Probabilistic Inference for Predicate Constraint Satisfaction

Hiroshi Unno (University of Tsukuba)
Joint Work with Yuki Satake and Hinata Yanagi
Program Verification via Predicate Constraint Satisfaction

Target Program P & Specification ψ

Constraint Generation

Constraints C on Predicate Variables

Constraint Solving

C is Sat (P satisfies ψ),
C is Unsat (P violates ψ),
or Unknown
Previous Work: Program Verification via Constrained Horn Clauses (CHCs) [Bjørner+ ’15]

Limited to Linear-Time Safety Verification 😞

CHCs Constraints C on Predicate Variables

Verification Intermediary Independent of Particular Target and Method 😊

Target Program P & Specification ψ

Constraint Generation

Constraint Solving

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown

JayHorn for Java [Kahsai+ ’16]
SeaHorn for C [Gurfinkel+ ’15]
RCaml for OCaml [Unno+ ’09]

SPACER [Komuravelli+ ’14]
Hoice [Champion+ ’18]
Eldarica [Hojjat+ ’18]
This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

- Support Branching-Time Safety Verification 😊
- New method for Looping & Recursive Programs

pCSP Constraints C on Predicate Variables

- Verification Intermediary Independent of Particular Target and Method 😊
- New method based on Probabilistic Inference

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown
This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Constraint Generation

pCSP Constraints C on Predicate Variables

Verification Intermediary Independent of Particular Target and Method 😊

Constraint Solving

C is Sat (P satisfies ψ),
C is Unsat (P violates ψ),
or Unknown
Predicate Constraint Satisfaction Problem (pCSP)

- A finite set \mathcal{C} of clauses of the form:
 $$X_1(t_1) \lor \cdots \lor X_\ell(t_\ell) \lor \phi \lor$$
 $$\neg X_{\ell+1}(t_{\ell+1}) \lor \cdots \lor \neg X_m(t_m)$$

 where X_1, \ldots, X_m are predicate variables,
 t_1, \ldots, t_m are sequences of terms,
 ϕ is a first-order formula w/o predicate variables.
Predicate Constraint Satisfaction Problem (pCSP)

• A finite set \mathcal{C} of clauses of the form:

$$X_1(t_1) \lor \cdots \lor X_\ell(t_\ell) \iff X_{\ell+1}(t_{\ell+1}) \land \cdots \land X_m(t_m) \land \neg \phi$$

where X_1, \ldots, X_m are predicate variables,
t_1, \ldots, t_m are sequences of terms,
ϕ is a first-order formula w/o predicate variables.

• \mathcal{C} is satisfiable (modulo first-order theories) if there is an interpretation ρ of predicate variables such that $\rho \models \land \mathcal{C}$

• \mathcal{C} is called CHCs [Bjørner+ ’15] if $\ell \leq 1$ for each clause in \mathcal{C}
This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Support Branching-Time Safety Verification 😊

$pCSP$ Constraints C on Predicate Variables

Constraint Generation

Constraint Solving

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown
Branching-Time Safety Verification of Finitely-Branching Programs

- **Safety** is a class of properties of the form “something bad will never happen”

- **Branching-time** verification concerns properties of the computation tree of the given program that may exhibit non-deterministic behavior (cf. linear-time verification concerns properties of execution traces)

- Subsumes **non-termination verification** of deciding whether there is a non-terminating execution
This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Constraint Generation

New method for Looping & Recursive Programs

pCSP Constraints C on Predicate Variables

Constraint Solving

C is **Sat** (P satisfies ψ),
C is **Unsat** (P violates ψ),
or **Unknown**
Example Program and Specification:

Pre-condition: \(\{ x > 0 \} \)

while \(x \neq 0 \) do
 if \(\text{read_bool()} \) then
 \(x \leftarrow x - 1 \)
 else
 \(x \leftarrow x + 1 \)

done

Post-condition: \(\{ \bot \} \)

If the initial state satisfies the pre-condition \(x > 0 \) there is an execution of the program such that the post-condition \(\bot \) is satisfied when the while loop terminates.
If the initial state satisfies the pre-condition $x > 0$, there is an execution of the program such that the while loop never terminates.

Example Program and Specification:

Pre-condition: $\{x > 0\}$

while $x \neq 0$ do
 if read_bool() \exists then
 $x \leftarrow x - 1$
 else
 $x \leftarrow x + 1$

done

Post-condition: $\{\bot\}$ Contradiction

There is an execution of the program such that the while loop never terminates.
Input:
\{x > 0\}
while \(x \neq 0 \) do
 if read_bool() then
 \(x \leftarrow x - 1 \)
 else
 \(x \leftarrow x + 1 \)
done
\{\bot\}

Output \(C \):
\[
\begin{align*}
\text{(1) } & \quad I(x) \leftarrow x > 0, \\
\text{(2) } & \quad I(x - 1) \lor I(x + 1) \leftarrow I(x) \land x \neq 0, \\
\text{(3) } & \quad \bot \leftarrow I(x) \land x = 0
\end{align*}
\]

\(C \) is beyond CHCs!
\(C \) is satisfiable, witnessed by a solution \(I(x) \equiv x > 0 \)

represents a loop invariant preserved by some execution
This Work: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Constraint Generation

pCSP Constraints C on Predicate Variables

Constraint Solving

C is **Sat** (P satisfies ψ),
C is **Unsat** (P violates ψ),
or **Unknown**

New method based on Probabilistic Inference
Challenges in pCSP Solving

• Undecidable in general even for decidable theories
• The search space of solutions is often very large (or unbounded), high-dimensional, and non-smooth

We address these challenges by a novel combination of probabilistic inference with CounterExample Guided Inductive Synthesis (CEGIS) [Solar-Lezama+ ’06]
CounterExample Guided Inductive Synthesis (CEGIS)

• Iteratively accumulate example instances \mathcal{E} of the given \mathcal{C} through the two phases for each iteration:

 • **Synthesis Phase**

 • Enumerate candidate solutions ρ_1, \ldots, ρ_n that satisfy \mathcal{E}

 • **Validation Phase**

 • Check if there is a candidate ρ_i that also satisfies \mathcal{C}

 • If yes, return ρ_i as a solution of \mathcal{C}

 • If no, repeat the procedure with new example instances witnessing non-satisfaction of \mathcal{C} by ρ_1, \ldots, ρ_n added
Example Run of CEGIS

Synthesizer

Example Instances \mathcal{E}:

\emptyset

Starting from the empty set

Validator

pCSP Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is one of the following candidates genuine?

$\{I(x) \iff T\}$, ...
Example Run of CEGIS

Synthesizer
Example Instances \mathcal{E}:

$$\bot \iff I(0) \land 0 = 0$$

Validator
pCSP Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

No. $\{I(x) \rightarrow T\}$ is not.
The 3rd clause is violated when $x = 0$
Example Run of CEGIS

Synthesizer
Example Instances \mathcal{E}:

$$\neg I(0)$$

Validator
pCSP Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is one of the following candidates genuine?

$\{I(x) \leftrightarrow x < 0\}$, ...
Example Run of CEGIS

Synthesizer
Example Instances \mathcal{E}:

\[-I(0)\]

$I(1) \iff 1 > 0$

Validator
pCSP Constraints \mathcal{C}:

\[\begin{align*}
&\cdot I(x) \iff x > 0 \\
&\cdot I(x - 1) \vee I(x + 1) \iff I(x) \land x \neq 0 \\
&\cdot \bot \iff I(x) \land x = 0
\end{align*}\]

No. $\{I(x) \iff x < 0\}$ is not. The 1st clause is violated when $x = 1$
Example Run of CEGIS

Synthesizer
Example Instances \mathcal{E}:

\[\neg I(0) \]

\[I(1) \]

Validator
pCSP Constraints \mathcal{C}:

\[I(x) \iff x > 0 \]

\[I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0 \]

\[\bot \iff I(x) \land x = 0 \]

Is one of the following candidates genuine?

\[\{I(x) \iff x \geq 1\}, \ldots \]
Example Run of CEGIS

Synthesizer
Example Instances \mathcal{E}:

$\neg I(0)$

$I(1)$

Validator
pCSP Constraints \mathcal{C}:

$\cdot I(x) \iff x > 0$

$\cdot I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$

$\cdot \bot \iff I(x) \land x = 0$

Yes. $\{I(x) \leftrightarrow x \geq 1\}$ is a solution of \mathcal{C}!
Enumeration of Candidates ρ_1, \ldots, ρ_n

• Challenges:
 1. The number n of candidates must be \textit{bounded}
 2. Candidates must satisfy \mathcal{E} and should be \textit{simpler} (per Occam’s razor) and \textit{essentially different} each other for \textit{more chance to satisfy} \mathcal{C}

• Our Solutions:
 1. Compute \textit{predicate abstraction} \cite{Graf97} $\alpha(\mathcal{E})$ of \mathcal{E} using a finite set Q of predicates to reduce the search space of candidates to the \textit{finite set} of Q-expressible solutions
 2. Enumerate “\textit{promising}” satisfying Boolean assignments of $\alpha(\mathcal{E})$ via \textit{survey inspired decimation (SID)} \cite{Braunstein05}
Example: Predicate Abstraction

Example Instances \mathcal{E}:
- $\neg I(0)$
- $I(1)$

Predicates Set \mathcal{Q}:
$$\{ \lambda x. \bot, \lambda x. \top, \lambda x. x \geq 0, \lambda x. -x \geq 0, \lambda x. x \geq 1, \lambda x. -x \geq -1 \}$$
Example: Predicate Abstraction

Example Instances \mathcal{E}:
- $\neg I(0)$
- $I(1)$

Predicates Set \mathcal{Q}:
\[
\{ \lambda x. \bot, \lambda x. T, \\
\lambda x. x \geq 0, \lambda x. 0 \geq x, \\
\lambda x. x \geq 1, \lambda x. 1 \geq x \}
\]

Solution Template with Boolean parameters $b_\bot, b_{\geq 1}, b_{0\geq}, \ldots$:
\[
\{ I(x) \rightarrow (b_\bot \Rightarrow \bot) \land (b_{\geq 1} \Rightarrow x \geq 1) \land (b_{0\geq} \Rightarrow 0 \geq x) \land \ldots \}
\]

Predicate Abstraction $\alpha(\mathcal{E}) \equiv (b_\bot \lor b_{\geq 1}) \land \neg b_\bot \land \neg b_{0\geq}$

Satisfying Assignments for $\alpha(\mathcal{E})$: $\{b_\bot \mapsto \bot, b_{0\geq} \mapsto \bot, b_{\geq 1} \mapsto T, b_T \mapsto *, b_{\geq 0} \mapsto *, b_{1\geq} \mapsto *\}$, indicating that $\lambda x. \bot$ and $\lambda x. 0 \geq x$ must not be used and $\lambda x. x \geq 1$ must be used

\therefore \mathcal{Q}-expressible sols. are $\{I(x) \mapsto x \geq 1\}$ and $\{I(x) \mapsto x \geq 1 \land 1 \geq x\}$
SID-based Enumeration of “Promising” Satisfying Assignments for $\alpha(\mathcal{E})$

- To obtain a simpler solution (e.g., $\{I(x) \mapsto x \geq 1\}$), detect and assign \bot to the don’t-care variables
- To reduce similar solutions while preserving different ones belonging to different solution clusters, use SID to iteratively assign a value v to a variable of $\alpha(\mathcal{E})$ with the highest bias toward v (i.e., “sufficiently” determined)
 - The biases of each variable are computed via probabilistic inference (survey propagation) in a graphical model (factor graph) obtained from $\alpha(\mathcal{E})$ (see the paper for details)
Evaluation

• Implemented the presented method as a pCSP solver **PCSat** using **Z3** as the backend SMT solver

• Tested **PCSat** on the benchmark sets from
 • SyGuS-Comp 2017 and 2018 (Invariant Synthesis Track)
 • CHC-COMP 2019 (LIA-nonlin Track)
 • New pCSP benchmarks of branching-time safety verification that *go beyond the scope of existing SyGuS and CHC solvers*
Results on 127 Benchmarks from SyGuS-Comp 2018

<table>
<thead>
<tr>
<th></th>
<th>#SAT</th>
<th>#UNSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID(#cand=1)</td>
<td>91</td>
<td>8</td>
</tr>
<tr>
<td>SID(#cand=2)</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>SID(#cand=4)</td>
<td>96</td>
<td>8</td>
</tr>
<tr>
<td>SID(#cand=8)</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>SID(#cand=16)</td>
<td>96</td>
<td>8</td>
</tr>
<tr>
<td>SID(#cand=32)</td>
<td>95</td>
<td>7</td>
</tr>
<tr>
<td>SID(#cand=64)</td>
<td>94</td>
<td>6</td>
</tr>
<tr>
<td>SAT(#cand=1)</td>
<td>94</td>
<td>8</td>
</tr>
<tr>
<td>SAT(#cand=2)</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>SAT(#cand=4)</td>
<td>91</td>
<td>8</td>
</tr>
<tr>
<td>SAT(#cand=8)</td>
<td>89</td>
<td>7</td>
</tr>
</tbody>
</table>
Summary: Program Verification via Predicate Constraint Satisfaction Problem (pCSP)

Target Program P & Specification ψ

Constraint Generation

New method for Looping & Recursive Programs

$pCSP$ Constraints C on Predicate Variables

Verification Intermediary
Independent of Particular Target and Method 😊

Constraint Solving

New method based on CEGIS, Pred. Abstraction, Survey Inspired Decimation

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown
Ongoing and Future Work

- Extend pCSP to support branching-time *liveness* verification of (possibly) *ininitely* branching programs
 - *Liveness*: “something good will eventually happen”

- Develop constraint generation tools for C, Java, OCaml, μCLP

- Extend **PCSat** to support more theories (Arrays, ADTs, heaps, ...)

- Apply *other constraint satisfaction methods* to enumerate sols.

- Apply *other probabilistic inference* like *variational inference* and *approximate model counting* by directly *modeling pCSP as factor graphs* representing joint probability distributions over random predicate variables