
Propositional Dynamic Logic for 
Higher-Order Functional Programs

Yuki Satake (University of Tsukuba)
Hiroshi Unno (University of Tsukuba)

CAV'18, Oxford, United Kingdom 1



Higher-Order Functional Programs

CAV'18, Oxford, United Kingdom 2

• Support in Programming Languages:
• OCaml, Haskell, Rust
• Jave(+1.8), Scala, Ruby, Python

Contribute significantly 
to modularity

• A higher-order function takes a function as its argument 
and/or returns a function as its return value

𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢 → 𝐢𝐢𝐢𝐢𝐢𝐢
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝒇𝒇 𝒙𝒙 = 𝒇𝒇 (𝒇𝒇 𝒙𝒙)
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Temporal Verification of Higher-Order 
Programs

• Specification languages used in existing verification methods
• (𝝎𝝎-)regular word languages (that subsume LTL) [Disney+ ’11; Hofmann+ ’14; Murase+ ’16]
• Modal 𝝁𝝁-calculus (that subsumes CTL) [Fujima+ ’13; Lester+ ’11; Suzuki+ ’17]
• (Extended) dependent refinement types

• Temporal properties [Koskinen+ ’14; Nanjo+ ’18]
• Temporal and branching properties [Unno+ ’18]
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 they cannot sufficiently express temporal specifications 
that involve higher-order functions



Example: Property that cannot be expressed 
by the previous specification languages

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n
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Previous languages cannot refer to
the control flow of higher-order 
programs involving a function that 

is passed to or returned by a 
higher-order function
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Our Contributions

• Higher-Order Trace (HOT) that captures the control flow of 
higher-order programs

• Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
• Propositional Dynamic Logic (PDL) over HOTs for specifying temporal 

properties of higher-order programs
• Decidability of HOT-PDL model checking of higher-order 

programs via a reduction to higher-order model checking
(See the paper for details)

• Applications (See the paper for details)
• Modeling and extending dependent refinement types
• Modeling and extending stack-based access control properties 
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Higher-Order Trace (HOT)

• A sequence of call and return events equipped with two 
kinds of pointers:

• Call and return events
• call(𝑓𝑓,𝑥𝑥): a call event of the function 𝑓𝑓 with the argument 𝑥𝑥.
• ret(𝑓𝑓, 𝑥𝑥): a return event of the function 𝑓𝑓 with the return value 
𝑥𝑥. 

• Two kinds of pointers labeled with:
• CR : capture the correspondence between call and return events
• CC, RC: capture higher-order control flow involving a function 

that is passed to or returned by a higher-order function
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Example: Event sequence of 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
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𝐭𝐭𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎
→ (𝛌𝛌𝛌𝛌. 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝐱𝐱)) 𝟎𝟎
→ 𝐢𝐢𝐢𝐢𝐢𝐢 (𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎)
→∗ 𝐢𝐢𝐢𝐢𝐢𝐢 𝟏𝟏 →∗ 𝟐𝟐
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Example: HOT that models the 
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Correspondence between 
call and return events

CR

CR

CC

CC

RC
Higher-order control 

flow
CC : call of the 

function passed to a 
higher-order 

function
RC : call of the 

function returned by 
a higher-order 

function

call twice,●
ret twice,●

call ●, 0
call ●, 0
call inc, 0
ret inc, 1
ret ●, 1
call ●, 1
call inc, 1
ret inc, 2
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Our Contributions

• Higher-Order Trace (HOT) that captures the control flow of 
higher-order programs

• Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):
• Propositional Dynamic Logic (PDL) over HOTs for specifying temporal 

properties of higher-order programs
• Decidability of HOT-PDL model checking of higher-order 

programs via a reduction to higher-order model checking 
(See the paper for details)

• Applications (See the paper for details)
• Modeling and extending dependent refinement types
• Modeling and extending stack-based access control properties 
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Higher-Order Propositional Dynamic Logic 
(HOT-PDL)

• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?
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Any of top-level functions 𝑓𝑓, bounded integers 
𝒏𝒏 ∈ ℤ𝒃𝒃, or anonymous functions ●
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Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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A call event of a function 𝒕𝒕𝟏𝟏 with an argument 𝒕𝒕𝟐𝟐
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Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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A return event of a function 𝒕𝒕𝟏𝟏 with a return value 𝒕𝒕𝟐𝟐
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Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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Box: 𝜙𝜙 holds at every node reached by the 
path represented by 𝜋𝜋



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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Diamond: there exists a node that can be 
reached by 𝜋𝜋 and 𝜙𝜙 holds



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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alternation Kleene starConcatenation



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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tests if 𝜙𝜙 holds at the current node



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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move to the next event in the sequence



Higher-Order Propositional Dynamic Logic 
(HOT-PDL)

CAV'18, Oxford, United Kingdom 35

• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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traverse an edge labeled with CR



• To traverse the pointers, HOT-PDL extends PDL with new path 
expressions (→𝒓𝒓𝒓𝒓𝒓𝒓,→𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)

• Each node of a HOT is assigned a truth value indicating whether 
the given formula is satisfied

• Syntax:
• (Formulas) 

𝝓𝝓 ∷= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 𝐫𝐫𝐫𝐫𝐫𝐫 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐 … 𝝅𝝅 𝝓𝝓 𝝅𝝅 𝝓𝝓
• (Path expression) 

𝝅𝝅 ∷=→ →𝒓𝒓𝒓𝒓𝒓𝒓 →𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 | 𝝅𝝅𝟏𝟏 ⋅ 𝝅𝝅𝟐𝟐 𝝅𝝅𝟏𝟏 + 𝝅𝝅𝟐𝟐| 𝝅𝝅∗ 𝜙𝜙 ?

Higher-Order Propositional Dynamic Logic 
(HOT-PDL)
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traverse an edge labeled with CC or RC



Example : The property that cannot be 
expressed by the previous specification 
languages
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If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙



Example : The property that cannot be 
expressed by the previous specification 
languages
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If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
ℤ𝒃𝒃 : bounded 

integers 



Example : The property that cannot be 
expressed by the previous specification 
languages

CAV'18, Oxford, United Kingdom 38

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
ℤ𝒃𝒃 : bounded 

integers →∗ 𝝓𝝓 = 𝐆𝐆𝝓𝝓
(in LTL)



→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
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Globally, for all bounded integer x, 

Example : The property that cannot be 
expressed by the previous specification 
languages

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n
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→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

If the function twice is called

Example : The property that cannot be 
expressed by the previous specification 
languages

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n
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→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

and the function returned by twice is called with 
an argument x,

Example : The property that cannot be 
expressed by the previous specification 
languages

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n



CAV'18, Oxford, United Kingdom 42

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

then the function argument passed to twice is eventually 
called with the argument x 

Example : The property that cannot be 
expressed by the previous specification 
languages

If the function returned by a partial application of twice to 
some function is called with some integer n, then the function 
argument passed to twice is eventually called with n
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CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be 
expressed by the previous specification 
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at 
the node labeled with 
the event call twice,●



CAV'18, Oxford, United Kingdom 44

CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be 
expressed by the previous specification 
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at 
the node labeled with 
the event call twice,●
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CR

CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be 
expressed by the previous specification 
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

⇒ →𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙

The formula holds at 
the node labeled with 
the event call twice,●
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CR

CC

CC

RC
call twice,●
ret twice,●

call ●, 0
call ●, 0

call inc, 0
ret inc, 1
ret ●, 1
call ●, 1

call inc, 1
ret inc, 2
ret ●, 2
ret(●, 2)

Example : The property that cannot be 
expressed by the previous specification 
languages

→∗ �𝒙𝒙 ∈ ℤ𝒃𝒃
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,� ∧ →𝐫𝐫𝐫𝐫𝐫𝐫⋅→𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 �,𝒙𝒙
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Conclusion

• HOT captures the control flow of higher-order programs
• HOT-PDL is an extension of PDL defined over HOTs

• Enables a precise specification of temporal trace properties for higher-
order programs

• Provides a foundation for specification in various application domains 
• stack-based access control properties
• dependent refinement types

• HOT-PDL model checking of higher-order programs is shown 
decidable via a reduction to higher-order model checking

• Future work: extend HOTs with new kinds of events and 
pointers for capturing call-by-name and/or effectful
computations by incorporating more ideas from game semantics
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