
Probabilistic Inference for 
Predicate Constraint Satisfaction

Hiroshi Unno (University of Tsukuba)
Joint Work with Yuki Satake and Hinata Yanagi



Program Verification via
Predicate Constraint Satisfaction

February 9, 2020 AAAI'20, NY, USA 2

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

Constraints 𝓒𝓒 on Predicate Variables

Target Program 𝑷𝑷 & Specification 𝝍𝝍



Previous Work: Program Verification via 
Constrained Horn Clauses (CHCs) [Bjørner+ ’15]

February 9, 2020 AAAI'20, NY, USA 3

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

Target Program 𝑷𝑷 & Specification 𝝍𝝍

CHCs Constraints 𝓒𝓒 on Predicate Variables

JayHorn for Java [Kahsai+ ’16]
SeaHorn for C [Gurfinkel+ ’15]
RCaml for OCaml [Unno+ ’09]

SPACER [Komuravelli+ ’14]
Hoice [Champion+ ’18]
Eldarica [Hojjat+ ’18]

Limited to Linear-Time
Safety Verification 

Verification Intermediary 
Independent of Particular 
Target and Method 



Target Program 𝑷𝑷 & Specification 𝝍𝝍

This Work: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 4

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables

New method for Looping 
& Recursive Programs

New method based on 
Probabilistic Inference

Support Branching-Time
Safety Verification 

Verification Intermediary 
Independent of Particular 
Target and Method 



Target Program 𝑷𝑷 & Specification 𝝍𝝍

This Work: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 5

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables
Verification Intermediary 
Independent of Particular 
Target and Method 



Predicate Constraint 
Satisfaction Problem (pCSP)
• A finite set 𝓒𝓒 of clauses of the form:

where 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 are predicate variables,
�𝑡𝑡1, … , �𝑡𝑡𝑚𝑚 are sequences of terms,
𝜙𝜙 is a first-order formula w/o predicate variables.

February 9, 2020 AAAI'20, NY, USA 6

𝑋𝑋1 �𝑡𝑡1 ∨ ⋯∨ 𝑋𝑋ℓ �𝑡𝑡ℓ ∨ 𝜙𝜙 ∨
¬𝑋𝑋ℓ+1 �𝑡𝑡ℓ+1 ∨ ⋯∨ ¬𝑋𝑋𝑚𝑚 �𝑡𝑡𝑚𝑚



Predicate Constraint 
Satisfaction Problem (pCSP)
• A finite set 𝓒𝓒 of clauses of the form:

where 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 are predicate variables,
�𝑡𝑡1, … , �𝑡𝑡𝑚𝑚 are sequences of terms,
𝜙𝜙 is a first-order formula w/o predicate variables.

• 𝓒𝓒 is satisfiable (modulo first-order theories) if there is an 
interpretation 𝜌𝜌 of predicate variables such that 𝜌𝜌 ⊨ ⋀𝓒𝓒

• 𝓒𝓒 is called CHCs [Bjørner+ ’15] if ℓ ≤ 1 for each clause in 𝓒𝓒

February 9, 2020 AAAI'20, NY, USA 7

𝑋𝑋1 �𝑡𝑡1 ∨ ⋯∨ 𝑋𝑋ℓ �𝑡𝑡ℓ ⟸
𝑋𝑋ℓ+1 �𝑡𝑡ℓ+1 ∧ ⋯∧ 𝑋𝑋𝑚𝑚 �𝑡𝑡𝑚𝑚 ∧ ¬𝜙𝜙



Target Program 𝑷𝑷 & Specification 𝝍𝝍

This Work: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 8

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables

Support Branching-Time
Safety Verification 



Branching-Time Safety Verification of 
Finitely-Branching Programs

• Safety is a class of properties of the form
“something bad will never happen”

• Branching-time verification concerns properties of 
the computation tree of the given program that may 
exhibit non-deterministic behavior (cf. linear-time
verification concerns properties of execution traces)

• Subsumes non-termination verification of deciding 
whether there is a non-terminating execution

February 9, 2020 AAAI'20, NY, USA 9



Target Program 𝑷𝑷 & Specification 𝝍𝝍

This Work: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 10

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables

New method for Looping 
& Recursive Programs



𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝

𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
𝑥𝑥 ← 𝑥𝑥 − 1

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
𝑥𝑥 ← 𝑥𝑥 + 1

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

February 9, 2020 AAAI'20, NY, USA 11

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the post-condition ⊥ is 
satisfied when the while 

loop terminates 

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Specification:

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition



𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝

𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
𝑥𝑥 ← 𝑥𝑥 − 1

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
𝑥𝑥 ← 𝑥𝑥 + 1

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

February 9, 2020 AAAI'20, NY, USA 12

If the initial state satisfies 
the pre-condition 𝑥𝑥 > 0

there is an execution of 
the program such that

the while loop
never terminates 

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving

Example Program and Specification:

Non-det. 
branching

Contradiction

Pre-
condition

Post-
condition



Input:
𝑥𝑥 > 0
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑥𝑥 ≠ 0 𝐝𝐝𝐝𝐝

𝐢𝐢𝐢𝐢 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫_𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 ∃ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
𝑥𝑥 ← 𝑥𝑥 − 1

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞
𝑥𝑥 ← 𝑥𝑥 + 1

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
⊥

February 9, 2020 AAAI'20, NY, USA 13

Output 𝓒𝓒:

① 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0,
② 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1

⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0,
③ ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

Prog. & Spec. pCSP SAT or UNSAT

Constraint Generation Constraint Solving

represents a loop invariant
preserved by some execution

𝓒𝓒 is beyond 
CHCs!

𝓒𝓒 is satisfiable, witnessed by 
a solution 𝐼𝐼 𝑥𝑥 ≡ 𝑥𝑥 > 0



Target Program 𝑷𝑷 & Specification 𝝍𝝍

This Work: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 14

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables

New method based on 
Probabilistic Inference



Challenges in pCSP Solving
• Undecidable in general even for decidable theories
• The search space of solutions is often very large

(or unbounded), high-dimensional, and non-smooth

February 9, 2020 AAAI'20, NY, USA 15

We address these challenges by a novel 
combination of probabilistic inference with
CounterExample Guided Inductive Synthesis 
(CEGIS) [Solar-Lezama+ ’06]



CounterExample Guided 
Inductive Synthesis (CEGIS)

• Iteratively accumulate example instances 𝓔𝓔 of the 
given 𝓒𝓒 through the two phases for each iteration:

• Synthesis Phase
• Enumerate candidate solutions 𝜌𝜌1, … ,𝜌𝜌𝑛𝑛 that satisfy 𝓔𝓔

• Validation Phase
• Check if there is a candidate 𝜌𝜌𝑖𝑖 that also satisfies 𝓒𝓒

• If yes, return 𝜌𝜌𝑖𝑖 as a solution of 𝓒𝓒
• If no, repeat the procedure with new example instances 

witnessing non-satisfaction of 𝓒𝓒 by 𝜌𝜌1, … ,𝜌𝜌𝑛𝑛 added

February 9, 2020 AAAI'20, NY, USA 16



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

∅

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 17

Starting from 
the empty set

Is one of the following candidates genuine?
𝐼𝐼 𝑥𝑥 ↦ ⊤ , …



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

∅

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 18

No. 𝐼𝐼 𝑥𝑥 ↦ ⊤ is not.
The 3rd clause is violated when 𝑥𝑥 = 0

⊥⟸ 𝐼𝐼 0 ∧ 0 = 0



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

¬𝐼𝐼 0

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 19

Is one of the following candidates genuine?
𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 < 0 , …



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

¬𝐼𝐼 0

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 20

No. 𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 < 0 is not.
The 1st clause is violated when 𝑥𝑥 = 1

𝐼𝐼 1 ⟸ 1 > 0



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

¬𝐼𝐼 0

𝐼𝐼 1

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 21

Is one of the following candidates genuine?
𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1 , …



Example Run of CEGIS
Synthesizer
Example Instances 𝓔𝓔:

¬𝐼𝐼 0

𝐼𝐼 1

Validator
pCSP Constraints 𝓒𝓒:

• 𝐼𝐼 𝑥𝑥 ⟸ 𝑥𝑥 > 0

• 𝐼𝐼 𝑥𝑥 − 1 ∨ 𝐼𝐼 𝑥𝑥 + 1
⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 ≠ 0

• ⊥⟸ 𝐼𝐼 𝑥𝑥 ∧ 𝑥𝑥 = 0

February 9, 2020 AAAI'20, NY, USA 22

Yes. 𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1 is a solution of 𝓒𝓒!



Enumeration of Candidates 𝜌𝜌1, … ,𝜌𝜌𝑛𝑛
• Challenges:

1. The number 𝑛𝑛 of candidates must be bounded 
2. Candidates must satisfy 𝓔𝓔 and should be simpler

(per Occam’s razor) and essentially different each other 
for more chance to satisfy 𝓒𝓒

• Our Solutions:
1. Compute predicate abstraction [Graf+ ’97] 𝛼𝛼 𝓔𝓔 of 𝓔𝓔 using 

a finite set 𝓠𝓠 of predicates to reduce the search space of 
candidates to the finite set of 𝓠𝓠-expressible solutions

2. Enumerate “promising” satisfying Boolean assignments 
of 𝛼𝛼 𝓔𝓔 via survey inspired decimation (SID) [Braunstein+ ’05]

February 9, 2020 AAAI'20, NY, USA 23



Example: Predicate Abstraction

February 9, 2020 AAAI'20, NY, USA 24

Example Instances 𝓔𝓔:

• ¬𝐼𝐼 0
• 𝐼𝐼 1

Predicates Set 𝓠𝓠:
𝜆𝜆𝜆𝜆.⊥, 𝜆𝜆𝜆𝜆.⊤,

𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0, 𝜆𝜆𝜆𝜆.−𝑥𝑥 ≥ 0,
𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 1, 𝜆𝜆𝜆𝜆.−𝑥𝑥 ≥ −1



Example: Predicate Abstraction

February 9, 2020 AAAI'20, NY, USA 25

Example Instances 𝓔𝓔:

• ¬𝐼𝐼 0
• 𝐼𝐼 1

Predicates Set 𝓠𝓠:
𝜆𝜆𝜆𝜆.⊥, 𝜆𝜆𝜆𝜆.⊤,

𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 0, 𝜆𝜆𝜆𝜆. 0 ≥ 𝑥𝑥,
𝜆𝜆𝜆𝜆. 𝑥𝑥 ≥ 1, 𝜆𝜆𝜆𝜆. 1 ≥ 𝑥𝑥

Predicate Abstraction 𝛼𝛼 𝓔𝓔 ≡ 𝑏𝑏⊥ ∨ 𝑏𝑏≥1 ∧ ¬𝑏𝑏⊥ ∧ ¬𝑏𝑏0≥
Satisfying Assignments for 𝛼𝛼 𝓔𝓔 :

𝑏𝑏⊥ ↦⊥,𝑏𝑏0≥ ↦⊥,𝑏𝑏≥1 ↦ ⊤, 𝑏𝑏⊤ ↦∗, 𝑏𝑏≥0 ↦∗, 𝑏𝑏1≥ ↦∗ , indicating that
𝝀𝝀𝝀𝝀.⊥ and 𝝀𝝀𝝀𝝀.𝟎𝟎 ≥ 𝒙𝒙 must not be used and 𝝀𝝀𝝀𝝀.𝒙𝒙 ≥ 𝟏𝟏 must be used

∴ 𝓠𝓠-expressible sols. are 𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1 and 𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1 ∧ 1 ≥ 𝑥𝑥

Solution Template with Boolean parameters 𝑏𝑏⊥, 𝑏𝑏≥1, 𝑏𝑏0≥,…:
𝐼𝐼 𝑥𝑥 ↦ 𝑏𝑏⊥ ⇒⊥ ∧ 𝑏𝑏≥1 ⇒ 𝑥𝑥 ≥ 1 ∧ 𝑏𝑏0≥ ⇒ 0 ≥ 𝑥𝑥 ∧ ⋯

don’t care



SID-based Enumeration of “Promising” 
Satisfying Assignments for 𝛼𝛼 𝓔𝓔

• To obtain a simpler solution (e.g., 𝐼𝐼 𝑥𝑥 ↦ 𝑥𝑥 ≥ 1 ), 
detect and assign ⊥ to the don’t-care variables

• To reduce similar solutions while preserving different 
ones belonging to different solution clusters, use SID to 
iteratively assign a value 𝑣𝑣 to a variable of 𝛼𝛼 𝓔𝓔 with the 
highest bias toward 𝑣𝑣 (i.e., “sufficiently” determined)

• The biases of each variable are computed via probabilistic 
inference (survey propagation) in a graphical model (factor 
graph) obtained from 𝛼𝛼 𝓔𝓔 (see the paper for details)

February 9, 2020 AAAI'20, NY, USA 26



Evaluation
• Implemented the presented method as a pCSP solver 

PCSat using Z3 as the backend SMT solver
• Tested PCSat on the benchmark sets from

• SyGuS-Comp 2017 and 2018 (Invariant Synthesis Track)
• CHC-COMP 2019 (LIA-nonlin Track) 
• New pCSP benchmarks of branching-time safety verification 

that go beyond the scope of existing SyGuS and CHC solvers

February 9, 2020 AAAI'20, NY, USA 27



Results on 127 Benchmarks 
from SyGuS-Comp 2018 

February 9, 2020 AAAI'20, NY, USA 28



Target Program 𝑷𝑷 & Specification 𝝍𝝍

Summary: Program Verification via Predicate 
Constraint Satisfaction Problem (pCSP)

February 9, 2020 AAAI'20, NY, USA 29

Constraint 
Generation

𝓒𝓒 is Sat (𝑷𝑷 satisfies 𝝍𝝍),
𝓒𝓒 is Unsat (𝑷𝑷 violates 𝝍𝝍),

or Unknown

Constraint 
Solving

pCSP Constraints 𝓒𝓒 on Predicate Variables

New method for Looping 
& Recursive Programs

New method based on 
CEGIS, Pred. Abstraction, 
Survey Inspired Decimation

Support Branching-Time
Safety Verification 

Verification Intermediary 
Independent of Particular 
Target and Method 



Ongoing and Future Work
Extend pCSP to support branching-time liveness verification of 

(possibly) infinitely branching programs
• Liveness: “something good will eventually happen”

Develop constraint generation tools for C, Java, OCaml, 𝜇𝜇CLP
Extend PCSat to support more theories (Arrays, ADTs, heaps, …)
• Apply other constraint satisfaction methods to enumerate sols.
• Apply other probabilistic inference like variational inference

and approximate model counting by directly modeling pCSP as 
factor graphs representing joint probability distributions over 
random predicate variables

February 9, 2020 AAAI'20, NY, USA 30


	Probabilistic Inference for Predicate Constraint Satisfaction
	Program Verification via�Predicate Constraint Satisfaction
	Previous Work: Program Verification via Constrained Horn Clauses (CHCs) [Bjørner+ ’15]
	This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	Predicate Constraint Satisfaction Problem (pCSP)
	Predicate Constraint Satisfaction Problem (pCSP)
	This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	Branching-Time Safety Verification of Finitely-Branching Programs
	This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	スライド番号 11
	スライド番号 12
	スライド番号 13
	This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	Challenges in pCSP Solving
	CounterExample Guided Inductive Synthesis (CEGIS)
	Example Run of CEGIS
	Example Run of CEGIS
	Example Run of CEGIS
	Example Run of CEGIS
	Example Run of CEGIS
	Example Run of CEGIS
	Enumeration of Candidates  𝜌 1 ,…, 𝜌 𝑛 
	Example: Predicate Abstraction
	Example: Predicate Abstraction
	SID-based Enumeration of “Promising” Satisfying Assignments for 𝛼 𝓔 
	Evaluation
	Results on 127 Benchmarks from SyGuS-Comp 2018 
	Summary: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)
	Ongoing and Future Work

