Constraint Solving and Machine Learning for Program Verification and Synthesis

Hiroshi Unno
University of Tsukuba / RIKEN AIP

www.cs.tsukuba.ac.jp/~uhiro
Research Interests

• Formal specification, verification, and synthesis of (mainly but not limited to) higher-order functional programs by AI techniques such as constraint solving and machine learning

• Ongoing projects
 • Synthesis of High-Level Programs from Temporal and Relational Specifications (PI: Hiroshi Unno)
 • Program Verification Techniques for the AI Era (PI: Naoki Kobayashi)
 • AI Security and Privacy (PI: Jun Sakuma)
 • Metamathematics for Systems Design Project (PI: Ichiro Hasuo)
 • ...

2020/12/18 STAIR Lab Software Technology Seminar 2
This Talk

• Tutorial of program **verification** and **synthesis** based on **constraint solving** and **machine learning**
Background

• Our society heavily relies on computer systems
• Failure or malfunction of safety-critical systems would lead to human, social, economic, and environmental damage
 • 1985-1987 – Therac-25 medical accelerator delivered lethal radiation doses to patients
 • June 4, 1996 – Ariane 5 Flight 501 exploded
 • February, 2014 – 1.9 million Prius cars recalled
 • April, 2014 – OpenSSL Heartbleed vulnerability disclosed
 • June 17, 2016 – Ethereum DAO attacked, over $55M stolen

• Reliability assurance of safety-critical systems is crucial
Program Verification

• Formally prove or disprove a mathematical proposition Q: “The given program satisfies its formal specification”

• Great attentions from industry and academia
 • Microsoft’s SLAM & Everest projects, Facebook’s Infer, AWS
 • Turing awards to Hoare logic, temporal logic, model checking, ...

Program & Spec.

```ocaml
let rec mc x =
  if x > 100 then
    x - 10
  else
    mc (mc (x + 11))
in
let n = randi() in
if n ≤ 101 then
  assert (mc n = 91)
```

A proof of Q
orA counterexample to Q
(e.g., a program input leading to a spec. violation)
orUnknown
Program Synthesis

• Input an **incomplete program** and its **specification** \(\phi \), and output an **executable program** \(P \) that satisfies \(\phi \)

 • \(\phi \) specifies extensional (what \(P \) computes) and/or intentional (how \(P \) computes) behaviors of \(P \)

 • \(\phi \) is represented as a logical formula, input/output examples (e.g., MS Excel FlashFill), a natural language sentence, ...

A program satisfying the spec.

```plaintext
let rec mc x = 
  if x > 100 then
    x - 10
  else
    mc (mc (x + 11))
```

A proof of unrealizability

or

Unknown

Incomplete Program & Specification

```plaintext
let rec mc x = ?
let n = randi() in
if n ≤ 101 then
  assert (mc n = 91)
```
Enabling Technologies

• **Program logics** for mechanizing verification & synthesis
 - Hoare logic for proving Hoare triples \(\{P\}c\{Q\} \) meaning that:
 For any initial state \(\sigma \) that satisfies the precondition \(P \), if the execution of the program \(c \) under \(\sigma \) terminates, the postcondition \(Q \) is satisfied by the resulting state
 - Separation logic
 - Dependent refinement type system
 - Graded modal type system

• **Constraint solvers** for automating verification & synthesis
 - SAT solvers: satisfiability checker for propositional formulas
 - SMT solvers: satisfiability checker for predicate formulas over first-order theories on \textit{integers, reals, lists, arrays, …}

What about \textit{functions} (that represent inductive invariants, ranking functions, recurrent sets, Skolem functions, …)?
This Talk

• Tutorial of program verification and synthesis based on constraint solving and machine learning over functions

• First part: How to reduce program verification and synthesis to constraint solving

• Second part: How to solve constraints via integrated deductive and inductive reasoning
 • Deductive reasoning by theorem proving (e.g., SAT, SMT)
 • Inductive reasoning by machine learning (e.g., decision tree learning, reinforcement learning)
This Talk

• Tutorial of program *verification* and *synthesis* based on *constraint solving* and *machine learning* over *functions*

• **First part**: How to reduce program *verification* and *synthesis* to *constraint solving*

• **Second part**: How to solve constraints via integrated *deductive* and *inductive* reasoning

 • *Deductive* reasoning by *theorem proving* (e.g., SAT, SMT)

 • *Inductive* reasoning by *machine learning* (e.g., decision tree learning, reinforcement learning)
Program Verification via Constraint Solving

Target Program P & Specification ψ

Constraint Generation

Constraints C on Function Variables

Constraint Solving

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown

Verification Intermediary Independent of Particular Target and Method 😊
Program Verification via Constrained Horn Clauses (CHCs)

Target Program P & Specification ψ

CHCs Constraints C on Predicate Variables

Constraint Generation

- JayHorn for Java [Kahsai+ ’16]
- SeaHorn for C [Gurfinkel+ ’15]
- RCaml for OCaml [Unno+ ’09]

Constraint Solving

- SPACER [Komuravelli+ ’14]
- Hoice [Champion+ ’18]
- Eldarica [Hojjat+ ’18]

C is Sat (P satisfies ψ), C is Unsat (P violates ψ), or Unknown
CHCs: Constrained Horn Clauses

(see e.g., [Bjørner+ '15])

- A finite set \mathcal{C} of **Horn-clauses** of either form:

 \[
 X_0(\overline{t}_0) \iff (X_1(\overline{t}_1) \land \cdots \land X_m(\overline{t}_m) \land \phi) \\
 \text{or } \bot \iff (X_1(\overline{t}_1) \land \cdots \land X_m(\overline{t}_m) \land \phi)
 \]

where X_0, X_1, \ldots, X_m are predicate variables,
$\overline{t}_0, \ldots, \overline{t}_m$ are sequences of terms of a 1st-order theory T,
ϕ is a formula of T without predicate variables.

- \mathcal{C} is **satisfiable** (modulo T) if there is an interpretation ρ of predicate variables such that $\rho \models \land \mathcal{C}$
Example Program and *Partial Correctness* Specification:

Pre-condition

\[\{ x = x_0 \} \]

\[y = 0; \]

\[\textbf{while } x \neq 0 \textbf{ do} \]

\[y \leftarrow y + 1; \]

\[x \leftarrow x - 1 \]

Post-condition

\[\{ y = x_0 \} \]

If the initial state satisfies the **pre-condition** \(x = x_0 \) and **the loop terminates**

\[\text{the post-condition } y = x_0 \text{ is satisfied by the resulting state} \]
Input:

\[
\begin{align*}
&\{x = x_0\} \\
y = 0; \\
&\text{while } x \neq 0 \text{ do} \\
&\quad y \leftarrow y + 1; \\
&\quad x \leftarrow x - 1 \\
&\text{done} \\
&\{y = x_0\}
\end{align*}
\]

Output \(C \):

1. \(I(x_0, x, y) \leftarrow x = x_0 \land y = 0 \),
2. \(I(x_0, x - 1, y + 1) \leftarrow I(x_0, x, y) \land x \neq 0 \),
3. \(y = x_0 \leftarrow I(x_0, x, y) \land x = 0 \)

\(C \) is satisfiable, witnessed by a solution \(I(x_0, x, y) \equiv x_0 = x + y \)
Program Verification via Constrained Horn Clauses (CHCs)

Target Program \(P \) & Specification \(\psi \)

Limited to Linear-Time Safety Verification 😞

CHCs Constraints \(C \) on Predicate Variables

Constraint Generation

Constraint Solving

\(C \) is Sat (\(P \) satisfies \(\psi \)),
\(C \) is Unsat (\(P \) violates \(\psi \)),
or Unknown
Program Verification via Predicate Constraint Satisfaction [Satake+ '20]

Target Program P & Specification ψ

Applicable to (Finitely-) Branching-Time Safety Verification 😊

pCSP Constraints C on Predicate Variables

Constraint Generation

Constraint Solving

C is Sat (P satisfies ψ),
C is Unsat (P violates ψ),
or Unknown

PCSat [Satake+ ’20, Unno+ ’20]
Linear-Time vs. Branching-Time Verification of Non-det. Programs

• The target program P may exhibit non-determinism caused by user input, network comm., scheduling, ...

• **Linear-time** verification concerns properties of the *execution traces* of P

• **Branching-time** verification concerns properties of the *computation tree* of P

 • Subsumes linear-time verification

 • Example: *Non-termination verification* of deciding whether there is an infinite execution of P (cf. *termination verification* decides whether all execution of P is finite)
pCSP: Predicate Constraint Satisfaction Problem [Satake+ ’20]

- A finite set C of **clauses** of the form:

 $$\left(X_1(t_1) \lor \cdots \lor X_\ell(t_\ell) \right) \iff
 \left(X_{\ell+1}(t_{\ell+1}) \land \cdots \land X_m(t_m) \land \phi \right)$$

 where X_1, \ldots, X_m are predicate variables, $\tilde{t}_1, \ldots, \tilde{t}_m$ are sequences of terms of a 1st-order theory T, ϕ is a formula of T without predicate variables.

- C is **satisfiable** (modulo T) if there is an interpretation ρ of predicate variables such that $\rho \models \land C$

- C is **CHCs** if $\ell \leq 1$ for all clause in C
If the initial state satisfies the pre-condition $x > 0$ there is an execution of the program such that the post-condition \perp is satisfied when the while loop terminates.

Example Program and Specification:

Pre-condition: $\{x > 0\}$

while $x \neq 0$ do
 if read_bool() then
 $x \leftarrow x - 1$
 else
 $x \leftarrow x + 1$
 done

Post-condition: $\{\perp\}$ Contradiction

there is an execution of the program such that the post-condition \perp is satisfied when the while loop terminates.
If the initial state satisfies the pre-condition \(x > 0 \), there is an execution of the program such that the while loop never terminates.
Input:
\{x > 0\}
while \(x \neq 0\) do
 if \(\text{read}_{-}\text{bool}()\) then
 \(x \leftarrow x - 1\)
 else
 \(x \leftarrow x + 1\)
done

Output \(C\):

1. \(I(x) \leftarrow x > 0\),
2. \(I(x - 1) \lor I(x + 1) \leftarrow I(x) \land x \neq 0\),
3. \(|\leftarrow I(x) \land x = 0\)

\(C\) is beyond CHCs!

\(C\) is satisfiable, witnessed by a solution \(I(x) \equiv x > 0\)
Program Verification via *Extended Predicate Constraint Satisfaction* [Unno+ ’20]

Target Program \(P \) & Specification \(\psi \)

Applicable to *(Infinitely-)*
Branching-Time Safety &
Liveness Verification 😊

\(\text{pfwCSP Constraints } C \text{ on } \text{Predicate Variables} \)

Constraint Generation

\(C \text{ is Sat } (P \text{ satisfies } \psi), \)
\(C \text{ is Unsat } (P \text{ violates } \psi), \)
or Unknown

Constraint Solving

PCSat [Satake+ ’20, Unno+ ’20]
Safety vs. Liveness Verification

• **Safety** is a class of properties of the form
 “*something bad will never happen*”
 • Examples (absence of): assertion failure, division-by-zero, array boundary violation, ...

• **Liveness** is a class of properties of the form
 “*something good will eventually happen*”
 • Examples: termination, deadlock freedom, ...
pfwCSP: Extension of pCSP with Functional and Well-founded Predicates [Unno+ ’20]
(cf. $\forall \exists$CHCs with dwf [Beyene+ ’13])

• A finite set \mathcal{C} of pCSP clauses equipped with a map \mathcal{K} from predicate variable X in \mathcal{C} to $\{\star, \lambda, \Downarrow\}$
 • X is ordinary predicate if $\mathcal{K}(X) = \star$
 • X is functional predicate if $\mathcal{K}(X) = \lambda$
 • X is well-founded predicate if $\mathcal{K}(X) = \Downarrow$

• \mathcal{C} is satisfiable (modulo T) if there is an interpretation ρ of predicate variables such that
 • $\rho \models \land \mathcal{C}$
 • $\forall X. \mathcal{K}(X) = \lambda \Rightarrow \rho(X)$ characterizes a total function
 • $\forall X. \mathcal{K}(X) = \Downarrow \Rightarrow \rho(X)$ represents a well-founded relation
Example Program and Specification:

Pre-condition: \(\{ x > 0 \} \)

Non-det. integer

Post-condition: \(\{ \perp \} \)

Contradiction

While loop:

```c
while x > 0 do
    x ← read_int()³ - x
done
```

If the initial state satisfies the pre-condition \(x > 0 \), there is an execution of the program such that the while loop never terminates.

2020/12/18 STAIR Lab Software Technology Seminar 25
Input:
\{x > 0\}
while x > 0 do
 x ← read_int()³ − x
done
\{⊥\}

Output \(C \):

1. \(I(x) \leftarrow x > 0, \)
2. \((∃r. I(r − x)) \leftarrow I(x) \land x > 0, \)
 \(\perp \leftarrow I(x) \land x ≤ 0 \)

\(C \) is beyond pCSP but can be encoded in pfwCSP using a functional pred. var. that characterizes a Skolem function for \(r \).
Input:
\{x > 0\}

while \(x > 0\) do
\(x \leftarrow \text{read_int()}\) \(\exists - x\)
done
\(\bot\)

Output \(C\):
① \(I(x) \iff x > 0\),
② \(I(r - x) \iff S_\lambda(x, r)\)
\(\land I(x) \land x > 0\),
③ \(\bot \iff I(x) \land x \leq 0\)

\(C\) is satisfiable, witnessed by a solution
\(I(x) \equiv x > 0, S_\lambda(x, r) \equiv r = x + 1\)
Example Program and Total Correctness Specification:

Pre-condition:

\[x \neq 0 \]

while \(x \neq 0 \) do

if \(x > 0 \) then

\(x \leftarrow x - 1 \)

else

\(x \leftarrow x + 1 \)

done

Post-condition:

\[[\top] \]

Tautology

If the initial state satisfies the pre-condition \(x \neq 0 \), the loop always terminates and the post-condition \(\top \) is satisfied by the resulting state.
Input:

\[x \neq 0 \]

while \(x \neq 0 \) do

if \(x > 0 \) then

\(x \leftarrow x - 1 \)

else

\(x \leftarrow x + 1 \)

done

Output \(C \):

① \(I(x) \leftarrow x = 0 \),

② \(I(x - 1) \leftarrow I(x) \land x > 0 \),

③ \(I(x + 1) \leftarrow I(x) \land x < 0 \),

④ \(T_{\uparrow}(x, x - 1) \leftarrow I(x) \land x > 0 \),

⑤ \(T_{\downarrow}(x, x + 1) \leftarrow I(x) \land x < 0 \),

\(C \) is satisfiable, witnessed by a solution

\[I(x) \equiv \top, T_{\uparrow}(x, x') \equiv |x| > |x'| \geq 0 \]
Further Applications of pfwCSP

• Refinement type inference [Unno+ ’09,’13,’18, Nanjo’18, Katsura+ ’20]
• Validity checking of fixpoint logic formulas
• LTL, CTL, CTL*, modal-mu calculus model checking
• Infinite-state infinite-duration game solving
• Bisimulation and bisimilarity verification
• Hyperproperties verification
• Program synthesis

• ...

(see [Unno+ ’20] and upcoming papers)
Program Synthesis via Constraint Solving

Language \mathcal{L} & Specification ψ

Constraint Generation

Constraints \mathcal{C} on Function Variables

Constraint Solving

\mathcal{C} is Sat \(\text{(some } P \in \mathcal{L} \text{ satisfies } \psi)\),

\mathcal{C} is Unsat \(\text{(all } P \in \mathcal{L} \text{ violates } \psi)\),

or Unknown

Synthesis Intermediary Independent of Particular Target and Method 😊
Program Synthesis via Syntax-Guided Synthesis (SyGuS)

Language \mathcal{L} & Specification ψ

Constraint Generation

SyGuS Constraints \mathcal{C} on Function Variables

Constraint Solving

\mathcal{C} is Sat (some $P \in \mathcal{L}$ satisfies ψ),
\mathcal{C} is Unsat (all $P \in \mathcal{L}$ violates ψ),
or Unknown

CVC4 [Reynolds+ ’15,’19]
DryadSynth [Huang+ ’20]
PCSat [Satake+ ’20, Unno+ ’20]
SyGuS: Syntax-Guided Synthesis [Alur+ ’15]

• Fix a first-order background theory T such as:
 • Linear integer arithmetic (LIA)
 • Strings (for FlashFill benchmarks)
 • Bit-vectors (for Hackers' Delight benchmarks)

• Given
 • Specification: T-formula ϕ over a function variable f
 • Language: context-free grammar G characterizing the set $\mathcal{L}(G)$ of allowed T-terms

• Find a term $t \in \mathcal{L}(G)$ such that $\models [t/f]\phi$
Example LIA SyGuS Constraints \mathcal{C}:

- Language: G that generates any term of LIA

- Specification: $\phi \equiv (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y))$

\mathcal{C} is satisfied by $f(x, y) \equiv \text{if } x > y \text{ then } x \text{ else } y$

\mathcal{C} can be reduced to the pfwCSP:

$r \geq x \land r \geq y \land (r = x \lor r = y) \iff F_\lambda(x, y, r)$

In general, SyGuS constraints \mathcal{C} can be converted to a pfwCSP using a predicate that characterizes $\mathcal{L}(G)$
This Talk

• Tutorial of program verification and synthesis based on constraint solving and machine learning over functions

• First part: How to reduce program verification and synthesis to constraint solving

• Second part: How to solve constraints via integrated deductive and inductive reasoning
 • Deductive reasoning by theorem proving (e.g., SAT, SMT)
 • Inductive reasoning by machine learning (e.g., decision tree learning, reinforcement learning)
Program Verification and Synthesis via Predicate Constraint Satisfaction

Target Program P & Specification ψ

Language \mathcal{L} & Specification ψ

Constraint Generation

$pfwCSP$ Constraints \mathcal{C} on Predicate Variables

\mathcal{C} is Sat, \mathcal{C} is Unsat, or Unknown
Challenges in Constraint Solving

• Undecidable in general even for decidable theories
• The search space of solutions is often very large (or unbounded), high-dimensional, and non-smooth

To address these challenges, researchers are integrating deductive & inductive reasoning techniques within the framework of CounterExample Guided Inductive Synthesis (CEGIS) [Solar-Lezama+ '06]
CounterExample Guided Inductive Synthesis (CEGIS)

• Iteratively accumulate example instances \mathcal{E} of the given \mathcal{C} through the two phases for each iteration:

 • *Synthesis Phase by Learner*
 • Find a candidate solution ρ that satisfies \mathcal{E}

 • *Validation Phase by Teacher*
 • Check if the candidate ρ also satisfies \mathcal{C} (with an SMT solver)
 • If yes, return ρ as a genuine solution of \mathcal{C}
 • If no, repeat the procedure with new example instances witnessing non-satisfaction of \mathcal{C} by ρ added
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

\emptyset

Starting from the empty set (\mathcal{C} is a black box)

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is the candidate $\{I(x) \mapsto T\}$ genuine?
Example Run of CEGIS

Learner

Example Instances \mathcal{E}:

\[\perp \iff I(0) \wedge 0 = 0 \]

Teacher

Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \vee I(x + 1) \iff I(x) \wedge x \neq 0$
- $\perp \iff I(x) \wedge x = 0$

No. \{\(I(x) \mapsto T\}\} is not.
The 3\(^{rd}\) clause is violated when \(x = 0\).
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

$\neg I(0)$

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is the cand. $\{I(x) \leftrightarrow x < 0\}$ genuine?
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

- $\neg I(0)$
- $I(1) \iff 1 > 0$

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

No. $\{I(x) \iff x < 0\}$ is not. The 1st clause is violated when $x = 1$
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

- $\neg I(0)$
- $I(1)$

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is the cand. $\{I(x) \iff x = 1\}$ genuine?
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

- $I(0) \lor I(2) \iff I(1)$
- $I(1)$

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

No. $\{I(x) \iff x = 1\}$ is not.
The 2nd clause is violated when $x = 1$
Example Run of CEGIS

Learner
Example Instances \mathcal{E}:

- $\neg I(0)$
- $I(0) \lor I(2) \iff I(1)$
- $I(1)$

Teacher
Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \lor I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Is the cand. $\{I(x) \leftrightarrow x \geq 1\}$ genuine?
Example Run of CEGIS

Learner

Example Instances \mathcal{E}:

$\neg I(0)$

$I(0) \vee I(2) \iff I(1)$

$I(1)$

Teacher

Constraints \mathcal{C}:

- $I(x) \iff x > 0$
- $I(x - 1) \vee I(x + 1) \iff I(x) \land x \neq 0$
- $\bot \iff I(x) \land x = 0$

Yes. $\{I(x) \iff x \geq 1\}$ satisfies \mathcal{C}!
Is CEGIS just (Online) Supervised Learning of Classification?

• Similarities
 • Learner trains a model to fit examples \mathcal{E} and obtain ρ
 • Teacher requires ρ to generalize to \mathcal{C} (ρ shouldn’t overfit \mathcal{E})

• Differences
 • \mathcal{E} is usually assumed to have no noise & \mathcal{C} is hard constraints
 • ρ is required to exactly satisfy \mathcal{E} (or has no chance to satisfy \mathcal{C})
 • ρ should be efficiently handled by Teacher (i.e., an SMT solver)
 • Sampling of \mathcal{E} from \mathcal{C} is not i.i.d (depends on ρ and Teacher)
 • \mathcal{E} may contain not only positive/negative examples but also arbitrary clause ones (cf. constrained semi-supervised learning)

Despite the differences, machine learning techniques turned out to be quite useful!
Machine Learning for CEGIS

• Adapt ML models and algorithms to implement Learner
 • Piecewise linear classifiers [Sharma+ ’13a, Garg+ ’14, Unno+ ’20]
 • Decision trees [Krishna+ ’15, Garg+ ’16, Champion+ ’18, Ezudheen+ ’18, Zhu+ ’18]
 • Neural networks [Chang+ ’19, Zhao+ ’20, Abate+ ’21]
 • Greedy set covering w/ logic minimization [Padhi+ ’16, Sharma+ ’13b]
 • Metropolis Hastings MCMC sampler [Sharma+ ’14]
 • Probabilistic inference, survey propagation [Satake+ ’20]
 • Ensemble learning [Padhi+ ’20]

• Learning to learn
 • Reinforcement learning of NNs to generate candidates [Si ’18]
 • Reinforcement learning of strategy to adjust classification models used by Learner (joint work w/ Tsukada, Sekiyama, Suenaga)
SMT-based Piecewise Linear Classification (aka Template-based Synthesis)

1. Prepare a solution template with unknown coefficients,
2. Generate constraints on them, and
3. Solve them using an SMT solver

Examples: \(\mathcal{E} \equiv \{ I(0), I(0) \Rightarrow I(1), \neg I(-1) \} \)

Solution Template: \(I(x) \Leftrightarrow c_1 \cdot x + c_2 \geq 0 \)

Coeff. Constraints: \(\{ c_2 \geq 0, c_2 \geq 0 \Rightarrow c_1 + c_2 \geq 0, -c_1 + c_2 < 0 \} \)

Satisfying Assignment: \(\{ c_1 \leftrightarrow 1, c_2 \leftrightarrow 0 \} \)

A Candidate Solution: \(\rho \equiv \{ I(x) \leftrightarrow x \geq 0 \} \)
Decision Tree Learning

1. Consistently label atoms in \mathcal{E} with $+/−$ using a SAT solver
2. Generate a set Q of predicates used in classification
3. Classify atoms in \mathcal{E} with Q using a decision tree learner

Examples: $\mathcal{E} \equiv \{I(0), I(0) \Rightarrow I(1), \neg I(-1)\}$

Labeling: $\{I(0) \mapsto +, I(1) \mapsto +, I(-1) \mapsto -\}$

Predicates: $Q \equiv \{x \geq 0, x \leq 0, x \geq 1, x \geq -1, x \leq 1, x \leq -1\}$

Classifier: $\rho \equiv \{I(x) \mapsto x \geq 0\}$
Template-based Synthesis vs Decision Tree Learning

- Template-based Synthesis (TB)
 - 😞 Fixes the *shape* of solution (updated upon failure)
 - 😊 Flexibly find necessary *predicates* via SMT solving
 - 😊 Atoms in \mathcal{E} are consistently *labeled* using \mathcal{E} as an SMT formula

- Decision Tree Learning (DT)
 - 😞 Fixes the *predicates* of solution (updated upon failure)
 - 😊 Flexibly adjust the *shape* based on information gain
 - 😞 Atoms are consistently *labeled* using \mathcal{E} as a SAT formula

- Evaluation on SyGuS-Comp’19 Inv track XC benchmarks
 - TB solved 228 instances (out of 276) and DT solved 180 instances
Future Research Directions

• Efficient synthesis of *complex and large functions* from *complex and large constraints*
 • (Co)Inductive functions
 • Functions over (linked, (co)algebraic, array) data structures
 • Improve labeling, sampling and filtering of examples, and generation and ranking of predicates

• Convergence theory of CEGIS

• More applications
Summary

• Various program verification and synthesis problems can be reduced to constraint solving problems
 • The separation of constraint generation and solving facilitate tool development

• CEGIS-based constraint solving integrates deductive and inductive reasoning to address challenges
 • Deductive reasoning by theorem proving (e.g., SAT, SMT)
 • Inductive reasoning by machine learning (e.g., decision tree learning, reinforcement learning)