Probabilistic Inference for Predicate Constraint Satisfaction

Hiroshi Unno (University of Tsukuba)
Joint Work with Yuki Satake and Hinata Yanagi

Program Verification via Predicate Constraint Satisfaction

Target Program P & Specification ψ Constraint Generation Constraints *C* on Predicate Variables Constraint Solving $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or Unknown

Previous Work: Program Verification via Constrained Horn Clauses (CHCs) [Bjørner+ '15]

Target Program P & Specification ψ

Limited to *Linear-Time* **Safety Verification ⊗**

Constraint Generation

JayHorn for Java [Kahsai+ '16] SeaHorn for C [Gurfinkel+ '15] RCaml for OCaml [Unno+ '09]

CHCs Constraints **C** on Predicate Variables

Verification Intermediary Independent of Particular Target and Method ©

Constraint Solving

SPACER [Komuravelli+ '14]
Hoice [Champion+ '18]
Eldarica [Hojjat+ '18]

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Support *Branching-Time*Safety Verification [©]

Constraint Generation

New method for Looping & Recursive Programs

pCSP Constraints **C** on Predicate Variables

Verification Intermediary Independent of Particular Target and Method ©

Constraint Solving

New method based on Probabilistic Inference

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ Constraint Generation **pCSP** Constraints **C** on Predicate Variables **Verification Intermediary** Constraint **Independent of Particular** Solving Target and Method 😊 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or Unknown

Predicate Constraint Satisfaction Problem (pCSP)

A finite set C of clauses of the form:

$$X_1(\widetilde{t_1}) \vee \cdots \vee X_\ell(\widetilde{t_\ell}) \vee \phi \vee \\ \neg X_{\ell+1}(\widetilde{t_{\ell+1}}) \vee \cdots \vee \neg X_m(\widetilde{t_m})$$
 where X_1, \ldots, X_m are predicate variables, $\widetilde{t_1}, \ldots, \widetilde{t_m}$ are sequences of terms, ϕ is a first-order formula w/o predicate variables.

Predicate Constraint Satisfaction Problem (pCSP)

A finite set C of clauses of the form:

$$X_1(\widetilde{t_1}) \vee \cdots \vee X_\ell(\widetilde{t_\ell}) \Leftarrow$$
 $X_{\ell+1}(\widetilde{t_{\ell+1}}) \wedge \cdots \wedge X_m(\widetilde{t_m}) \wedge \neg \phi$
where X_1, \ldots, X_m are predicate variables,
 $\widetilde{t_1}, \ldots, \widetilde{t_m}$ are sequences of terms,
 ϕ is a first-order formula w/o predicate variables.

- \mathcal{C} is *satisfiable* (modulo first-order theories) if there is an interpretation ρ of predicate variables such that $\rho \vDash \Lambda \mathcal{C}$
- $\mathcal C$ is *called CHCs* [Bjørner+'15] if $\ell \leq 1$ for each clause in $\mathcal C$

This Work: Program Verification via Predicate **Constraint Satisfaction Problem (pCSP)**

Target Program P & Specification ψ Constraint **Support** *Branching-Time* Generation Safety Verification **pCSP** Constraints **C** on Predicate Variables Constraint

Solving

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or Unknown

Branching-Time Safety Verification of Finitely-Branching Programs

- Safety is a class of properties of the form "something bad will never happen"
- Branching-time verification concerns properties of the *computation tree* of the given program that may exhibit non-deterministic behavior (cf. linear-time verification concerns properties of *execution traces*)
- Subsumes *non-termination verification* of deciding whether *there is* a non-terminating execution

This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification \(\psi\)

Constraint | New method for Looping & Recursive Programs

pCSP Constraints *C* on Predicate Variables

Constraint
Solving

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

Example Program and Specification:

If the initial state satisfies the pre-condition x > 0

there is an execution of the program such that

the post-condition ⊥ is satisfied when the while loop terminates

Example Program and Specification:

If the initial state satisfies the pre-condition x > 0

there is an execution of the program such that

the while loop never terminates

Prog. & Spec.

pCSP

SAT or UNSAT

Constraint Generation

Constraint Solving

Input:

$$\{x > 0\}$$
while $x \neq 0$ do
if read_bool()³ then
$$x \leftarrow x - 1$$
else
$$x \leftarrow x + 1$$
done
 $\{\bot\}$

represents a *loop invariant*Output C: preserved by *some* execution

- $1) I(x) \leftarrow x > 0,$
- (2) $I(x-1) \lor I(x+1)$

C is beyond CHCs!

$$\leftarrow I(x) \land x \neq 0,$$

 \mathcal{C} is *satisfiable*, witnessed by a solution $I(x) \equiv x > 0$

This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ Constraint Generation **pCSP** Constraints **C** on Predicate Variables Constraint New method based on Solving **Probabilistic Inference**

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

Challenges in pCSP Solving

- Undecidable in general even for decidable theories
- The search space of solutions is often very large (or unbounded), high-dimensional, and non-smooth

We address these challenges by a novel combination of *probabilistic inference* with *CounterExample Guided Inductive Synthesis* (CEGIS) [Solar-Lezama+'06]

CounterExample Guided Inductive Synthesis (CEGIS)

- Iteratively accumulate example instances \mathcal{E} of the given \mathcal{C} through the two phases for each iteration:
 - Synthesis Phase
 - Enumerate candidate solutions ρ_1, \dots, ρ_n that satisfy \mathcal{E}
 - Validation Phase
 - Check if there is a candidate ρ_i that also satisfies \mathcal{C}
 - If yes, return ρ_i as a solution of \mathcal{C}
 - If no, repeat the procedure with new example instances witnessing non-satisfaction of \mathcal{C} by ρ_1, \dots, ρ_n added

Synthesizer

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

Ø

Starting from the empty set

Validator

pCSP Constraints C:

- $I(x) \Leftarrow x > 0$
- $I(x-1) \lor I(x+1)$ $\Leftarrow I(x) \land x \neq 0$
- $\bot \leftarrow I(x) \land x = 0$

Is one of the following candidates genuine?

$$\{I(x) \mapsto T\}, \dots$$

Synthesizer

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcacl{\matcaccl{\matcaccl{**

$$\bot \Leftarrow I(0) \land 0 = 0$$

Validator

pCSP Constraints C:

- $I(x) \Leftarrow x > 0$
- $\begin{array}{c}
 \bullet \ I(x-1) \lor I(x+1) \\
 \longleftarrow I(x) \land x \neq 0
 \end{array}$
- $\bot \Leftarrow I(x) \land x = 0$

No. $\{I(x) \mapsto T\}$ is not. The 3rd clause is violated when x = 0

February :

Synthesizer

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

 $\neg I(0)$

Validator

pCSP Constraints C:

•
$$I(x) \Leftarrow x > 0$$

•
$$I(x-1) \lor I(x+1)$$

 $\Leftarrow I(x) \land x \neq 0$

•
$$\bot \leftarrow I(x) \land x = 0$$

Is one of the following candidates genuine?

$$\{I(x) \mapsto x < 0\}, \dots$$

Synthesizer

Example Instances **\mathcal{\matcacl{\matcaccent{\matca}\mathcar{\matcal{\matcaccent{\matcaccent{\math**

 $\neg I(0)$

$$I(1) \Leftarrow 1 > 0$$

Validator

pCSP Constraints C:

- $I(x) \Leftarrow x > 0$
- $\begin{array}{c}
 \bullet \ I(x-1) \lor I(x+1) \\
 \longleftarrow I(x) \land x \neq 0
 \end{array}$
- $\bot \Leftarrow I(x) \land x = 0$

No. $\{I(x) \mapsto x < 0\}$ is not.

The 1st clause is violated when x = 1

Synthesizer

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcacl{\matcaccl{\matcaccl{**

 $\neg I(0)$

I(1)

Validator

pCSP Constraints C:

- $I(x) \Leftarrow x > 0$
- $I(x-1) \lor I(x+1)$ $\Leftarrow I(x) \land x \neq 0$
- $\bot \leftarrow I(x) \land x = 0$

Is one of the following candidates genuine?

$$\{I(x) \mapsto x \ge 1\}, ...$$

Synthesizer

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcal{\matcacl{\matcacl{\matcaccl{\matcaccl{**

 $\neg I(0)$

I(1)

Validator

pCSP Constraints C:

- $I(x) \Leftarrow x > 0$
- $\begin{array}{c}
 \bullet I(x-1) \lor I(x+1) \\
 \Leftarrow I(x) \land x \neq 0
 \end{array}$
- $\bot \Leftarrow I(x) \land x = 0$

Yes. $\{I(x) \mapsto x \ge 1\}$ is a solution of C!

Enumeration of Candidates ρ_1, \dots, ρ_n

Challenges:

- 1. The number n of candidates must be **bounded**
- Candidates must satisfy \(\mathcal{E}\) and should be simpler
 (per Occam's razor) and essentially different each other
 for more chance to satisfy \(\mathcal{C}\)

• Our Solutions:

- 1. Compute *predicate abstraction* [Graf+ '97] $\alpha(\mathcal{E})$ of \mathcal{E} using a finite set \mathcal{Q} of predicates to reduce the search space of candidates to the *finite set* of \mathcal{Q} -expressible solutions
- 2. Enumerate "promising" satisfying Boolean assignments of $\alpha(\mathcal{E})$ via survey inspired decimation (SID) [Braunstein+'05]

Example: Predicate Abstraction

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

- $\neg I(0)$
- *I*(1)

Predicates Set Q: $\begin{cases} \lambda x. \perp, \lambda x. \top, \\ \lambda x. x \geq 0, \lambda x. -x \geq 0, \\ \lambda x. x \geq 1, \lambda x. -x \geq -1 \end{cases}$

Example: Predicate Abstraction

Example Instances **\mathcal{\matcacl{\matcacc}\mathcar{\mathcar{\mathcal{\matcacl{\matcaccl{\matcaccl{**

- $\neg I(0)$
- *I*(1)

```
Predicates Set Q:

\begin{cases}
\lambda x. \perp, \lambda x. \top, \\
\lambda x. x \geq 0, \lambda x. 0 \geq x, \\
\lambda x. x \geq 1, \lambda x. 1 \geq x
\end{cases}
```

```
Solution Template with Boole parameters b_{\perp}, b_{\geq 1}, b_{0\geq},...: \{I(x) \mapsto (b_{\perp} \Rightarrow \bot) \land (b_{\geq 1} \Rightarrow \bot) \land (b_{0\geq} \Rightarrow 0 \geq x) \land \cdots\}
```

Predicate Abstraction $\alpha(\mathcal{E}) \equiv (b_{\perp} \vee b_{\geq 1}) \wedge \neg b_{\perp} \wedge \neg b_{0\geq}$ Satisfying Assignments for $\alpha(\mathcal{E})$: don't care $\{b_{\perp} \mapsto \bot, b_{0\geq} \mapsto \bot, b_{\geq 1} \mapsto \top, b_{\top} \mapsto *, b_{\geq 0} \mapsto *, b_{1\geq} \mapsto *\}$, indicating that λx . \bot and λx . $0 \geq x$ must not be used and λx . $x \geq 1$ must be used λx . λx and λx and λx . λx and λx

SID-based Enumeration of "*Promising*" Satisfying Assignments for $\alpha(\mathcal{E})$

- To obtain a *simpler solution* (e.g., $\{I(x) \mapsto x \geq 1\}$), detect and assign \bot to the don't-care variables
- To reduce similar solutions while preserving different ones belonging to different solution clusters, use SID to iteratively assign a value v to a variable of $\alpha(\mathcal{E})$ with the highest bias toward v (i.e., "sufficiently" determined)
 - The *biases* of each variable are computed via *probabilistic* inference (survey propagation) in a graphical model (factor graph) obtained from $\alpha(\mathcal{E})$ (see the paper for details)

Evaluation

- Implemented the presented method as a pCSP solver
 PCSat using Z3 as the backend SMT solver
- Tested PCSat on the benchmark sets from
 - SyGuS-Comp 2017 and 2018 (Invariant Synthesis Track)
 - CHC-COMP 2019 (LIA-nonlin Track)
 - New pCSP benchmarks of branching-time safety verification that go beyond the scope of existing SyGuS and CHC solvers

Results on 127 Benchmarks from SyGuS-Comp 2018

	#SAT	#UNSAT
SID(#cand=1)	91	8
SID(#cand=2)	92	8
SID(#cand=4)	96	8
SID(#cand=8)	100	8
SID(#cand=16)	96	8
SID(#cand=32)	95	7
SID(#cand=64)	94	6
SAT(#cand=1)	94	8
SAT(#cand=2)	92	8
SAT(#cand=4)	91	8
SAT(#cand=8)	89	7

Summary: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Support *Branching-Time*Safety Verification [©]

Constraint Generation

New method for Looping & Recursive Programs

pCSP Constraints **C** on Predicate Variables

Verification Intermediary Independent of Particular Target and Method ©

Constraint Solving

New method based on CEGIS, Pred. Abstraction, Survey Inspired Decimation

 $\boldsymbol{\mathcal{C}}$ is **Sat** (\boldsymbol{P} satisfies $\boldsymbol{\psi}$), $\boldsymbol{\mathcal{C}}$ is **Unsat** (\boldsymbol{P} violates $\boldsymbol{\psi}$), or **Unknown**

Ongoing and Future Work

- ✓ Extend pCSP to support branching-time *liveness* verification of (possibly) *infinitely* branching programs
 - Liveness: "something good will eventually happen"
- \triangleright Develop constraint generation tools for C, Java, OCaml, μ CLP
- Extend **PCSat** to support more theories (Arrays, ADTs, heaps, ...)
- Apply other constraint satisfaction methods to enumerate sols.
- Apply other probabilistic inference like variational inference and approximate model counting by directly modeling pCSP as factor graphs representing joint probability distributions over random predicate variables