Propositional Dynamic Logic for
Higher-Order Functional Programs

Yuki Satake (University of Tsukuba)
iroshi Unno (University of Tsukuba)

Higher-Order Functional Programs

* A higher-order function takes a function as its argument
and/or returns a function as its return value

twice : (int — int) — int — int

twicefx=f (f x)

» Support in Programming Languages:
e OCaml, Haskell, Rust
e Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

Higher-Order Functional Programs

* A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

T\

twice : (int — int) - int — int

twicefx=f (f x)

» Support in Programming Languages:
e OCaml, Haskell, Rust
e Jave(+1.8), Scala, Ruby, Python

Contribute significantly
to modularity

Higher-Order Functional Programs

* A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

returns a function as its result

o TT—— N

-

twice : (int — int) » int — int

twicefx=f (f x)

» Support in Programming Languages:

e OCaml, Haskell, Rust

Contribute significantly

» Jave(+1.8), Scala, Ruby, Python to modularity

CAV'18, Oxford, United Kingdom 4

Higher-Order Functional Programs

* A higher-order function takes a function as its argument
and/or returns a function as its return value

takes a function as its argument

returns a function as its result

o TT—— N

-

twice : (int — int) » int — int

twicefx=f (f x)

» Support in Programming Languages:

e OCaml, Haskell, Rust

Contribute significantly

» Jave(+1.8), Scala, Ruby, Python to modularity

CAV'18, Oxford, United Kingdom 5

Example: Higher-Order Program

Higher Order Program Reduction Sequence for r=0

letr = xin twice inc 0

letincx=x+11n
lettwice fx=f (f x) in
twice incr

CAV'18, Oxford, United Kingdom 6

Example: Higher-Order Program

Non-deterministic integer

Higher Order Progr Reduction Sequence for r=0

letr = ¥'In twice inc 0

letincx=x+11n
lettwice fx=f (f x) in
twice incr

CAV'18, Oxford, United Kingdom 6

Example: Higher-Order Program

Non-deterministic integer

Higher Order Progr Reduction Sequence for r=0

letr = ¥'In twice inc 0

letincx=x+11n
lettwice fx=f (f x) in
twice InC

Higher-Order function twice

CAV'18, Oxford, United Kingdom 6

Example: Higher-Order Program

Non-deterministic integer

Higher Order Progr Reduction Sequence for r=0
let r = +'In twice inc 0
letincx =x+ 1in — (Ax.inc (incx)) 0
lettwice fx=f (f x) in

twice InC

Higher-Order function twice

CAV'18, Oxford, United Kingdom 6

Example: Higher-Order Program

Non-deterministic integer

Higher Order Progr Reduction Sequence for r=0
letr = xIn twice inc 0
letincx=x+4+11in — (Ax.inc (incx)) 0
lettwice fx=f (f x) in — inc (inc 0)

twice InC

Higher-Order function twice

CAV'18, Oxford, United Kingdom 6

Example: Higher-Order Program

Non-deterministic integer

Higher Order Progr Reduction Sequence for r=0
let r = +'In twice inc 0
letincx =x+ 1in - (Ax.inc (incx)) 0
lettwice fx=f (f x) in — inc (inc 0)

twice IRC >*inc1 -~>*2

Higher-Order function twice

CAV'18, Oxford, United Kingdom 6

Temporal Verification of Higher-Order
Programs

« Specification languages used in existing verification methods
* (w-)reqgular word languages (that subsume LTL) [Disney+ '11; Hofmann+ '14; Murase+ '16]
» Modal u-calculus (that subsumes CTL) [Fujima+ '13; Lester+ '11; Suzuki+ '17]

* (Extended) dependent refinement types
» Temporal properties [Koskinen+ '14; Nanjo+ '18]
« Temporal and branching properties [Unno+ 18]

CAV'18, Oxford, United Kingdom 7

Temporal Verification of Higher-Order
Programs

« Specification languages used in existing verification methods
* (w-)reqgular word languages (that subsume LTL) [Disney+ '11; Hofmann+ '14; Murase+ '16]
* Modal p-calculus (that subsumes CTL) [Fujima+ '13; Lester+ '11; Suzuki+ '17]

 (Extended) dependent refinement types
» Temporal properties [Koskinen+ '14; Nanjo+ '18]
« Temporal and branching properties [Unno+ 18]

® they cannot sufficiently express temporal specifications
that involve higher-order functions

CAV'18, Oxford, United Kingdom 7

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 9

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 10

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 11

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 12

Example: Property that cannot be expressed
by the previous specification languages

twice inc 0
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

Example: Property that cannot be expressed
by the previous specification languages

Previous languages cannot refer to
the control flow of higher-order
programs involving a function that
is passed to or returned by a
higher-order function

twice inc 0
— (AX.inc (incx)) 0
— inc (inc 0)
-"inc1l -" 2

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

CAV'18, Oxford, United Kingdom 14

Our Contributions

 Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

« Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):

* Propositional Dynamic Logic (PDL) over HOTs for specifying temporal
properties of higher-order programs

* Decidability of HOT-PDL model checking of higher-order
programs via a reduction to higher-order model checking

(See the paper for details)

 Applications (See the paper for details)
* Modeling and extending dependent refinement types
* Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 15

Our Contributions

* Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

 Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):

* Propositional Dynamic Logic (PDL) over HOTs for specifying temporal
properties of higher-order programs

* Decidability of HOT-PDL model checking of higher-order
programs via a reduction to higher-order model checking

(See the paper for details)

 Applications (See the paper for details)
* Modeling and extending dependent refinement types
* Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 16

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
* call(f,x): a call event of the function f with the argument x.
e ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
capture the correspondence between call and return events

. capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
e call(f x): a call event of the function f with the argument x.
e ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
capture the correspondence between call and return events

. capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
* call(f,x): a call event of the function f with the argument x.
* ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
capture the correspondence between call and return events

. capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
* call(f,x): a call event of the function f with the argument x.
e ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
capture the correspondence between call and return events

. capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
* call(f,x): a call event of the function f with the argument x.
e ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
* CR : capture the correspondence between call and return events

. capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Higher-Order Trace (HOT)

* A sequence of call and return events equipped with two
kinds of pointers:
 Call and return events
* call(f,x): a call event of the function f with the argument x.
e ret(f, x): a return event of the function f with the return value

X. Inspired by the notion of justification
pointers from the game semantics of PCF

* Two kinds of pointers labeled with:
. capture the correspondence between call and return events

* CC, RC: capture higher-order control flow involving a function
that is passed to or returned by a higher-order function

Example: Event sequence of twice inc 0

twice inc O
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l - 2

Example: Event sequence of twice inc 0

0
— (AX.inc (incx)) O
— inc (inc 0)
- incl -" 2

Example: Event sequence of twice inc 0

0

The fancrt 17 (Ax.inc (incx)) O
e function passe - :
to a higher-order — 1nc (1nc O)

function —>*inc1 ->* 2

—

~N

Example: Event sequence of twice inc 0

twice inc 0
— 0
— inc (inc 0)
—*incl1l -" 2

call(twice, @)

Example: Event sequence of twice inc 0

twice inc 0
— 0
— inc (inc 0)
—*incl1l -" 2

call(twice, @)

The function %

returned by a
higher-order function

Example: Event sequence of twice inc 0

twice inc 0
ﬁ

— inc (inc 0)
—*incl1l->" 2

call(twice, @) ret(twice, @)

Example: Event sequence of twice inc 0

twice inc O
— (AX.inc (incx)) O
— inc (inc 0)
-"inc1l - 2

call(twice, @) ret(twice, @) call(@®,0) call(®, 0)
call(inc, 0) ret(inc, 1) ret(@®, 1) call(@®, 1)
call(inc, 1) ret(inc, 2) ret(@®, 2) ret(@®, 2)

Example: HOT that models the

reduction sequence of twice inc 0

(twice, @)
(twice, @)
(@,0)
(@,0)
(inc, 0)
(inc, 1)
(@,1)
(@,1)
(inc, 1)
(inc, 2)
(@,2)
(@, 2)

Example: HOT that models the
reduction sequence of twice inc 0

call(twice, @)
CR C ret(twice, @)
call(@,0)

call(@,0)

call(inc, 0)
C ret(inc, 1)
ret(@, 1)
call(@,1)

call(inc, 1)

C ret(inc, 2)
ret(@,2)

ret(@,2)

Correspondence between

call and return events

CR

CAV'18, Oxford, United Kingdom

24

Example: HOT that models the
reduction sequence of twice inc 0

Higher-order control
flow
CC : call of the
function passed to a
higher-order

[I(twice, @
CR Cl(izt(twice ®
call(@,0) DRC

call(@,0)

call(inc, 0)
C ret(inc, 1)
ret(@, 1)

Correspondence between

call and return events

function
Ca;lll((_" 11)) RC : call of the
call(inc, .
CR C et(ine. 2) funcc"r}:?nhre'[urged by
(@, 2) gher-order

CAV'18, Oxford, United Kingdom 25

Our Contributions

« Higher-Order Trace (HOT) that captures the control flow of
higher-order programs

* Higher-Order Trace Propositional Dynamic Logic (HOT-PDL):

e Propositional Dynamic Logic (PDL) over HOTs for specifying temporal
properties of higher-order programs

* Decidability of HOT-PDL model checking of higher-order
programs via a reduction to higher-order model checking

(See the paper for details)

 Applications (See the paper for details)
* Modeling and extending dependent refinement types
* Modeling and extending stack-based access control properties

CAV'18, Oxford, United Kingdom 26

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:
e (Formulas)
¢ ::= call(t,, ty)|ret(ty, t2)] ... | [T]Pp [(mT)P
* (Path expression)
T =2 | Dper | Dcqu | Ty - 2|1y + 15| T {P)7?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

» Syntax: Any of top-level functions f, bounded integers
« (Formulas) n € Z;, or anonymous functions @

¢ = call(ty, t;)[ret(ty, t)| ... |] [(m)eb
* (Path expression)
T =2 | Dper | Dcan | T1 - 2|y + 12| T{)7?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

« Syntax: A call event of a function t; with an argument t,

e (Formulas) sz
¢ ::= call(tq, ty)|ret(ty, t3)| ... | [P [(m)@p

* (Path expression)
T = | 2 | Dcau | T1 - 2|1y + 105 ﬂ*l{(]5}7

Higher-Order Propositional Dynamic Logic

(HOT-PDL)
« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:

A return event of a function t; with a return value t,

e (Formulas)

¢ o= Call(tl' tz)ll‘Et(tl, tZ)l | [Tt]¢ |<Tl'>¢

* (Path expression)

T = | —ret | —call | 1 - 7T2|7T1 + 115 | ﬂ*l{(]5}7

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied
+ Syntax: Box: ¢ holds at every node reached by the
. (Formulas) path represented by n
¢ e = Call(tl, tz)lf@t(tl, tz)l | [Tl' Tl'>¢
* (Path expression)
T 3= | 2per | Dcqu | T - T2 7Ty + 12| T [{D)7?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied
. Syntax: Diamond: there exists a node that can be

+ (Formulas) reached by m and ¢ holds
¢ ::= call(ty, tp)|ret(ty, tz)| ... | [|Pp [(m)p

* (Path expression)
T = | 2 | Dcau | T1 - 2|1y + 105 ﬂ*l{(]5}7

Higher-Order Propositional Dynamic Logic
(HOT-PDL)
« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied
* Syntax:
e (Formulas)

¢ ::= call(ty, ty)|ret(ty, t;)| ... | []P (M)

* (Path expression)

T :=> | > — T, - |1 + 1T, | TT° ?
| ret%ll/ zl}_zlﬁ}

Concatenation alternation Kleene star

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:
e (Formulas)
¢ = call(ty, ty)|ret(ty, t)| ... | [m]p ()b
* (Path expression)

T = | —ret | —call | 1 - 7T2|7T1 + 115 | n*|{¢}?
- —]/

tests if ¢ holds at the current node

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:
e (Formulas)
¢ ::= call(t,, ty)|ret(ty, t2)] ... | [T]Pp [(mT)P
* (Path expression)
T =2 | oper | Dcqu | Ty - |1y + 15| T |{)7?

move to the next event in the sequence

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

» Syntax:
e (Formulas)
¢ ::= call(tq, tp)|ret(ty, ty)| ... | [T]P [(m)@p
* (Path expression)
.= | ret | —call | Ty - 7T2|7T1 + 7T2| ﬂ*l{(P}?

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:
e (Formulas)
¢ ::= call(t,, ty)|ret(ty, t2)] ... | [T]Pp [(mT)P
* (Path expression)
n =— | —ret | —call | Ty - 7T2|7T1 + 7T2| ﬂ*l{(P}?

traverse an edge labeled with CR

Higher-Order Propositional Dynamic Logic
(HOT-PDL)

« To traverse the pointers, HOT-PDL extends PDL with new path
expressions (=,)

« Each node of a HOT is assigned a truth value indicating whether
the given formula is satisfied

* Syntax:
e (Formulas)
¢ ::= call(t,, ty)|ret(ty, t2)] ... | [T]Pp [(mT)P
* (Path expression)
n =— | ret | _)ca\ll | Ty - 7T2|7T1 + 7T2| ﬂ*l{(P}?

traverse an edge labeled with or

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

(—*] /\x €7, ((call(twice,-) A (-acall)call(-,x)))

= <_)call>call(': x)

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

s (call(twice,”) A (—,..-—can)call(, x)))
] /\ * S @ = <_)call>call(': X)

Zp, - bounded
integers

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

s (call(twice,”) A (—,..-—can)call(, x)))
J[\] /\ * e @ = <_)call>call(': x)

Zp + bounded
[-+]¢p = G b,
(in LTL) Integers

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

(—*] /\x €7, ((call(twice,-) A (-ecall)call(-,x)))

= <_)call>call(': x)

—
Globally, for all bounded integer x,

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

(—*] /\x €7, ((call(twice,-) A (-acall)call(-,x)))

= <_)call>call(': x)

If the function twice is called

Example : The property that cannot be

expressed by the previous
languages

specification

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

) /\x c 1, ((call(twice,-)

A (°_)call>call('; x))l)

= <—>call>W

and the function returned by twice is called with
an argument X,

Example : The property that cannot be
expressed by the previous specification
languages

If the function returned by a partial application of twice to
some function is called with some integer n, then the function
argument passed to twice is eventually called with n

(—*] /\x €7, ((call(twice,-) A (-ecall)call(-,x)))

‘ = <_)call>call(': x) ‘

then the function argument passed to twice is eventually
called with the argument x

Example : The property that cannot be
expressed by the previous specification
languages CC

(twice, @
(twice, @
(@,0)
(@,0)

(call(twice,) A \call(,x)) e
o call(twice,-) A = canycall(s, x (inc, 1)
|]/\x =% (= <_)call>call('; X) > (@, 1)

(@,1)
The formula holds at E (inc, 1)
-

the node labeled with (inc, 2)

(@,2)
the event call(twice, @) (@,2)

CAV'18, Oxford, United Kingdom 43

Example : The property that cannot be
expressed by the previous specification
languages CC

call(twice, @

(twice, @)
@0 JRC
(@,0)

(callCewice,] A (\call(, x)) e D)
o call(twice,:) A = canycall(c, x (inc, 1)
[]/\x =% (= <_)call>call('; x) > (' 1)

(@,1)
The formula holds at E (inc, 1)
-

the node labeled with (inc, 2)

(@,2)
the event call(twice, @) (@,2)

CAV'18, Oxford, United Kingdom 44

Example : The property that cannot be
expressed by the previous specification

Ianguages CR call(twice, @ e

(twice, @
(®,0)
(®,0)
(inc, 0)

o] /\x c 7, ((call(twice,-) AD_)call>Call(" x))) (inc, 1)

= <_)call>call('; x) (‘ 1)

(@,1)
The formula holds at E (inc, 1)
-

the node labeled with (inc, 2)

(@,2)
the event call(twice, @) (@,2)

CAV'18, Oxford, United Kingdom 45

Example : The property that cannot be
expressed by the previous specification

Ianguages CR call(twice, @ e

(twice, @
(@,0)
(@,0)

(call() AK beall(-, x)) ane,)

o call(twice,-) A = canpcall(-, x (inc, 1)

[]/\x =% (= <_)call>call('; x) > (‘ 1)

(@,1)
The formula holds at E (inc, 1)
-

the node labeled with (inc, 2)

(@,2)
the event call(twice, @) (@,2)

CAV'18, Oxford, United Kingdom 46

Example : The property that cannot be
expressed by the previous specification

languages

-1 [\ x e zb(

CR

(call(twice,") A

= canpcall(c, x

= <_)call>call('; x)

)

The formula holds at
the node labeled with
the event

(twice, @)

G

CAV'18, Oxford, United Kingdom

c

CC

call(twice, @

(twice, @
call(@®,0)
(®,0)
(inc, 0)
(inc, 1)
(®,1)
(®,1)
(inc, 1)
(inc, 2)
(@,2)
(@,2)

47

Example : The property that cannot be
expressed by the previous specification

languages

x=0 /

N

- (call(twice,’) A (o= can)call(-, x))
-1 [\ xe Z”([S (Sopleall(- x)

)

The formula holds at
the node labeled with
the event (twice, @)

CAV'18, Oxford, United Kingdom

c
&

CC

(twice, @
(twice, @
(®,0)
(®,0)
(inc, 0)
(inc, 1)
(®,1)
(®,1)
(inc, 1)
(inc, 2)
(@,2)
(@,2)

48

Example : The property that cannot be
expressed by the previous specification
languages CC

(twice, @

(twice, @
x=0 | —— /~ e 0
\ call(Q 0)

(inc, 0)
Ny /\x € 7, ((call(twice,-) A (— .)call(, x)))

(inc, 1)
1= (=can)eall(, x) (®,1)

\\ E ((I:C 11))
N

The formula holds at
the node labeled with x=0
the event (twice, @)

(inc, 2)
(@,2)
(@,2)

CAV'18, Oxford, United Kingdom 49

Conclusion

« HOT captures the control flow of higher-order programs
« HOT-PDL is an extension of PDL defined over HOTs

 Enables a precise specification of femporal trace properties for higher-
order programs

* Provides a foundation for specification in various application domains
 stack-based access control properties
 dependent refinement types

« HOT-PDL model checking of hig'qher-order programs is shown
decidable via a reduction to higher-order model checking

* Future work: extend HOTs with new kinds of events and
pointers for capturing call-by-name and/or effectful |
computations by incorporating more ideas from game semantics

	Propositional Dynamic Logic for �Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Higher-Order Functional Programs
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Example: Higher-Order Program
	Temporal Verification of Higher-Order Programs
	Temporal Verification of Higher-Order Programs
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Example: Property that cannot be expressed by the previous specification languages
	Our Contributions
	Our Contributions
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Higher-Order Trace (HOT)
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: Event sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Example: HOT that models the reduction sequence of 𝐭𝐰𝐢𝐜𝐞 𝐢𝐧𝐜 𝟎
	Our Contributions
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Higher-Order Propositional Dynamic Logic (HOT-PDL)
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Example : The property that cannot be expressed by the previous specification languages
	Conclusion

