University of Tsukuba

Graduate School of Science and Technology
Degree Programs in Systems and Information Engineering
Master’s/Doctoral Program in Computer Science

https://www.cs.tsukuba.ac.jp/english/

Information Mathematics and Modeling
Intelligent Software
Software Systems
Computer Architecture
Media Engineering
Intelligent Systems
Master’s / Doctoral Program in Computer Science

We offer a wide variety of educational programs, including an English program that allows students to obtain a master's degree in English only, and a program that certifies completion through a practical IT curriculum. Research fields range from basic technologies such as computers, networks, and security for the generation, processing and use of "information", to application technologies such as Web applications, user interfaces, voice and image recognition, and high-performance computing.

Admission policy

Individuals with basic knowledge in the fields of information and mathematics and with a strong desire to acquire specialized knowledge, technical skills, basic R&D skills, and practical skills in the information and mathematics fields at graduate school.

Curriculum policy

Our curriculum provides expertise and research ability in information mathematics and modeling, intelligent software, software systems, computer architecture, media engineering, intelligent systems, and a wide range of basic knowledge and ethics in the engineering field. Through research guidance toward master’s dissertation, we provide education to foster human resources who can find and solve problems from a wide perspective in multiple fields of science and technology.

Diploma policy

Upon satisfying the requirements for completion of the master’s program / doctoral program prescribed in the University of Tsukuba Graduate School and related Regulations, and after submitting a dissertation or a specific research report, a master’s / doctoral (engineering) degree will be awarded to those who have been certified by the final examination to have acquired general knowledge and skills as specified in this program.

Study model

The Information Science Course aims at acquiring advanced technologies in the information field, whereas the Frontier Informatics Course, in addition to the above, aims at acquiring specialized knowledge related to the application of information technology in any problem area of science and engineering.

Achievements evaluation

In order to complete their master's / doctoral program, students are encouraged to study systematically by confirming the achievement status of knowledge and skills (general purpose / dedicated competence) to be acquired. Achievement evaluation results will be treated as part of the final examination conducted along with the dissertation review.
In the Master’s / Doctoral Program in Computer Science, we offer a variety of educational programs, including an English program that allows students to obtain a master’s degree in English only, and a program that certifies completion through a practical IT curriculum.

The Computer Science English Program

The Computer Science English Program fosters the development of qualified international researchers in computer science. This program is for those earning the Master’s degree in Computer Science.

Practical IT curriculum

This curriculum aims to develop practical skills in software and system development. It consists of PBL (project-based training) courses solving problems that occur in the real world through group work, as well as practice-oriented courses that supplement them.

International Joint Master's Program

This program organizes master’s dual degree programs with the University of Grenoble-Alpes (France) and the University of Bochum (Germany). Students attend lectures and do research at the University of Tsukuba and partner schools, with the aim to obtain master’s degrees from both the University of Tsukuba and partner schools.

Government-sponsored international students priority placement

The Ministry of Education, Culture, Sports, Science and Technology adopted in 2019 a “Special Program for Priority Assignment of Government-sponsored International Students” and is implementing the “Frontier Informatics International Program”.

Early completion program

This is a program for students who have a certain level of research achievements and abilities to complete a standard 3 years doctoral program within minimum one year. Based on research achievements accumulated during their work activities, students receive guidance from supervisors to write and complete their doctoral dissertation.

Center for Artificial Intelligence Research (C-AIR)

The Center for Artificial Intelligence Research was opened in April 2017 to promote advanced research and education on AI. Through the cooperation of numerous faculty members, this center supports and organizes the activities and collaborations between AI research groups from different fields in the University, promoting the interdisciplinarity which is key to the University of Tsukuba’s research vision.

Division of Fundamental Research in Artificial Intelligence

- Computational Algorithms, Machine Learning
- Big Data and Crowdsourcing, Privacy and Security
- Service Engineering, Human Technology
- Healthcare and Sports
- Medical and Materials
- Society and Arts
- Mobility

Division of Applied Research

- Various big data of University of Tsukuba
- Various big data of University of Tsukuba research centers
- Research institutions in Tsukuba Science City
- Local government
- RIKEN Center for Advanced Intelligence Project
- NAIST Artificial Intelligence Center
- Universities
- Corporate research institutes
- Advanced utilization technologies
- High value-added data
- Various underlying technologies leading to future social systems

<Demonstration model city Tsukuba>
Research leading to social implementation

Advancement of the “Human supporting AI” research towards Society 5.0

Various big data of University of Tsukuba
Research leading to social implementation
Faculty members and their research areas

Information Mathematics and Modeling

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Detailed Description of Research Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAWABE Tohru</td>
<td>Programming languages and symbolic logic: type system, metaprogramming, programming logic, program verification.</td>
</tr>
<tr>
<td>KANO Hiroshi</td>
<td>Human-computer interaction: Visual programming and interaction techniques for end users.</td>
</tr>
<tr>
<td>SANO Yoshio</td>
<td>Information visualization: visual interface, visual analytics, network visualization, graph drawing.</td>
</tr>
<tr>
<td>IMAKURA Akira</td>
<td>Program verification: model checking, type systems, program analysis, automated theorem proving.</td>
</tr>
<tr>
<td>KAWAGUCHI Ikkaku</td>
<td>User interface software, Ubiquitous computing, Computer-supported cooperative work (SCSW).</td>
</tr>
<tr>
<td>KOBAYASHI Yutaka</td>
<td>Mathematical optimization: Numerical algorithms for globally solving nonconvex optimization problems.</td>
</tr>
<tr>
<td>SAIOH Tetsuya</td>
<td>Chaos, fractals and bifurcation theory. Computer amusement oriented elementary technologies.</td>
</tr>
<tr>
<td>TAKAHASHI Shinsuke</td>
<td>Program theory and musical informatics: Logical foundation of verification and analysis of realtime intellectual program systems and musical information.</td>
</tr>
<tr>
<td>IMARITA Atsuo</td>
<td>Software engineering, software development process, human computer interaction; intercultural communication, global software engineering.</td>
</tr>
<tr>
<td>SHIOZUKA Hiroshi</td>
<td>Discrete Mathematics, Graph Theory, Combinatorics.</td>
</tr>
<tr>
<td>SANO Yoshio</td>
<td>Nonlinear time series analysis: theory and its applications.</td>
</tr>
<tr>
<td>HIYAMA Yoshito</td>
<td>Numerical analysis, High performance parallel algorithms, Parallel solver for large-scale linear systems and eigenvalue problems, Parallel numerical software.</td>
</tr>
<tr>
<td>MURAKAMI Kenichi</td>
<td>Numerical linear algebra, large sparse matrix computations, preconditioning algorithms for Krylov subspace methods, least squares problems, singular linear systems.</td>
</tr>
<tr>
<td>MORIKUNI Koichi</td>
<td>Intelligent robots and sensing: Mobile robots working in humans' daily life environment, real world sensory information processing, networked robotics, cooperative multiple mobile robots.</td>
</tr>
<tr>
<td>OHYA Akihisa</td>
<td>Social Media Analysis, Web Science, Artificial Life.</td>
</tr>
<tr>
<td>SHIZUKI Buntarou</td>
<td>Operating systems, distributed systems, virtualization, privacy protection, decentralized social networking services.</td>
</tr>
<tr>
<td>MASUKE Koji</td>
<td>Multi-agent systems: Game theory, Mathematical logic, Formal methods, Autonomous distributed systems.</td>
</tr>
<tr>
<td>MAEDA Atsushi</td>
<td>Implementation of programming languages, garbage collection, runtime system, resource management.</td>
</tr>
<tr>
<td>MACHIDA Fumio</td>
<td>System dependability, dependability evaluation, stochastic models, system design optimization.</td>
</tr>
<tr>
<td>YASUNAGA Moritoshi</td>
<td>Machine Learning, Neural Network, Pattern Recognition, Biological Signal Processing.</td>
</tr>
<tr>
<td>HSU Shih-Tao</td>
<td>Database system, knowledge-base system, e-education, information retrieval, knowledge discovery and data mining.</td>
</tr>
<tr>
<td>TOSHIKAWA Sho</td>
<td>Database systems and data engineering: Large-scale data analysis, Data mining, and Graph databases.</td>
</tr>
<tr>
<td>CHEN Hanxiang</td>
<td>Network mining, Social network analysis, Computational social science.</td>
</tr>
<tr>
<td>HAYASE Yasuhiro</td>
<td>Software Engineering: Program comprehension, software repository mining, software maintenance.</td>
</tr>
<tr>
<td>KAMEYAMA Yukiyoshi</td>
<td>VLSI engineering: VLSI design and implementation of parallel and distributed systems, microarchitecture, microprocessor.</td>
</tr>
<tr>
<td>TANAKA Yasuyuki</td>
<td>System software, data-intensive computing, Parallel and distributed system software, data-intensive computing, Parallel and distributed system software, data-intensive computing.</td>
</tr>
<tr>
<td>SHIRAMIZU Hideaki</td>
<td>Signal Processing.</td>
</tr>
<tr>
<td>TSUGAWA Sho</td>
<td>Pattern Recognition, Biological Machine Learning, Neural Network, Artificial Life.</td>
</tr>
<tr>
<td>MACHIDA Fumio</td>
<td>Integer systems, Autonomous distributed systems.</td>
</tr>
<tr>
<td>TAKAHASHI Daisuke</td>
<td>Software Engineering: Program comprehension, software repository mining, software maintenance.</td>
</tr>
<tr>
<td>MAEDA Atsushi</td>
<td>System dependability, dependability evaluation, stochastic models, system design optimization.</td>
</tr>
<tr>
<td>TATEBE Osamu</td>
<td>Machine Learning, Neural Network, Pattern Recognition, Biological Signal Processing.</td>
</tr>
</tbody>
</table>
Faculty Detailed Description of Research Field

Media Engineering

- **KINUGA Shigetomo**
 - Information communication engineering: Process algebra, network protocols and performance evaluation of communication systems.

- **SHOUDOU Kanahiro**
 - Design and operation technology for academic network systems, information systems and computing systems.

- **YAMAGIWA Shinya**
 - Analog integrated circuit and circuit theory: Highly linearized CMOS transistors and complex filters.

- **TANAKAGUCHI Hiroshi**
 - Algorithm and application development for stream data compression and AI technology for human/system movements. System integration techniques for embedded, parallel computing and stream computing systems.

- **TOMIYASU Hiroshi**
 - Reconfigurable architecture, computing, and highly efficient systems with high performance and low-power consumption applied to AI, encryption, IoT, and scientific applications.

- **MAKINO Shoji**
 - Making better use of significantly progressing microprocessors for parallel computer architecture after Age of vector supercomputers and massively parallel computers.

- **KANAGAWA Kenji**
 - VLSI Engineering, Reconfigurable computing, Accelerator for hard computation problems using reconfigurable LSI.

- **SAKANOUHE Byohi**

- **NAKADA Hidemoto**

- **KINUHID NOBoru**
 - Numerical analysis: Numerical algorithms for large scale linear systems. Parallel computing for eigenvalue problems.

- **TADANO Hiroto**

- **SUZUKI Norio**
 - Image processing and medical imaging: Image and video processing, imaging science, medical imaging (CT, PET, MRI) and computer-aided diagnosis, intelligent image sensing, music and sound processing, mathematics of inverse problems.

- **KUROKO Hironori**
 - Learning, adaptive information processing, signal / image encoding, and applications to retrieval and restoration.

- **KAMEYAMA Kentaro**
 - Acoustic signal processing, Music signal processing, Computational auditory scene analysis: Blind source separation, Acoustic echo cancellation, Segregation, processing, synthesis, 3D reproduction, and retrieval of music, Technical realization of the cocktail party effect.

- **MITANI Jun**
 - Computer graphics, image editing techniques, computer-assisted creation of illustration and animation, non-photo realistic rendering (NPR), real-time rendering and visual simulation.

- **KANEMOTO Toyohiro**
 - Multi-perception media processing: Signal processing, image/video processing, compression, perceptual encryption, information hiding, sparse representation, filter banks/wavelets.

- **FUJITA Fumiharu**
 - Intelligent image processing: medical image recognition, computer-aided diagnosis, computer vision, 3-D object recognition.

- **YAMADA Takashi**
 - Speech and acoustic information processing: speech recognition, sound scene understanding, multi-channel signal processing, media quality assessment, and e-learning.

- **ENDO Yuki**
 - Computer graphics, image synthesis and editing techniques, image recognition, data mining, machine learning, deep learning.

Intelligent Systems

- **KINDAIDO Noboru**
 - Computational vision: representation of shape, perception of 3D structure, figure-ground segregation, cortical representation, cognitive neuroscience, and psychophysics.

- **SAKAI Ko**
 - Security and Privacy for Artificial Intelligence: Machine Learning, Artificial Intelligence, Data Privacy, Applied Cryptography.

- **SUKUMA Jun**
 - Pattern recognition and computer vision: Face recognition, 3D object recognition, human sensing, robot vision.

- **FUKUI Kazunori**
 - Natural Language Processing on the Web using statistical methods: Statistical machine translation and Web documents processing such as sentiment analysis.

- **YAMAMOTO Mikio**
 - Black Box Optimization and its Applications: probabilistic model based optimization, evolutionary computation, hyper-parameter optimization in machine learning, reinforcement learning, application of information geometry to algorithm design.

- **AKIMOTO Toshi**
 - Natural Language Processing: Information extraction and knowledge acquisition from natural language data, opinion mining, and sentiment analysis.

- **KOBAYASHI Yukihiro**
 - Human computation, Crowdsourcing, Collective intelligence, Machine learning, Data mining.

- **YAMASHITA Yusuke**

- **FUJIBAYASHI Kazuto**
 - Mathematical statistics and machine learning: statistical inference, statistical learning, fairness and privacy in machine learning, data mining.

Professors of Cooperative Graduate School

- **INO Shinichi** (National Institute of Advanced Industrial Science and Technology)
 - Human machine interface, soft actuator technology, information accessibility, haptic interface design, healthcare and quality of life technology, rehabilitation engineering.

- **SAITO Mitsuhiro** (Institute of Physical and Chemical Research (RIKEN))
 - High-performance parallel computing systems: Cluster computing, parallel programming systems such as OpenMP and MPI, benchmarking and performance evaluation of parallel computing systems, parallel and distributed computing on Grid

- **ISHIMOTO Hitotaka** (National Institute of Advanced Industrial Science and Technology)
 - Ubiquitous vision, Robot vision, Stereo omnidirectional system (SOS).

- **SATO Yutaka** (National Institute of Advanced Industrial Science and Technology)
 - Parallel computing, distributed computing, grid, cloud, machine learning.

- **NAKAMURA Noboru** (National Institute of Advanced Industrial Science and Technology)
 - Parallel and distributed storage, Large-scale data processing, Cloud computing, Grid computing, E-science applications.
Courses

Master’s Program

Common courses:
- Master’s Seminar in Computer Science
- Master’s Research in Computer Science I
- Master’s Research in Computer Science II
- Instructional Design
- Data Analysis
- Experiment Design in Computer Sciences
- Program Development on Embedded System Services and Data Privacy
- Special Lecture on Social Innovation by ICT Internship I
- Internship II
- Corporate Information Security Management
- Frontier Informatics A
- Frontier Informatics B

Software Systems:
- Programming Environment
- Concurrent Systems
- Data Engineering I
- Data Engineering II
- Advanced Course in Distributed Systems
- Advanced System Programming
- Techniques for Mining Software Repositories

Intelligent Systems:
- Advanced Course in Statistical Language Modeling
- Advanced Course in Computational Linguistics
- Image Recognition and Understanding
- Computational Vision Science

Information Mathematics and Modeling:
- Advanced Nonlinear Systems
- Advanced Course in Computational Algorithms
- Special Lecture on Numerical Simulation
- Systems and Control
- Systems and Optimization
- Basic Computational Biology

Computer Architecture:
- Advanced Parallel Processing Architecture
- Parallel and Distributed Systems
- Integrated Systems Engineering
- Advanced Course in High Performance Computing
- Advanced Computer Network
- Advanced Circuit Engineering

Project Practice:
- Project Practice Workshop
- Initiative Project I
- Initiative Project II

Intelligent Software:
- Advanced Course in Programming Languages
- Advanced Course in Program Theory
- Intelligent Sensory Information Processing
- Special Topics in Computer Human Interaction I
- Special Topics in Computer Human Interaction II
- Principles of Software Engineering
- Advanced Course on Cryptography

Media Engineering:
- Advanced Course in Signal and Image Processing I
- Advanced Course in Signal and Image Processing II
- Advanced Course in Signal and Image Processing III
- Advanced Course in Speech Media Engineering
- Advanced Course in Computer Graphics
- Adaptive Media Processing

Special Lectures on Selected Topics:
- Topics in Computational Science I

Computer Science English Program

Common Courses:
- Master’s Seminar in Computer Science
- Master’s Research in Computer Science I
- Master’s Research in Computer Science II

Elective Courses:
- Advanced Course in Computational Algorithms
- Special Lecture on Numerical Simulation
- Basic Computational Biology
- Principles of Software Engineering
- Programming Environment
- Data Engineering I
- Advanced Course in High Performance Computing
- Adaptive Media Processing
- Experiment Design in Computer Sciences
- Topics in Computational Science I
- Frontier Informatics A
- Frontier Informatics B

Campus-wide Courses for Graduate Students:
- Computational Science Literacy
- High Performance Parallel Computing Technology for Computational Sciences

Practical IT Curriculum

Common courses:
- Project Practice Workshop
- Initiative Project I
- Special Lecture on Social Innovation in ICT Internship I
- Corporate Information Security Management
- Principles of Software Engineering
- Techniques for Mining Software Repositories
- Program Development on Embedded System Services and Data Privacy

Doctoral Program

Common courses:
- Doctoral Research in Computer Science
- Doctoral Computer Science Seminar A
- Doctoral Computer Science Seminar B
- Research Internship I
- Research Internship II
- Interdisciplinary Laboratory Internship I
- Interdisciplinary Laboratory Internship II
Prospects after graduation

Students who have completed a major in computer science are expected to play a central role in today’s information society. Approximately 80% of the students who completed the master’s program in computer science and obtained a master’s degree are employed by various companies, and about 10% of the students have advanced to the doctoral program. Students who have completed the doctoral program and obtained a Ph.D. work in corporate R&D departments, universities, or national institutes. In some cases, they continue their research as postdoctoral fellows.

Major employers of master’s course graduates

<table>
<thead>
<tr>
<th>2018</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahoo</td>
<td>Sharp</td>
</tr>
<tr>
<td>NTT Data</td>
<td>Yahoo</td>
</tr>
<tr>
<td>Sony</td>
<td>Fuji Xerox</td>
</tr>
<tr>
<td>NTT-Dojomo group</td>
<td>ACCESS</td>
</tr>
<tr>
<td>Hitachi</td>
<td>NTT-Dojomo group</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>NTT Data</td>
</tr>
<tr>
<td>Sharp</td>
<td>NTT (Laboratories)</td>
</tr>
<tr>
<td>Cyber Agent</td>
<td>NEC</td>
</tr>
<tr>
<td>Panasonic</td>
<td>Nintendo</td>
</tr>
<tr>
<td>KDDI</td>
<td>Canon</td>
</tr>
<tr>
<td>Navitime Japan</td>
<td>Panasonic</td>
</tr>
<tr>
<td>ACCESS</td>
<td>Mixi</td>
</tr>
<tr>
<td>U-NEXT</td>
<td>Works Applications</td>
</tr>
<tr>
<td>Fixstars Corporation</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td>NTT (Laboratories)</td>
<td>Nippon Steel</td>
</tr>
<tr>
<td>SoftBank Group</td>
<td>Hitachi</td>
</tr>
</tbody>
</table>

Major employers of doctoral course graduates

<table>
<thead>
<tr>
<th>2018</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC Central Research Laboratory</td>
<td>UiPath</td>
</tr>
<tr>
<td>Mitsubishi Electric</td>
<td>Fujitsu Laboratories</td>
</tr>
<tr>
<td>SECOM</td>
<td>NEC Central Research Laboratory</td>
</tr>
<tr>
<td>Calsonic Kansai</td>
<td>NTT (Laboratories)</td>
</tr>
<tr>
<td>Japanese Red Cross Kobe Hospital</td>
<td>Riken</td>
</tr>
<tr>
<td>Alibaba Group (China)</td>
<td>Temple University Japan Campus (Prof)</td>
</tr>
<tr>
<td>University of Tsukuba</td>
<td>Jiangsu University (Prof)</td>
</tr>
</tbody>
</table>

Financial support

In addition to the financial support provided by the university headquarters and the graduate school, we provide financial support for research-type internships for doctoral students in our program. Travel expenses for overseas internships and accommodation expenses of up to about three months are supported. Domestic internships are also possible.

Admission information

In our program, the following entrance examinations are conducted for applicants for master’s program and doctoral program, respectively.

Examination for Master’s Program applicants

We carry out three examinations: recommended entrance examination (July), general entrance examination (August), and general entrance examination (February). In addition, at the same time as the general entrance examination, we also carry out special selection of working individuals. In the entrance examination for the Master’s Program in Computer Science, in order to make it easier for external applicants and working individuals to take the examination, oral examinations are emphasized. In the recommendation entrance examination, those who have been recommended by their affiliated university etc. are required to take the oral examination only, which assesses their knowledge in their specialized field and their aspirations. In the general entrance examination, an additional oral examination of basic subjects is required, and English proficiency is evaluated by TOEIC or TOEFL scores (there is no written examination).

Examination for Doctoral Program applicants

We carry out two examinations: a general entrance examination in August and a general entrance examination in February. In the doctoral course, we actively promote the acceptance of working individuals; at the same time as conducting general entrance examinations, we also conduct special selections for working individuals. In each of the entrance examinations, in addition to oral examinations which evaluate previous research, as well as post-admission research plans and motivation, English proficiency is assessed by TOEIC or TOEFL scores (similar to the master’s course entrance examination). Moreover, those who have passed the special selection for working individuals can apply for “early completion doctoral program for working individuals”, based on their work/education experience etc., and they can obtain a doctoral degree in a minimum of one year.

As a special arrangement for those living overseas, we also carry out an exam in January. Screening and selection are based on the submitted application documents and an oral examination with a video conference system or Skype. Successful applicants of this exam can choose their enrollment season (either April or October).

More information regarding admission

The information above is subject to change. For the latest information on entrance examinations, please check the Master’s/Doctoral Program in Computer Science website (https://www.cs.tsukuba.ac.jp/english/) and application guidelines.
Access

Tsukuba Express

It will take 45 minutes by the rapid service from Akihabara Station to Tsukuba Station. Take a local bus bound for “Tsukuba Daigaku Chuo” or “Tsukuba Daigaku Loop-line Migi Mawari” from Tsukuba Station to Daisan Area Mae. It will take about 10 minutes.

JR Joban Line

It will take around 60 minutes from Tokyo or Ueno Station to Hitachino-Ushiku, Arakawaoki or Tsuchiura Station. Take a local bus for “Tsukuba Daigaku Chuo” from these stations to Daisan Area Mae. It will take 30-35 minutes. In case of the bus for “Tsukuba Center”, please transfer at “Tsukuba Center” bus terminal to a bus bound for “Tsukuba Daigaku Chuo” or “Tsukuba Daigaku Loop-line Migi Mawari”. It will take around 10 minutes.

Highway Bus

It will take around 75 minutes from Tokyo Station Yaesu South Exit to “Daigaku Kaikan Mae” by bus bound for “Tsukuba Daigaku” and 10 minutes walking. In case of the bus for “Tsukuba Center”, please transfer at “Tsukuba Center” bus terminal to a bus bound for “Tsukuba Daigaku Chuo” or “Tsukuba Daigaku Loop-line Migi Mawari”. It will take around 10 minutes.

By Car

Driving directions from Joban Highway -> Exit “Sakura-Tsuchiura” IC -> Proceed to Tsukuba (Turn left) -> Turn right at Sasagi Intersection -> Follow “Higashi Odori” Avenue -> Turn left at the signal “Tsukuba Daigaku Chuo Iriguchi” (About 8km)

By Air

- **From Narita Airport**
 - By Bus: Take a bus bound for “Tsukuba Center”. It will take around 60 minutes. See above from Tsukuba Center bus terminal.
 - By Train: Take Keisei Line for Ueno Station. It will take 20-23 minutes. Use JR Yamanote Line to Tokyo, Akihabara or Ueno Station. See above from these stations.

- **From Haneda Airport**
 - By Bus: Take a bus bound for “Tsukuba Center”. It will take around 120 minutes. See above from “Tsukuba Center” bus terminal.
 - By Train: Take monorail to JR Hamamatsucho Station, or Keikyu Line to JR Shinagawa Station. It will take 20-23 minutes. Use JR Yamanote Line to Tokyo, Akihabara or Ueno Station. See above from these stations.

- **From Ibaraki Airport**
 - By Bus: Take a bus bound for “Tsukuba Center”. It will take around 60 minutes. See above from “Tsukuba Center” bus terminal.

Contact

- **address** Room 3F900, Building F, Third area, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- **tel** +81-(29)-853-5530
- **fax** +81-(29)-853-5206
- **e-mail** inquiry@cs.tsukuba.ac.jp