3/t1). Compute

W ′(Γ ′, e) to obtain (θ1; α, τ, β). Unify α = τ , and let θ2 be its most general unifier. Then
return (θ2 ◦ θ1; t3θ, t2θ, βθ).

(Case 4: e is 〈e1〉)
Compute W ′(Γ, e1) to obtain (θ1; α, τ, β). Unify α = τ and let θ2 be its most general

unifier. Choose a fresh type variable t. Returns (θ2 ◦ θ1; t, βθ2, t).
(Case 5: e is let x = e1 in e2)
If e1 is not pure, i.e., not a syntactic value or a reset expression, then it should be under-

stood as a monomorphic let, or an abbreviation of (λx.e2)e1, then compute W ′(Γ, (λx.e2)e1).
If e1 is pure, it is a polymorphic let expression. Compute W ′(Γ, e1) to obtain (θ1; α1, τ1, β1).

(It is automatically guaranteed that, α1 ≡ β1 is a type variable which does not appear in
any other types.) Let t1, · · · , tn be the type variables in FTV(τ) − FTV(Γθ1). Let Γ ′ be
Γθ1, x : ∀t1. · · · ∀tn.τ . Compute W ′(Γ ′, e2) to obtain (θ3; α3, τ3, β3). Then return (θ3 ◦ θ2 ◦
θ1; α3, τ3, β3).

Other cases are straightforward.
We can prove Theorem 3 in the same manner as that for W .
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