Applications of Higher-Order Model Checking to Program Verification

Hiroshi Unno
University of Tsukuba
(Joint work with Naoki Kobayashi, Ryosuke Sato, Tachio Terauchi, and Takuya Kuwahara)
Success Story:
Software Model Checkers for C

Prove Properties of Program Executions

Program:

\[P \]

Specification:

\[\models \Psi \]

Concurrency
Recursive Procedures
Heap Data Structures

Safety
Termination
Non-termination

SLAM, BLAST, MAGIC, ...

TERMINATOR, ...

TNT, T2, ...

LTL, CTL, fair CTL, CTL*
Challenge: How To Construct Software Model Checker for OCaml?

Prove Properties of Program Executions

Program:

\[P \]

• Higher-order Functions
• Exception Handling
• Algebraic Data Structures
• Objects & Dyn. Dispatch
• General References

Specification:

\[\models \psi \]

• Safety
• Termination
• Non-termination
• LTL, CTL, fair CTL, CTL*

\[P \models \psi \]
This Tutorial: Software Model Checker
MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

Program:
• Higher-order Functions
• Exception Handling
• Algebraic Data Structures

Specification:
Safety
Termination
Non-termination
ω-regular properties

$P \models \Psi$
This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

Program:

Specification:

\[P \models \Psi \]

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

Safety
Termination
Non-termination
\(\omega \)-regular properties
Tool Demonstration of MoCHi

- Web interface available from: http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/
Overall Flow of Safety Verification

OCaml Program

Function Encoding [Sato+ ’13]

Higher-order Integer Program

Predicate Abstraction
+ CEGAR [Kobayashi+ ’11]

Higher-order Boolean Program

Higher-Order Model Checking
(TRecS, HorSat, C-SHORE, Preface, ...)

\(\lambda \rightarrow \) + recursion
+ algebraic data types
+ exceptions
+ integers + booleans

\(\lambda \rightarrow \) + recursion
+ integers + booleans

\(\lambda \rightarrow \) + recursion
+ booleans

Sound and complete!
Overall Flow of Safety Verification

OCaml Program

Function Encoding [Sato+ ’13]

Higher-order Integer Program

Predicate Abstraction + CEGAR [Kobayashi+ ’11]

Higher-order Boolean Program

Higher-Order Model Checking (TRecS, HorSat, C-SHOREe, Preface,...)

\[\lambda \rightarrow + \text{recursion} \]

\[+ \text{algebraic data types} \]

\[+ \text{exceptions} \]

\[+ \text{integers + booleans} \]

\[\lambda \rightarrow + \text{recursion} \]

\[+ \text{integers + booleans} \]

\[\lambda \rightarrow + \text{recursion} \]

\[+ \text{booleans} \]

Sound and complete!
Higher-Order Model Checking

• A generalization of ordinary model checking:
 – Model the target system as a recursion scheme and check if it satisfies the given specification

<table>
<thead>
<tr>
<th>Model Checking</th>
<th>Verification Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite state model checking</td>
<td>Simple loops</td>
</tr>
<tr>
<td>Pushdown model checking</td>
<td>First-order recursive functions</td>
</tr>
<tr>
<td>Higher-order model checking</td>
<td>Higher-order recursive functions</td>
</tr>
</tbody>
</table>
Higher-Order Recursion Scheme (HORS)

• Grammar for generating a possibly infinite tree

Order-0 scheme

S → a c B
B → b S

S → a c B
B → b S
S → a c B
B → b S
...
Higher-Order Recursion Scheme (HORS)

• Grammar for generating a possibly infinite tree

Order-1 scheme

\[S \rightarrow A \ c \]
\[A \ x \rightarrow a \ x \ (A \ (b \ x)) \]

\[S \rightarrow A \ c \rightarrow a \quad \rightarrow a \quad \rightarrow \ldots \rightarrow \]
\[c \ A(b \ c) \quad c \ a \quad A(b(b \ c)) \]
Higher-Order Model Checking

Given

\[G: \text{ a recursion scheme} \]
\[A: \text{ a tree automaton,} \]

\[Tree(G) \in L(A)? \]

- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

• Decidable but n-EXPTIME-complete (for order-n recursion scheme) [Ong ’06]
• Practical higher-order model checkers have been developed [Kobayashi ’09,...]
HORS as a Programming Language

Recursion schemes

≈

Simply-typed λ-calculus

+ recursion

+ tree constructors (but no destructors)

(+ finite data domains such as booleans)
From Program Verification to Higher-Order Model Checking [Kobayashi ’09]

Higher-order boolean program + specification (on events or output)

Program Transformation

HORS (describing all event sequences or outputs) + Tree automaton recognizing valid event sequences or outputs

Model Checking
Example: From Program Verification to Higher-Order Model Checking

```
let rec f(x) = 
  if * then close(x) 
  else (read(x); f(x)) 
in
let y = open "foo" 
in
f (y)
```

continuation parameter, expressing how "foo" is accessed after the call returns

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r^*c?
Example: From Program Verification to Higher-Order Model Checking

```ocaml
definition f (x) =
    if * then close(x)
    else (read(x); f(x))
in
let y = open "foo"
in
f (y)
```

CPS Transformation!

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r^c?
Example: From Program Verification to Higher-Order Model Checking

```
let rec f(x) =  
  if * then close(x)  
  else (read(x); f(x))  
in
let y = open "foo"  
in
f (y)
```

continuation parameter, expressing how “foo” is accessed after the call returns

Is the file “foo” accessed according to read* close?

Is each path of the tree labeled by r^*c?
Example: From Program Verification to Higher-Order Model Checking

```
let rec f(x) =
  if * then close(x)
  else (read(x); f(x))
in
let y = open "foo"
in
  f (y)
```

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r^*c?

continuation parameter, expressing how "foo" is accessed after the call returns

CPS Transformation!
Program Verification based on Higher-Order Model Checking [Kobayashi ’09]

Higher-order boolean program + Specification

Program Transformation

HORS + Tree automaton

Model Checking

Sound, complete, and automatic for:
- Simply-typed λ-calculus + recursion
 + tree constructors (but no destructors)
 + finite data domains (e.g. booleans)
 (but not for infinite data domains!)
- A large class of verification problems:
 resource usage verification, reachability, flow analysis, ...
Overall Flow of Safety Verification

OCaml Program

Function Encoding [Sato+ '13]

Higher-order Integer Program

Predicate Abstraction
+ CEGAR [Kobayashi+ '11]

Higher-order Boolean Program

Higher-Order Model Checking
(TRecS, HorSat, C-SHORE, Preface, ...)

\[\lambda \rightarrow \] + recursion
+ integers + booleans

\[\lambda \rightarrow \] + recursion
+ integers + booleans

\[\lambda \rightarrow \] + recursion
+ booleans

Sound and complete!
Predicate Abstraction [Graf & Saidi ’97]

Let $f(x) = x + 1$

Let $f(b) = \text{if } b \text{ then } true \text{ else } \text{rnd}_\text{bool}$

Program $P \equiv \lambda x. x \geq 0$

Predicate $Q \equiv \lambda y. y \geq 0$

Predicate $b = \text{true} \iff P(x)$

Program $\neg P(x) \not\iff Q(x + 1)$

Program $\neg P(x) \not\iff \neg Q(x + 1)$

Program $P(x) \Rightarrow Q(x + 1)$
CEGAR [Clarke et al. '00]

Program

Predicate Abstraction

Boolean Program

Model Checking

New Predicates

CEGAR Loop

Predicate Discovery

Error Trace

Feasibility Check

OK

safe

NG

feasible

infeasible

unsafe
CEGAR [Clarke et al. ’00]

Program

Predicate Abstraction

Boolean Program

Model Checking

New Predicates

CEGAR Loop

Error Trace

Feasibility Check

Predicate Discovery

safe

OK

NG

infeasible

feasible

unsafe

2016/9/20

Workshop on HOMC + CDPS

23
Challenges in Higher-Order Setting

• Model Checking
 – How to precisely analyze higher-order control flows?
 ⇒ Higher-order model checking!

• Predicate Abstraction
 – How to ensure consistency of abstraction?

• Predicate Discovery
 – How to find new predicates that can eliminate an infeasible error trace from the abstraction?
Challenges in Higher-Order Setting

• Predicate Abstraction
 – How to ensure consistency of abstraction?

```haskell
let sum n k = if n \leq 0 then k 0 else sum (n-1) (\x'.k (x' + n))

let main m = sum m (\x.assert(x \geq m))
```

\(\lambda x'.x' \geq n-1 \)

\(\lambda x.x \geq n \)

\(\lambda x.x \geq m \)
Our Solution: Abstraction Types

• Specify which predicates should be used for abstraction of each expression

• \(\text{int}[P_1, \ldots, P_n] \)
 Int. exps. that should be abstracted by \(P_1, \ldots, P_n \)
 e.g., \(3 : \text{int}[\lambda x. x > 0, \text{even?}] \sim (\text{true}, \text{false}) \)

• \((x : \text{int}[P_1, \ldots, P_n]) \rightarrow \text{int}[Q_1, \ldots, Q_m] \)
 Assuming that argument \(x \) is abstracted by \(P_1, \ldots, P_n \),
 abstract the return value by \(Q_1, \ldots, Q_m \)
Example: Abstraction Types

let sum n k = if n ≤ 0 then k 0 else sum (n-1) (\x'. k (x'+n))

let main m = sum m (\x. assert(x ≥ m))

sum: (n:int[]) → (int[\x.x ≥ n] → *) → *

no predicates for n

predicate for abstracting the 1st argument of k

Unit type
Example: Predicate Abstraction

Let \(\text{sum} \ n \ k = \) if \(n \leq 0 \) then \(k \) 0 \n\else \n\) \else \n\sum \ (n-1) (\lambda x'.k \ (x'+n)) \n\) \n\let \main m = \sum m (\lambda x.\text{assert}(x\geq m)) \n\) \n\sum: (n:int\[]) \rightarrow (\text{int}[\lambda x.x\geq n] \rightarrow \star) \rightarrow \star \n\)

Let \(\text{sum} () \ k = \)

if * then \(k \) true

else \sum () (\lambda b'.k \ (\text{if } b' \text{ then } true \text{ else } \text{rndbool})) \n\) \n\let \main () = \sum () (\lambda b.\text{assert}(b)) \n\) \n\Successfully model checked!
Type-Directed Predicate Abstraction

\[\Gamma \vdash M : \tau \leadsto t \]

Abstraction Type Environment

HO Int Expression

Abstraction Type

HO Bool Expression

\[
\begin{align*}
\Gamma & \vdash M : \tau' \rightarrow \tau \leadsto s \\
\Gamma & \vdash N : \tau' \leadsto t \\
\hline
\Gamma & \vdash MN : \tau \leadsto s \ t
\end{align*}
\]

Predicate Abstraction Rule for Function Applications
Challenges in Higher-Order Setting

• Predicate Discovery
 – How to find new predicates that can eliminate an infeasible error trace from the abstraction?
Challenges in Higher-Order Setting

• Predicate Discovery
 – How to find abstraction types that can eliminate an infeasible error trace from the abstraction?
Our Solution

• Reduction to refinement type inference of a straightline higher-order program (SHP)

Infeasible Error Trace

Straightline Higher-Order Program (SHP)

Refinement Type Inference [U. & Kobayashi ’09]

Abstraction Types

Refinement Types
Refinement Types [Xi & Pfenning ’98, ’99]

- \{x : \text{int} \mid x \geq 0\}
 Non-negative integers

- \((x : \text{int}) \rightarrow \{r : \text{int} \mid r \geq x\} \)
 Functions that take an integer \(x \) and return an integer \(r \) not less than \(x \)

FOL formulas (e.g. QFLIA) for type refinement

Soundness of refinement type system \(\vdash_{Ref} \):

- \(P \) is safe (i.e., \(P \rightarrow^* \text{assert false} \))
- if \(P \) is well-typed (i.e., \(\exists \Gamma. \Gamma \vdash_{Ref} P \))
Example: Abstraction Type Finding (1/2)

```
let sum n k = if n ≤ 0 then k 0
  else sum (n-1) (λx'.k (x'+n))
let main m = sum m (λx.assert(x≥m))
```

Infeasible error trace:

```
main m → sum m (λx.assert(x≥m))
→ if m ≤ 0 then (λx.assert(x ≥ m)) 0 else ...
→ (λx.assert(x≥m)) 0
→ assert(0≥m)
→ fail
```

\(m≤0\)

\(0<m\)
Example: Abstraction Type Finding (2/2)

\[
\text{let sum } n \ k = \begin{cases}
\text{if } n \leq 0 \text{ then } k \ 0 \\
\text{else sum } (n-1) (\lambda x'. k (x' + n))
\end{cases}
\]

\[
\text{let main } m = \text{sum } m (\lambda x. \text{assert}(x \geq m))
\]

\[
\text{main } m \to^* \begin{cases}
\text{if } m \leq 0 \ldots \to^* _{m \leq 0} \text{assert}(0 \geq m) \to_{0 < m} \text{fail}
\end{cases}
\]

Straightline Higher-Order Program (SHP):
\[
\text{let sum } n \ k = \text{assume}(n \leq 0); k \ 0 \\
\text{let main } m = \text{sum } m (\lambda x. \text{assume}(x < m); \text{fail})
\]

[U. & Kobayashi ’09]

Abstraction Type:
\[
\text{sum: } (n: \text{int}[[]]) \to (\text{int} [\lambda x. x \geq n] \to \star) \to \star
\]
Refinement Type Inference
[U. & Kobayashi ’09]
Example: Constraint Generation

Straightline Higher-Order Program (SHP):
let sum n k = assume(n ≤ 0); k 0
let main m = sum m (λx.assume(x < m); fail)

Refinement Type Templates:
sum: (n:{n:int|P(n)}) →
({x:int|Q(n,x)} → ⋆) → ⋆

Horn Clause Constraints:
T ⇒ P(m)
P(n) ∧ n ≤ 0 ∧ x = 0 ⇒ Q(n,x)
P(m) ∧ Q(m,x) ∧ x < m ⇒ ⊥
Example: Constraint Solving (1/2)

Horn Clause Constraints:

\[\top \Rightarrow P(m) \]
\[P(n) \land n \leq 0 \land x=0 \Rightarrow Q(n,x) \]
\[P(m) \land Q(m,x) \land x < m \Rightarrow \bot \]

Horn Clause Constraints with \(P \) eliminated:

\[n \leq 0 \land x=0 \Rightarrow Q(n,x) \]
\[Q(n,x) \Rightarrow (n=m \Rightarrow x \geq m) \]

Solution: \(Q(n,x) \equiv x \geq n \)
Interpolating Prover

• Input: ϕ_1, ϕ_2 such that $\phi_1 \Rightarrow \phi_2$

• Output: an interpolant ϕ of ϕ_1, ϕ_2 such that:
 1. $\phi_1 \Rightarrow \phi$
 2. $\phi \Rightarrow \phi_2$
 3. $\text{FV}(\phi) \subseteq \text{FV}(\phi_1) \cap \text{FV}(\phi_2)$

• Example: $x \geq n$ is an interpolant of:

 $n \leq 0 \land x = 0$ and $n = m \Rightarrow x \geq m$
Example: Constraint Solving (2/2)

Horn Clause Constraints:

\[T \Rightarrow P(m) \]
\[P(n) \land n \leq 0 \land x = 0 \Rightarrow Q(n,x) \]
\[P(m) \land Q(m,x) \land x < m \Rightarrow \bot \]

Substitute \(Q(n,x) \) with \(x \geq n \)

Horn Clauses with \(P1 \) substituted:

\[T \Rightarrow P(m) \]
\[P(n) \Rightarrow (n \leq 0 \land x = 0 \Rightarrow x \geq n) \]

Interpolating Prover

Solution: \(P(n) \equiv T \)
Example: Refinement Type Inference

Straightline Higher-Order Program (SHP):
\[
\begin{align*}
\text{let sum } n k &= \text{assume}(n \leq 0); k 0 \\
\text{let main } m &= \text{sum } m (\lambda x.\text{assume}(x < m); \text{fail})
\end{align*}
\]

Refinement Type Templates:
\[
\text{sum: } (n:\{n:int|P(n)\}) \rightarrow \\
\quad (\{x:int|Q(n,x)\} \rightarrow \star) \rightarrow \star
\]

Refinement Types of SHP:
\[
\text{sum: } (n:\{n:int|T\}) \rightarrow \\
\quad (\{x:int|x \geq n\} \rightarrow \star) \rightarrow \star
\]
Overall Flow of Safety Verification

OCaml Program

Function Encoding [Sato+ '13]

Higher-order Integer Program

Predicate Abstraction + CEGAR [Kobayashi+ '11]

Higher-order Boolean Program

Higher-Order Model Checking (TRecS, HorSat, C-SHORE, Preface,...)

\[\lambda \rightarrow \text{+ recursion} \]
\[\text{+ integers + booleans} \]

\[\lambda \rightarrow \text{+ recursion} \]
\[\text{+ integers + booleans} \]

\[\lambda \rightarrow \text{+ recursion} \]
\[\text{+ booleans} \]

Sound and complete!
Function Encoding of Lists

• Encode a list as a pair \((\text{len}, \text{f})\) such that:
 – \(\text{len}\) is the length of the list
 – \(\text{f}\) is a function from an index \(i\) to the \(i\)-th element

• e.g., \([3;1;4]\) is encoded as \((3, \text{f})\) where:
 \(\text{f}(0)=3, \text{f}(1)=1, \text{f}(2)=4,\) and undefined otherwise

```ocaml
let nil = (0, fun i -> ⊥)
let cons a (len, l) = (len + 1, fun i -> if i = 0 then a else l (i - 1))
let hd (len, l) = assert (len ≠ 0); l 0
let tl (len, l) = assert (len ≠ 0); (len - 1, fun i -> l (i + 1))
let is_nil (len, l) = len = 0
```
Function Encoding of Algebraic Data Structures

- Encode an algebraic data structure as a function from the path of a node to its label

```plaintext
type btreen = Leaf of int | Node of btreen * btreen
```

A function f such that:

- $f[[]] = \text{Node}$
- $f[1] = \text{Leaf}$
- $f[2] = \text{Node}$
- $f[1;1] = 3$
- $f[2;1] = \text{Leaf}$
- $f[2;2] = \text{Leaf}$
- $f[2;1;1] = 1$
- $f[2;2;1] = 4$

exception NotPos

let rec fact n =
 if n ≤ 0 then raise NotPos
 else try
 n \times fact (n-1)
 with NotPos -> 1

CPS Trans.

let rec fact n k exn =
 if n ≤ 0 then exn NotPos
 else fact (n-1)
 (fun r -> k (n \times r))
 (fun NotPos -> k 1)
Summary: Safety Verification by MoCHi

- For finite-data HO programs: sound, complete, and fully-automatic verification by reduction to HO model checking [Kobayashi ’09]

- For infinite-data HO programs: sound and automatic (but incomplete) verification by a combination of:
 - HO model checking
 - predicate abstraction & discovery [Kobayashi+ ’11, U.+ ’09, ’15]
 - program transformation [Sato+ ’13]

Necessarily incomplete but often more precise than other approaches
Sometimes relatively complete modulo certain assumptions
 - relatively complete refinement type system [U.+ ’13]
 - relatively complete predicate discovery [Terauchi & U. ’15]
This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program:

Specification:

\[\mathcal{P} \models \Psi \]

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

Safety
Termination
Non-termination
\(\omega\)-regular properties
Termination Verification

- Automatically prove that a program terminates for every input (and non-determinism)

```ocaml
let rec fib n =
  if n < 2 then 1
  else
    fib(n-1) + fib(n-2)
let main () = fib *
```
Tool Demonstration of MoCHi

• Web interface available from:
 http://www.kb.is.s.u-tokyo.ac.jp/~kuwahara/termination/
1st Naïve Approach to Termination Verification of HO Functional Programs

- Abstract to a finite data HO program, and apply HO model checking

- Problem: many terminating programs are turned into non-terminating ones by abstraction

 e.g. \(f(x) = \text{if } x<0 \text{ then } 1 \text{ else } 1+f(x-1) \) terminating

 \(\rightarrow f(b_{x<0}) = \text{if } b_{x<0} \text{ then } 1 \text{ else } 1+f(*) \) non-terminating
Termination Verification for Imperative Programs

• Binary Reachability Analysis [Cook+ ’06]
 – Theorem [Podelski & Rybalchenko ’04]:
 \(P \) is terminating iff
 \(T^+ \) is disjunctively well-founded (dwf)

 • \(T \): the transition relation of \(P \)
 • dwf: a finite union of well-founded relations
Example: Binary Reachability Analysis

1: x = *;
2: while(x>0){
3: x--;
4: }

\[
T^+ \subseteq \{(s, s') \mid s.pc < s'.pc\}
\cup \{(s, s') \mid s.pc > s'.pc\}
\cup \{(s, s') \mid s.x > s'.x \geq 0\}
\]

Terminating!
2nd Naïve Approach to Termination Verification of HO Functional Programs

• Check that \rightarrow^+ is dwf by [Cook+ ’06]
 \rightarrow: the one-step reduction relation of the HO program P

• Problem: [Cook+ ’06] needs to reason about change in calling context / call stack

 – Theorem [Berardi+’14, Yokoyama’14]:
 [Cook+ ’06] can only prove termination of primitive recursive functions (when usable wf relations have height at most ω)
2nd Naïve Approach to Termination

let rec ack m n =
 if m = 0 then n + 1
 else if n = 0 then ack (m-1) 1
 else ack (m-1) (ack m (n-1))

let main m n = if m > 0 && n > 0 then ack m n

Terminates but transition relation is quite complex

– Theorem [Berardi+’14, Yokoyama’14]:
 [Cook+ ’06] can only prove termination of primitive recursive functions (when usable wf relations have height at most ω)
Our Solution: Binary Reachability Analysis Generalized to HO [Kuwahara+ ’14]

• Theorem [Kuwahara+ ’14]:
 HO functional program P is terminating iff Call_P^+ is dwf

 – The calling relation Call_P of P:
 $$\{(f\tilde{v},g\tilde{w}) \mid g\tilde{w} \text{ is called from } f\tilde{v} \text{ in an execution of } P\}$$
 – $\text{Call}_P^+ = \{(f\tilde{v},g\tilde{w}) \mid \text{main()} \rightarrow^* E[f\tilde{v}], f\tilde{v} \rightarrow^+ E'[g\tilde{w}]\}$
Example: Generalized Binary Reachability Analysis

let rec fib n =
 if n<2 then 1
 else fib (n-1)
 + fib (n-2)
let main() = fib(rand())

Call={(fib(n),fib(n-1)) | n>1}
∪ {(fib(n),fib(n-2)) | n>1}
⊆{(fib m,fib n) | m>n≥0}
Reduce Binary Reachability
to Plain Reachability

• Goal: check \(Call_P \subseteq W \) for some dwf \(W \)
• Approach: reduction to a safety verification problem by program transformation
 – To each function \(f \), add an extra argument to record the argument of an ancestor call to \(f \)
 – Assert that \(W \) holds when \(f \) is called

\[
\text{fib } n = \\
\text{if } n < 2 \text{ then } n \\
\text{else fib}(n-1) + \text{fib}(n-2) \\
\text{main()} = \text{fib(rand())}
\]

\[
W = \{(m,n) \mid m > n \geq 0\}
\]

\[
\text{fib } m\ n = \\
\text{assert}(m > n \geq 0); \\
\text{let } m' = \text{if } * \text{ then } m \text{ else } n \text{ in} \\
\text{if } n < 2 \text{ then } n \\
\text{else fib } m' (n-1) + \text{fib } m' (n-2) \\
\text{main()} = \text{fib } \bot (\text{rand()})
\]
This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program: Speciﬁcation:

\[P \models \Psi \]

• Higher-order Functions
• Exception Handling
• Algebraic Data Structures

Safety
Termination
Non-termination
\(\omega \)-regular properties
Automata-Theoretic Approach [Vardi’91]

• Input:
 – Program P
 – ω-regular temporal property Ψ

1. Construct ω-automaton $A_{\neg\Psi}$ (with a fairness acceptance condition) that recognizes $L(\neg\Psi)$
2. Construct product program $P \times A_{\neg\Psi}$
3. Verify that $P \times A_{\neg\Psi}$ is fair terminating (i.e., no infinite execution trace that is fair)

Theorem: $P \models \Psi$ iff $P \times A_{\neg\Psi}$ is fair terminating
Definition: Fair Termination of P

- Fairness Constraint: $C = \{(A_1, B_1), \ldots, (A_n, B_n)\}$
- Infinite sequence π is **fair** wrt C if $\forall (A, B) \in C$,
 - A occurs only finitely often in π or
 - B occurs infinitely often in π
- P is **fair terminating** wrt C if P has no infinite execution trace that is fair wrt C
Fair Termination Verification for Imperative Programs [Cook+ ’07]

• Theorem:

\(P \) is fair terminating wrt \(C \) iff \(T^{+\cap C} \) is dwf

- \(T \): transition relation of \(P \)
- fair transitive closure \(R^{+\cap C} \) of \(R \) is defined by:

\[
R^{+\cap C} = \left\{ (s_1, s_n) \mid \forall 1 \leq i < n. (s_i, s_{i+1}) \in R, \right. \\
\left. s_1 \cdots s_n \text{ is fair wrt } C, n \geq 2 \right\}
\]

(Intuitively means the subset of \(R^+ \) that is fair wrt \(C \))

- Finite sequence \(s_1 \cdots s_n \) is **fair** wrt \(C \) if \(\forall (A, B) \in C \), \(A \) does not occur in \(s_1 \cdots s_n \) or \(B \) occurs in \(s_1 \cdots s_n \)
1st Naïve Approach to Fair Termination Verification of HO Functional Programs

• Check that $\rightarrow^{+\downarrow C}$ is dwf
 \rightarrow: the one-step reduction relation of the HO program P

• Suffers from the same problem as the 2nd naïve approach to plain termination verification of HO functional programs:
 – [Cook+ ’07] needs to reason about change in calling context / call stack
2nd Naïve Approach to Fair Termination
Verification of HO Functional Programs

• Check that \(Call_P^{+\uparrow C} \) is dwf

• \textbf{Unsound}: There is a case that \(Call_P^{+\uparrow C} \) is dwf but \(P \) is not fair-terminating wrt \(C \)

 – For example,
 \[
 f \ x = \begin{cases}
 () & \text{if } x \leq 0 \\
 (f 0; f 1) & \text{else}
 \end{cases}
 \]
 \[
 C = \{ (\text{true}, f 0) \}
 \]
 (fair wrt \(C \) iff \(f 0 \) is called infinitely often)

 \[
 f 2 \rightarrow^* f 0; f 1 \rightarrow^* f 1 \rightarrow^* f 0; f 1 \rightarrow^* \ldots
 \]
Our Solution: Fair-Termination Analysis
Generalized to HO Programs [Murase+ ’16]

• Check disjunctive well-foundedness of \triangleright^C_P:
 $$\{(f\tilde{\nu}, g\tilde{\omega}) \mid \text{main}() \rightarrow^* E[f\tilde{\nu}], f\tilde{\nu} \rightarrow^{+\uparrow C} E'[g\tilde{\omega}]\}$$
 – Note that \triangleright^C_P is Call_P^+ but \rightarrow^+ replaced by $\rightarrow^{+\uparrow C}$

• Theorem:
 P is fair-terminating wrt C iff \triangleright^C_P is dwf
How to Check that \trianglerighteq_{P}^{C} is dwf?

• By reduction to a safety verification problem via program transformation similar to the one for binary reachability analysis (see our POPL’16 paper [Murase+ ’16] for details)
Summary: Plain and Fair Termination Verification by MoCHi

- Naïve combination of HO model checking and predicate abstraction into HO Boolean programs is too imprecise.
- Generalize binary reachability analysis to the HO setting by introducing the calling relations Call_P and \triangleright_C^P.
This Tutorial: Software Model Checker MoCHi for OCaml based on HOMC

Prove Properties of Program Executions

OCaml Program: Specification:

\[P \models \Psi \]

- Higher-order Functions
- Exception Handling
- Algebraic Data Structures

Safety
Termination
Non-termination
\(\omega \)-regular properties
Verifying Non-Termination (or Disproving Termination) of HO programs

• Goal: prove that a program is non-terminating for some input (or for some non-deterministic choice)
 – complementary to termination verification
Our approach [Kuwahara+ ’15]

- combine over- and under-approximation
 - over-approximate deterministic branches, and check that all the branches are non-terminating
 - under-approximate non-deterministic branches, and check that one of the branches is non-terminating
Our Approach: Combination of Under-/Over-approximation

let \(x = * \) in
let \(y = * \) in
\(f(x+y) \)

Only one of the branches needs to be non-terminating

\[
\exists (\ldots
\quad /* case \ \neg x > 0 */
\quad , \ldots
\quad /* case \ x > 0 */
\quad)
\]
Our Approach: Combination of Under-/Over-approximation

\[
\begin{align*}
\text{let } x = * \text{ in} \\
\text{let } y = * \text{ in} \\
f(x+y)
\end{align*}
\]

\[
\begin{align*}
\exists (/* \text{ case } \neg x > 0 */ \\
\exists (\ldots \\
\text{ /* case } \neg 0 \leq y \leq x \text{ */ })
\end{align*}
\]

Under-approximation: case for \(\neg x > 0 \land 0 \leq y \leq x \) is discarded
Our Approach:
Combination of Under-/Over-approximation

\[
\begin{align*}
\text{let } x=&^\ast \text{ in } \text{pred: } x>0 \\
\text{let } y=&^\ast \text{ in } \text{pred: } 0 \leq y \leq x \\
f(x+y)
\end{align*}
\]

\[
\exists \left(\text{ /* case } \neg x>0 \text{ */ } \right.
\]
\[
\exists (\ldots
\end{align*}
\]

Under-approximation:
- case for \(\neg x>0 \land 0 \leq y \leq x \) is discarded
Our Approach: Combination of Under-/Over-approximation

```
let x=* in
let y=* in
f(x+y)
```

```
∀ ( /* case ¬x>0 */
    ∀ (/* case ¬0≤y≤x */
        ... 
    )
, ...
)
```
Our Approach: Combination of Under-/Over-approximation

\[
\begin{align*}
\text{let } x = * \text{ in } \quad & \text{pred: } x > 0 \\
\text{let } y = * \text{ in } \quad & \text{pred: } 0 \leq y \leq x \\
\text{f}(x+y) \quad & \text{pred: } x + y > 0
\end{align*}
\]

Overapproximation: both branches should have an infinite path (since we don't know which branch is valid)
Summary: Non-Termination Verification by MoCHi

- Underapproximate non-deterministic computation, and check that one of the branches has a non-terminating path
- Overapproximate deterministic computation, and check that all the branches have non-terminating paths
- Check them by using HO model checking
Conclusions

• HO model checking alone is not enough to construct practical software model checkers for OCaml, Java, ...

• It is often the case that software verification techniques developed for imperative programs cannot be reused in the HO setting
 – Types are useful for generalization to HO