Propositional Dynamic Logic for Higher-Order Functional Programs

<u>Yuki Satake (University of Tsukuba)</u> Hiroshi Unno (University of Tsukuba)

• A higher-order function takes a function as its argument and/or returns a function as its return value

twice :
$$(int \rightarrow int) \rightarrow int \rightarrow int$$

twice $f x = f (f x)$

- Support in Programming Languages:
 OCaml, Haskell, Rust
 - Jave(+1.8), Scala, Ruby, Python

• A higher-order function takes a function as its argument and/or returns a function as its return value

takes a function as its argument

twice : (int \rightarrow int) \rightarrow int \rightarrow int twice $f \ x = f \ (f \ x)$

- Support in Programming Languages:
 OCaml, Haskell, Rust
 - Jave(+1.8), Scala, Ruby, Python

• A higher-order function takes a function as its argument and/or returns a function as its return value

takes a function as its argument

returns a function as its result

twice : (int
$$\rightarrow$$
 int) \rightarrow int \rightarrow int
twice $f x = f (f x)$

- Support in Programming Languages:
 OCaml, Haskell, Rust
 - Jave(+1.8), Scala, Ruby, Python

• A higher-order function takes a function as its argument and/or returns a function as its return value

takes a function as its argument

returns a function as its result

twice : (int
$$\rightarrow$$
 int) \rightarrow int \rightarrow int
twice $f \ x = f \ (f \ x)$

- Support in Programming Languages:
 OCaml, Haskell, Rust
 Tava(11.8)
 - Jave(+1.8), Scala, Ruby, Python

Example: Higher-Order Program

Higher Order Program

let r = * in let inc x = x + 1 in let twice f x = f (f x) in twice inc r Reduction Sequence for r=0
<u>twice inc</u>0

Temporal Verification of Higher-Order Programs

- Specification languages used in existing verification methods
 - (ω-)regular word languages (that subsume LTL) [Disney+ '11; Hofmann+ '14; Murase+ '16]
 - Modal μ -calculus (that subsumes CTL) [Fujima+ '13; Lester+ '11; Suzuki+ '17]
 - (Extended) dependent refinement types
 - Temporal properties [Koskinen+ '14; Nanjo+ '18]
 - Temporal and branching properties [Unno+'18]

Temporal Verification of Higher-Order Programs

- Specification languages used in existing verification methods
 - (ω -)regular word languages (that subsume LTL) [Disney+ '11; Hofmann+ '14; Murase+ '16]
 - Modal μ -calculus (that subsumes CTL) [Fujima+ '13; Lester+ '11; Suzuki+ '17]
 - (Extended) dependent refinement types
 - Temporal properties [Koskinen+ '14; Nanjo+ '18]
 - Temporal and branching properties [Unno+'18]

③ they cannot sufficiently express temporal specifications that involve higher-order functions

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0→ (λx. inc (inc x)) 0→ inc (inc 0)→* inc 1 →* 2

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$ Previous languages cannot refer to the control flow of higher-order programs involving a function that is passed to or returned by a higher-order function

Our Contributions

- Higher-Order Trace (HOT) that captures the control flow of higher-order programs
- Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
 - Propositional Dynamic Logic (PDL) over HOTs for specifying temporal properties of higher-order programs
- Decidability of HOT-PDL model checking of higher-order programs via a reduction to higher-order model checking (See the paper for details)
- Applications (See the paper for details)
 - Modeling and extending dependent refinement types
 - Modeling and extending stack-based access control properties

Our Contributions

- Higher-Order Trace (HOT) that captures the control flow of higher-order programs
- Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
 - Propositional Dynamic Logic (PDL) over HOTs for specifying temporal properties of higher-order programs
- Decidability of HOT-PDL model checking of higher-order programs via a reduction to higher-order model checking (See the paper for details)
- Applications (See the paper for details)
 - Modeling and extending dependent refinement types
 - Modeling and extending stack-based access control properties

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value
 x.
 Inspired by the notion of justification

pointers from the game semantics of PCF

- Two kinds of pointers labeled with:
 - CR : capture the correspondence between call and return events
 - CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value
 x.
 Inspired by the notion of justification
 - Two kinds of pointers labeled with:
 - CR : capture the correspondence between call and return events
 - CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value x. The provided by the notion of justification

Inspired by the notion of justification pointers from the game semantics of PCF

- Two kinds of pointers labeled with:
 - CR : capture the correspondence between call and return events
 - CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value
 x.
 Inspired by the notion of justification

pointers from the game semantics of PCF

- Two kinds of pointers labeled with:
 - CR : capture the correspondence between call and return events
 - CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value
 x.
 Inspired by the notion of justification

pointers from the game semantics of PCF

• Two kinds of pointers labeled with:

- CR : capture the correspondence between call and return events
- CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

- A sequence of call and return events equipped with two kinds of pointers:
 - Call and return events
 - call(f,x): a call event of the function f with the argument x.
 - ret(f, x): a return event of the function f with the return value
 x.
 Inspired by the notion of justification

pointers from the game semantics of PCF

- Two kinds of pointers labeled with:
 - CR : capture the correspondence between call and return events
 - CC, RC: capture higher-order control flow involving a function that is passed to or returned by a higher-order function

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

 $\begin{array}{l} & \underbrace{twice \ inc \ 0} \\ \rightarrow \ (\lambda x. \ inc \ (inc \ x)) \ 0 \\ \rightarrow \ inc \ (inc \ 0) \\ \rightarrow^* \ inc \ 1 \rightarrow^* \ 2 \end{array}$

 $\frac{\text{twice inc }0}{(\lambda x. \text{ inc (inc }x))} 0$ $\rightarrow \text{ inc (inc }0)$ $\rightarrow^* \text{ inc }1 \rightarrow^* 2$

 $\frac{\text{twice inc }0}{(\lambda x. \text{ inc (inc }x))} 0$ $\rightarrow \text{ inc (inc }0)$ $\rightarrow^* \text{ inc }1 \rightarrow^* 2$

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

call(twice, \bullet) ret(twice, \bullet) call(\bullet , 0)

twice inc 0 $\rightarrow (\lambda x. inc (inc x)) 0$ $\rightarrow inc (inc 0)$ $\rightarrow^* inc 1 \rightarrow^* 2$

call(twice, \bullet) ret(twice, \bullet) call(\bullet , 0) call(\bullet , 0) call(inc, 0) ret(inc, 1) ret(\bullet , 1) call(\bullet , 1) call(inc, 1) ret(inc, 2) ret(\bullet , 2) ret(\bullet , 2)

Example: HOT that models the reduction sequence of twice inc 0

 $call(twice, \bullet)$ $ret(twice, \bullet)$ $call(\bullet, 0)$ $call(\bullet, 0)$ call(inc, 0) ret(inc, 1) $ret(\bullet, 1)$ $call(\bullet, 1)$ call(inc, 1) ret(inc, 2) $ret(\bullet, 2)$ $ret(\bullet, 2)$

Example: HOT that models the reduction sequence of twice inc 0

 $call(twice, \bullet)$ $ret(twice, \bullet)$ $call(\bullet, 0)$ $call(\bullet, 0)$ Correspondence between call(inc, 0) call and return events ret(inc, 1) $ret(\bullet, 1)$ $call(\bullet, 1)$ call(inc, 1) **)**,2)

Example: HOT that models the reduction sequence of twice inc 0

Correspondence between call and return events

Higher-order control flow CC : call of the function passed to a higher-order function RC : call of the function returned by a higher-order function

Our Contributions

- Higher-Order Trace (HOT) that captures the control flow of higher-order programs
- Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
 - Propositional Dynamic Logic (PDL) over HOTs for specifying temporal properties of higher-order programs
- Decidability of HOT-PDL model checking of higher-order programs via a reduction to higher-order model checking (See the paper for details)
- Applications (See the paper for details)
 - Modeling and extending dependent refinement types
 - Modeling and extending stack-based access control properties

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi := \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

Any of top-level functions f, bounded integers $n \in \mathbb{Z}_b$, or anonymous functions igodot

- $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$
- (Path expression) $\pi ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax: A call event of a function t_1 with an argument t_2
 - (Formulas)
 - $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$
 - (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax: A return event of a function t_1 with a return value t_2
 - (Formulas) $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$
 - (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax: Box: ϕ holds at every node reached by the
 - (Formulas) path represented by π $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$
 - (Path expression) $\pi ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax: Diamond: there exists a node that can be
 - (Formulas) reached by π and ϕ holds
 - $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$
 - (Path expression)
 - $\pi ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi := \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$
Concatenation
$$alternation$$
Kleene star

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

tests if ϕ holds at the current node

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow [\rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

move to the next event in the sequence

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

 $\phi ::= \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$

• (Path expression)

 $\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi := \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

traverse an edge labeled with CR

- To traverse the pointers, HOT-PDL extends PDL with new path expressions $(\rightarrow_{ret}, \rightarrow_{call})$
- Each node of a HOT is assigned a truth value indicating whether the given formula is satisfied
- Syntax:
 - (Formulas)

$$\phi := \operatorname{call}(t_1, t_2) |\operatorname{ret}(t_1, t_2)| \dots | [\pi] \phi | \langle \pi \rangle \phi$$

• (Path expression)

$$\pi' ::= \rightarrow | \rightarrow_{ret} | \rightarrow_{call} | \pi_1 \cdot \pi_2 | \pi_1 + \pi_2 | \pi^* | \{\phi\}?$$

traverse an edge labeled with CC or RC

$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((\operatorname{call}(\operatorname{twice}, \cdot) \land \langle \rightarrow_{\operatorname{ret}} \cdot \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)) \right)$$
$$\Rightarrow \langle \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)$$

$$[\rightarrow^{*}] \bigwedge x \in \mathbb{Z}_{b} \begin{pmatrix} (call(twice, \cdot) \land \langle \rightarrow_{ret} \cdot \rightarrow_{call} \rangle call(\cdot, x)) \\ \Rightarrow \langle \rightarrow_{call} \rangle call(\cdot, x) \end{pmatrix} \\ \mathbb{Z}_{b}: bounded \\ integers \end{bmatrix}$$

If the function returned by a partial application of twice to some function is called with some integer n, then the function argument passed to twice is eventually called with n

$$\begin{bmatrix} \rightarrow^* \end{bmatrix} \bigwedge x \in \mathbb{Z}_b \begin{pmatrix} (call(twice, \cdot) \land \langle \rightarrow_{ret} \cdot \rightarrow_{call} \rangle call(\cdot, x)) \\ \Rightarrow \langle \rightarrow_{call} \rangle call(\cdot, x) \end{pmatrix}$$

$$\begin{bmatrix} \rightarrow^* \end{bmatrix} \phi = G\phi \\ integers \end{bmatrix} \begin{bmatrix} \mathbb{Z}_b : \text{ bounded} \\ \text{ integers} \end{bmatrix}$$

- -

$$[\rightarrow^{*}] \bigwedge x \in \mathbb{Z}_{b} \begin{pmatrix} (call(twice, \cdot) \land \langle \rightarrow_{ret} \cdot \rightarrow_{call} \rangle call(\cdot, x)) \\ \Rightarrow \langle \rightarrow_{call} \rangle call(\cdot, x) \end{pmatrix} \\$$
Globally, for all bounded integer x,

$$[\rightarrow^{*}] \bigwedge x \in \mathbb{Z}_{b} \begin{pmatrix} (call(twice, \cdot) \land \langle \rightarrow_{ret} \cdot \rightarrow_{call} \rangle call(\cdot, x)) \\ \Rightarrow \langle \rightarrow_{call} \rangle call(\cdot, x) \end{pmatrix} \\ If the function twice is called$$

If the function returned by a partial application of twice to some function is called with some integer n, then the function argument passed to twice is eventually called with n

$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((\operatorname{call}(\operatorname{twice}, \cdot) \land \langle \rightarrow_{\operatorname{ret}} \cdot \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)) \right)$$
$$\Rightarrow \langle \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x) = \langle - \rangle \operatorname{call}(\cdot, x) = \langle$$

and the function returned by twice is called with an argument x,

If the function returned by a partial application of twice to some function is called with some integer n, then the function argument passed to twice is eventually called with n

$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((\operatorname{call}(\operatorname{twice}_{\cdot}, \cdot) \land \langle \rightarrow_{\operatorname{ret}} \cdot \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)) \right)$$
$$\Rightarrow \langle \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)$$

then the function argument passed to twice is eventually called with the argument x

Example : The property that cannot be
expressed by the previous specification
languages
$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((\operatorname{call}(\operatorname{twice}, \cdot) \land (\rightarrow_{\operatorname{ret}} \cdot \rightarrow_{\operatorname{call}}) \operatorname{call}(\cdot, x)) \\ \rightarrow (\rightarrow_{\operatorname{call}}) \operatorname{call}(\cdot, x) \right)$$

The formula holds at
the node labeled with
the event call(twice, \bullet)

Example : The property that cannot be
expressed by the previous specification
languages
$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left(\underbrace{\operatorname{call}(\operatorname{twice}, \cdot) \land (\rightarrow_{\operatorname{ret}} \rightarrow_{\operatorname{call}})\operatorname{call}(\cdot, x))}_{\Rightarrow (\rightarrow_{\operatorname{call}})\operatorname{call}(\cdot, x)} \right)$$

The formula holds at
the node labeled with
the event call(twice, \bullet) (ret(inc, 2)) (ret(inc, 2)) (ret(inc, 2)) (ret(inc, 2)) (ret(inc, 2))) (ret(inc, 2)) (

Example : The property that cannot be
expressed by the previous specification
languages
$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((call(twice, \cdot) \land (\rightarrow_{ret} \rightarrow_{call})call(\cdot, x)) \\ \Rightarrow (\rightarrow_{call})call(\cdot, x) \end{pmatrix}$$
CR
$$(all(0, 0) \\ call(0, 0) \\ call(0, 0) \\ call(0, 0) \\ call(0, 0) \\ ret(inc, 1) \\ call(inc, 1) \\ ret(inc, 2) \\ ret(inc, 2) \\ ret(0, 2) \\ ret($$

Example : The property that cannot be
expressed by the previous specification
languages
$$[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((call(twice, \cdot) \land [\rightarrow_{ret} \rightarrow call(call(\cdot, x))] \\ \Rightarrow (\rightarrow_{call}) call(\cdot, x) \end{pmatrix} \right)$$

The formula holds at
the node labeled with
the event call(twice, \bullet)
 $(all(inc, 0)) \\ \Rightarrow (-all) call(inc, x) \end{pmatrix}$
CR
$$(call(inc, 0)) \\(call(inc, 1)) \\(call(inc, 1)) \\(call(inc, 1)) \\(call(inc, 1)) \\(call(inc, 2)) \\(call(inc,$$

Example : The property that cannot be expressed by the previous specification languages call(twice, CR ret(twice,● x = 0 $call(\bullet, 0)$ **€all(●,**0) call(inc, 0) $[\rightarrow^*] \bigwedge x \in \mathbb{Z}_b \left((\operatorname{call}(\operatorname{twice}, \cdot) \land \langle \rightarrow_{\operatorname{ret}} \cdot \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)) \right)$ $\Rightarrow \langle \rightarrow_{\operatorname{call}} \rangle \operatorname{call}(\cdot, x)$ ret(inc, 1) **ret(●**, 1) call(inc, 1) The formula holds at the node labeled with the event call(twice, \bullet)),2)

Conclusion

- HOT captures the control flow of higher-order programs
- HOT-PDL is an extension of PDL defined over HOTs
 - Enables a precise specification of temporal trace properties for higherorder programs
 - Provides a foundation for specification in various application domains
 - stack-based access control properties
 - dependent refinement types
- HOT-PDL model checking of higher-order programs is shown decidable via a reduction to higher-order model checking
- Future work: extend HOTs with new kinds of events and pointers for capturing call-by-name and/or effectful computations by incorporating more ideas from game semantics