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1. Introduction

- Spiking Neural Networks (SNNs) states that

information among neurons 1s interchanged via
pulses or spikes.

-+ SNNs have the ability for processing static patterns

and dynamic patterns that exhibits rich temporal
characteristics.

- Important 1ssue: information coding.



1. Introduction

-+ Main approaches:

. Rate coding. The information is encoded in the neuron ring
time.

. Temporal coding. The information 1s encoded by the timing
of spike

. Population coding. The information is encoded by the
activity of different pools of neurons.

- There are strong debates about the question of
which neural codes are used for biological neural

systems
. There 1s a growing evidence that the brain may use all of
them
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2. GRF-basedTemporal Coding
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2. GRF-basedTemporal Coding
Application: Multilayer FF-SNNs

* The GRF output 1n
the mput firing time
of a neuron 1n one
Feed-Forward SNN.

* Each connection is
divided in a set of
multiple synaptic
connections

* Weight and delays

associated to each
terminal
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'2. Gaussian Receptive Fields (GRFs) for
Neuron Coding

* A real value 1s encoded by an array of receptive fields.

* For a variable with a range Unin» el , a set of m
Gaussian Receptive Fields are used. The center b; 1s

given by:
1 2% — 3

m — 2 (Imar — I-n‘:in) "

b:r' — Im in T

* And the width 0 of each RF neuron 1 1s given by:

1 1
(m + 3) B(Lmaz — I-min).

* Where the proposed value for 3 belongs to the range
[1,2]

T =




2. Gaussian Receptive
Fields o [
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2. Gaussian Receptive Fields
Issues to be addressed
Hardware resource simplification
Scalability and Flexibility
Data representation

Types of Parallelism



3. Hardware Implementation

- The Input data set 1s stored

in external memory ) f an
(accessed through the | oM EEE &, | I
External Memory Unit - e —/ Il R
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-~ The Global Control Unit - 1]
(GCU) generates the

synchronization signals for
the components



3. Hardware Implementation

- The each sample of the

dataset 1s sent to the
Gaussian Modules (GMs)
for obtaining the coding.

-+ Each GM has the following

input ports:

. Data Port (DP) - Contains the
data to be processed.

. Control Port (CP) - Contains
several synchronization
signals
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3. Hardware Implementation

-+ The main components of

the GM are: l

. Control Unit - n|{FTI o
. Min Register (MR) - 1|8
. Bank of Centroids (BCs)
. Integer Part Register (IPR)
. Fractional Part Register J-
(FPR)
Bank of Reciprocals (BRs)
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3. Hardware Implementation

=+ Other components of the

GM are: -

. Reciprocal Register (RR) - RIGHT PANEL
. N-Power of FP Register 715

(NPFPR)
. Exponential of 1 Register

(EIR) J‘
. Exponential Register (ER)
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4. Results

Tools for HW implementation:

* Target FPGA: Virtex II Pro
* Target Board: Alphadata AXM-XPL

* Handel-C modeling

* VHDL synthesizing

Tools for SW implementation:

* PC with Pentium IV Processor running at 3.66 GHz.
* Visual C++

Implementation of GMs with several EMs
—Al least 4 EMs with each GMs
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Resource available in the target FPGA device:

4-Input Total Total Total
FPGA LUTs  Slice-FFs Slices BRAMs MULT18x18s
xc2vp30-6f896 27,392 27,392 13,696 136 136

- Target FPGA platform (Alphadata ADMXPL

PMC board)




4 RésultS - Pérfni‘mahce :

- Both software and

hardware

implementations are ..

compared -

Several dataset sizes (rows £ w B o
and columns) are e i
compared ; : J

There 1s a performance
improvement of at T
least 50x when using
moderate hardware
resources



4. Results - Presicion

-+ For comparing both SW and
HW implementation, the
MSE metric was used

. The architecture 1s flexible for bit precision | MSE
supporting several 3_bit 16.5 o1
precisions 10-bit 9.5 e-2

Several bit precision (for 12-bit 6.17 e-2
fractional part) have been 1-bit .23 e-3
P 16-bit | 9.45 e-3

evaluated

. The 8-bit precision 1s enough for
several machine learning
applications



4. Re-sults — HardWaré utilization

- Hardware resources and maximum clock

frequency for each variation of the proposed

architecture were obtained

Processors | Slices | Slice-FF | 4-input LUTS | BRAMs | MULT18X18s Gate Maximum clock
count frequency
4 1,515 1,583 2,153 1 25 408,807 85.7 MHz
11 % 6 % 8 Yo 1% 18 %
8 2.409 2,308 3,546 2 50 527,468 84.2 MHz
18 % 9 % 13 % 1% 37 %
12 3,272 3,212 4,805 3 75 645,143 80.5 MHz
24 % 12 % 18 % 2% 55 Vo
16 4,018 4,031 6,054 4 100 762,048 76.5 MHz
29 % 15 % 22 % 3% 4%




5. Discusion

-+ The base architecture 1s designed to be flexible for

processing several GRFs with potential applications
in different domains.

- The proposed architecture 1s designed to work with

several columns of the source dataset.

-~ The importance of computing in parallel the

temporal coding consists on the possibility of
integrating the proposed architecture with any SNN
in a pipelined fashion,



6. Conclusion and Future Directions

- At least 50X 1s obtained with the proposed
architecture. Several performance -resource
trade-offs can be established, since dedicated
multiplier resources are the most demanded ones
in the current implementation.

- The integration of the proposed architecture with
other processing modules for a complete
implementation of SNNs will be analyzed.
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