
Propositional Dynamic Logic for
Higher-Order Functional Programs

Yuki Satake (University of Tsukuba)
Hiroshi Unno (University of Tsukuba)

CAV'18, Oxford, United Kingdom 1

Higher-Order Functional Programs

CAV'18, Oxford, United Kingdom 2

• Support in Programming Languages:
• OCaml, Haskell, Rust
• Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

• A higher-order function takes a function as its argument
and/or returns a function as its return value

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙)

Higher-Order Functional Programs

CAV'18, Oxford, United Kingdom 3

• Support in Programming Languages:
• OCaml, Haskell, Rust
• Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

• A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙)

Higher-Order Functional Programs

CAV'18, Oxford, United Kingdom 4

• Support in Programming Languages:
• OCaml, Haskell, Rust
• Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

returns a function as its result

• A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙)

Higher-Order Functional Programs

CAV'18, Oxford, United Kingdom 5

• Support in Programming Languages:
• OCaml, Haskell, Rust
• Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

returns a function as its result

• A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙)

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

Non-deterministic integer

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

Higher-Order function 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Non-deterministic integer

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

Higher-Order function 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Non-deterministic integer

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎

Higher-Order function 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Non-deterministic integer

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)

Higher-Order function 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Non-deterministic integer

Example: Higher-Order Program

CAV'18, Oxford, United Kingdom 6

𝐥𝐥𝐥𝐥𝐥𝐥 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙) 𝐢𝐢𝐢𝐢

𝐥𝐥𝐥𝐥𝐥𝐥 𝒓𝒓 = ∗ 𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐢𝐢𝐢𝐢 𝒙𝒙 = 𝒙𝒙 + 𝟏𝟏 𝐢𝐢𝐢𝐢

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝒓𝒓

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
Higher Order Program Reduction Sequence for r=0

→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Temporal Verification of Higher-Order
Programs

• Specification languages used in existing verification methods
• (𝝎𝝎-)regular word languages (that subsume LTL) [Disney+ ’11; Hofmann+ ’14; Murase+ ’16]
• Modal 𝝁𝝁-calculus (that subsumes CTL) [Fujima+ ’13; Lester+ ’11; Suzuki+ ’17]
• (Extended) dependent refinement types

• Temporal properties [Koskinen+ ’14; Nanjo+ ’18]
• Temporal and branching properties [Unno+ ’18]

CAV'18, Oxford, United Kingdom 7

Temporal Verification of Higher-Order
Programs

• Specification languages used in existing verification methods
• (𝝎𝝎-)regular word languages (that subsume LTL) [Disney+ ’11; Hofmann+ ’14; Murase+ ’16]
• Modal 𝝁𝝁-calculus (that subsumes CTL) [Fujima+ ’13; Lester+ ’11; Suzuki+ ’17]
• (Extended) dependent refinement types

• Temporal properties [Koskinen+ ’14; Nanjo+ ’18]
• Temporal and branching properties [Unno+ ’18]

CAV'18, Oxford, United Kingdom 7

 they cannot sufficiently express temporal specifications
that involve higher-order functions

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 8

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 8

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 9

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 10

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 11

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 12

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 13

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Previous languages cannot refer to
the control flow of higher-order
programs involving a function that

is passed to or returned by a
higher-order function

Example: Property that cannot be expressed
by the previous specification languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 14

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Our Contributions

• Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

• Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
• Propositional Dynamic Logic (PDL) over HOTs for specifying temporal

properties of higher-order programs
• Decidability of HOT-PDL model checking of higher-order

programs via a reduction to higher-order model checking
(See the paper for details)

• Applications (See the paper for details)
• Modeling and extending dependent refinement types
• Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 15

Our Contributions

• Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

• Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
• Propositional Dynamic Logic (PDL) over HOTs for specifying temporal

properties of higher-order programs
• Decidability of HOT-PDL model checking of higher-order

programs via a reduction to higher-order model checking
(See the paper for details)

• Applications (See the paper for details)
• Modeling and extending dependent refinement types
• Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 16

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value
𝑥𝑥.

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function

that is passed to or returned by a higher-order function

CAV'18, Oxford, United Kingdom 17

Inspired by the notion of justification
pointers from the game semantics of PCF

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 18

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 19

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,●

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 19

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,●

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

The function passed
to a higher-order

function

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 20

call twice,● 𝐫𝐫𝐫𝐫𝐫𝐫 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,●

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 20

call twice,● 𝐫𝐫𝐫𝐫𝐫𝐫 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,●

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

The function
returned by a

higher-order function

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 21

call twice,● ret twice,● 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 ●,𝟎𝟎

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 22

call twice,● ret twice,● call ●, 0 call ●, 0
call inc, 0 ret inc, 1 ret ●, 1 call ●, 1
call inc, 1 ret inc, 2 ret ●, 2 ret(●, 2)

𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐

Example: HOT that models the
reduction sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 23

call twice,●
ret twice,●

call ●, 0
call ●, 0
call inc, 0
ret inc, 1
ret ●, 1
call ●, 1
call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example: HOT that models the
reduction sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 24

Correspondence between
call and return events

CR

CR

call twice,●
ret twice,●

call ●, 0
call ●, 0
call inc, 0
ret inc, 1
ret ●, 1
call ●, 1
call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example: HOT that models the
reduction sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎

CAV'18, Oxford, United Kingdom 25

Correspondence between
call and return events

CR

CR

CC

CC

RC
Higher-order control

flow
CC : call of the

function passed to a
higher-order

function
RC : call of the

function returned by
a higher-order

function

call twice,●
ret twice,●

call ●, 0
call ●, 0
call inc, 0
ret inc, 1
ret ●, 1
call ●, 1
call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Our Contributions

• Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

• Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
• Propositional Dynamic Logic (PDL) over HOTs for specifying temporal

properties of higher-order programs
• Decidability of HOT-PDL model checking of higher-order

programs via a reduction to higher-order model checking
(See the paper for details)

• Applications (See the paper for details)
• Modeling and extending dependent refinement types
• Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 26

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

CAV'18, Oxford, United Kingdom 27

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

CAV'18, Oxford, United Kingdom 27

Any of top-level functions 𝑓𝑓, bounded integers
𝒏𝒏 ∈ ℤ𝒃𝒃, or anonymous functions ●

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 28

A call event of a function 𝒕𝒕𝟏𝟏 with an argument 𝒕𝒕𝟐𝟐

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 29

A return event of a function 𝒕𝒕𝟏𝟏 with a return value 𝒕𝒕𝟐𝟐

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 30

Box: 𝜙𝜙 holds at every node reached by the
path represented by 𝜋𝜋

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 31

Diamond: there exists a node that can be
reached by 𝜋𝜋 and 𝜙𝜙 holds

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 32

alternation Kleene starConcatenation

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 33

tests if 𝜙𝜙 holds at the current node

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 34

move to the next event in the sequence

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 35

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 36

traverse an edge labeled with CR

• To traverse the pointers, HOT-PDL extends PDL with new path
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

• Syntax:
• (Formulas)

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression)

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

CAV'18, Oxford, United Kingdom 37

traverse an edge labeled with CC or RC

Example : The property that cannot be
expressed by the previous specification
languages

CAV'18, Oxford, United Kingdom 38

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

Example : The property that cannot be
expressed by the previous specification
languages

CAV'18, Oxford, United Kingdom 38

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
ℤ𝒃𝒃 : bounded

integers

Example : The property that cannot be
expressed by the previous specification
languages

CAV'18, Oxford, United Kingdom 38

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
ℤ𝒃𝒃 : bounded

integers →∗ 𝝓𝝓 = 𝐆𝐆𝝓𝝓
(in LTL)

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

CAV'18, Oxford, United Kingdom 39

Globally, for all bounded integer x,

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 40

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

If the function twice is called

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 41

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

and the function returned by twice is called with
an argument x,

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 42

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

then the function argument passed to twice is eventually
called with the argument x

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 43

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 44

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 45

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 46

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

CR

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 47

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

𝒙𝒙 = 𝟎𝟎
CR

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 48

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

𝒙𝒙 = 𝟎𝟎

The formula holds at
the node labeled with
the event call twice,●

CAV'18, Oxford, United Kingdom 49

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be
expressed by the previous specification
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

𝒙𝒙 = 𝟎𝟎

𝒙𝒙 = 𝟎𝟎

The formula holds at
the node labeled with
the event call twice,●

Conclusion

• HOT captures the control flow of higher-order programs
• HOT-PDL is an extension of PDL defined over HOTs

• Enables a precise specification of temporal trace properties for higher-
order programs

• Provides a foundation for specification in various application domains
• stack-based access control properties
• dependent refinement types

• HOT-PDL model checking of higher-order programs is shown
decidable via a reduction to higher-order model checking

• Future work: extend HOTs with new kinds of events and
pointers for capturing call-by-name and/or effectful
computations by incorporating more ideas from game semantics

CAV'18, Oxford, United Kingdom 50

	Propositional Dynamic Logic for �Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Temporal Verification of Higher-Order Programs
	Temporal Verification of Higher-Order Programs
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Our Contributions
	Our Contributions
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Our Contributions
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Conclusion

