
Towards a Scalable Software Model
Checker for Higher-Order Programs

Ryosuke Sato
Tohoku University

ryosuke@kb.ecei.tohoku.ac.jp

Hiroshi Unno
University of Tsukuba
uhiro@cs.tsukuba.ac.jp

Naoki Kobayashi
University of Tokyo

koba@is.s.u-tokyo.ac.jp

Abstract
In our recent paper, we have shown how to construct a fully-
automated program verification tool (so called a “software model
checker”) for a tiny subset of functional language ML, by combin-
ing higher-order model checking, predicate abstraction, and CE-
GAR. This can be viewed as a higher-order counterpart of previ-
ous software model checkers for imperative languages like BLAST
and SLAM. The näıve application of the proposed approach, how-
ever, suffered from scalability problems, both in terms of efficiency
and supported language features. To obtain more scalable software
model checkers for full-scale functional languages, we propose a
series of optimizations and extensions of the previous approach.
Among others, we introduce (i) selective CPS transformation, (ii)
selective predicate abstraction, and (iii) refined predicate discovery
as optimization techniques; and propose (iv) functional encoding of
recursive data structures and control operations to support a larger
subset of ML. We have implemented the proposed methods, and
obtained promising results.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Higher-Order Model Checking, Predicate Abstraction,
Abstraction Refinement, Dependent Types, CPS Transformation

1. Introduction
In our recent paper [15], we have shown how to construct a fully-
automated program verification tool (so called a “software model
checker”) for a tiny subset of functional language ML, a simply-
typed lambda calculus with recursion and integers. The framework
is an extension of higher-order model checker (more precisely, the
model checker for higher-order recursion scheme) for infinite data
domains such as integers, obtained by combining the techniques
of predicate abstraction [8] and counterexample-guided abstraction
refinements (CEGAR) [1, 6]. This can be viewed as a higher-order
counterpart of previous software model checkers for imperative
languages like BLAST [9] and SLAM [1]. We have implemented a
verification tool, MoCHi, based on the framework.

The näıve application of the proposed approach, however, suf-
fered from scalability problems, both in terms of efficiency and
supported language features. For example, the previous framework

c⃝ ACM, 2013. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in the Proceedings of the ACM SIGPLAN 2013 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2013)

Functional
Program

Step 1:
Predicate

Abstraction

CBV
Boolean
Program

Step 3:
Higher-Order

Model Checking
safe

Step 4:
Feasibility

Check

Step 5:
Predicate
Discovery

New Predicates

unsafe

OK

NG

Step 2:
CPS

transformation

CBN
Boolean
Program

Error Trace

feasible

infeasible

Figure 1. Higher-Order Model Checking with Predicate Abstrac-
tion and CEGAR

does not support recursive data structures and our implementation
based on the framework does not support control operations. To
explain the problem of the previous framework/implementation, let
us first review our previous framework.

Our previous verification framework [15] is based on predicate
abstraction and CEGAR for a higher-order model checker. Figure 1
shows the overall structure of our previous method. In Step 1, an
input program, written in a simply typed call-by-value lambda cal-
culus with recursion and integers, is abstracted to a higher-order
boolean program by predicate abstraction. The abstracted program
is verified by a higher-order model checker, where models are de-
scribed by higher-order recursion schemes, in Step 3. Higher-order
recursion schemes [18] can be viewed as a simply typed call-by-
name lambda calculus with finite data domains and recursion. To
resolve the gap between the evaluation strategies of higher-order
recursion schemes and higher-order boolean programs, we trans-
late the call-by-value (CBV) program into a call-by-name (CBN)
program in Step 2. If the abstracted program is safe (i.e., asser-
tions never fail), the original functional program is also safe. If
not, by using a counterexample produced by the higher-order model
checker, we check whether the original program is in fact unsafe or
the abstraction is too coarse in Step 4. If the latter, we discover new
predicates in Step 5. We repeat these steps until we find whether
the program is safe or not.

In this paper, we address several limitations of our previous
work. We discuss each problem and explain our approach below.

1. Continuation-passing style (CPS) transformation in Step 2
caused an efficiency problem for the previous version of MoCHi.

letrec check x f = f x; check (x+1) f
let f x = assert (x >= 0)
let main n = check n f

Figure 2. Example Program of Selective CPS Transformation

let add x y = x + y
letrec sum x = if x<=0 then 0 else add x (sum(x-1))
let main x = assert (sum x >= x)

Figure 3. Example Program of Selective Predicate Abstraction

As stated above, our approach requires CPS transformation to re-
solve the gap between the evaluation strategies of higher-order
recursion schemes and higher-order boolean programs. However,
CPS transformation significantly increases the order1 of programs.
Since the complexity of model checking of higher-order recursion
scheme isn-EXPTIME complete for order-n recursion scheme, the
increase of the order of an input is crucial to the verification time.
For example, consider the program shown in Figure 2. The above
program is translated into the following program by a naı̈ve call-
by-value CPS transformation [20].
letrec check x k1 =
k1 (λf.λk2.f x (λ_.check (x+1) (λg.g f k2)))

let f x k = assert (x >= 0); k ()
let main n k = check n (λg. g f k)

To preserve the evaluation order of an original call-by-value pro-
gram, each function of the translated call-by-name program takes
a continuation and passes its return value to the continuation. Note
here that the order of the translated program has increased to 5. The
continuationk1 of check can actually be omitted however, since a
partial application ofcheck in the original program never causes
side effects including an assertion failure. We can, therefore, obtain
the following order-3 program.
letrec check x f k = f x (λ_.check (x+1) f k)
let f x k = assert (x >= 0); k ()
let main n k = check n f k

Our CPS transformation avoids such unnecessary insertion of con-
tinuations. We formalize this transformation, calledselective CPS
transformation.

2. The main bottleneck of the previous version of MoCHi was
the predicate abstraction and discovery (Steps 1 and 5), rather than
higher-order model checking. Our previous method for predicate
abstraction tried to abstractevery function in the program. As a
result, verification of a program did not succeed until an appropriate
set of predicates is found for every function. For example, consider
the program shown in Figure 3. The program can be successfully
verified if we abstract the program by using predicatesλy. y ≥ 0
for the second argument ofadd andλr. r ≥ x for the return values
of add andsum. The following is the abstracted program obtained
by using the above predicates.
let add () b = b
letrec sum () = if * then true
else add () (if sum () then true else *)

let main x = assert (sum ())
Here, * means a non-deterministic boolean value. The argumentb
denotes whethery ≥ 0 holds or not. In the previous paper [15], we
have adapted CEGAR to find such predicates, but the technique is
necessarily heuristic, and often fails. If we cannot find the predi-
cates foradd, we get the following abstracted program.
let add () () = ()
letrec sum u = if * then true

1 The order of programt is the maximum order of the types of functions in
t. The order of typeτ is defined byorder(int) = 0, order(τ1 → τ2) =
max(order(τ1) + 1, order(τ2)).

letrec copy x = if x=0 then 0 else 1 + copy (x-1)
let main n = assert (copy (copy n) = n)

Figure 4. Example Program for Refined Predicate Discovery

else let b = sum () and u = add () () in *
let main x = assert (sum ())

Since the return value ofadd is non-informative, the abstraction is
too coarse for proving the safety of the original program.
To reduce the burden to the predicate discovery phase, we introduce
a refinement of predicate abstraction calledselective predicate ab-
straction. As the name suggests, the selective predicate abstraction
applies predicate abstraction to only a certain set of functions, and
avoids abstraction of the other functions by inlining them. The se-
lective predicate abstraction generates the following safe program
by using only the predicateλr. r ≥ x for the return values ofsum
and inliningadd.
letrec sum () =

if * then true else if sum() then true else *
let main () = assert (sum ())

In this way the selective predicate abstraction improves the preci-
sion of abstraction and reduces the number of CEGAR iterations.

3. Even with the selective predicate abstraction, the previous
version of MoCHi sometimes failed to discover an appropriate set
of predicates. For example, consider the program shown in Fig-
ure 4. The program can be successfully verified if we abstract the
program by using the predicater = x on the argumentx and the
return valuer of copy. The old version of MoCHi, however, con-
tinued to find too specific predicates such asx = 0∧r = 0,x = 1∧
r = 1, ..., infinitely. This is due to the too much path- and context-
sensitivity of MoCHi. In Step 5, MoCHi first prepares a template of
a refinement type foreachfunction call in the spurious error path.
For example, if there are two calls of thecopy function, we prepare
two templatesx : {v : int | P1(v)} ⇒ {r : int | Q1(x, r)} and
x : {v : int | P2(v)} ⇒ {r : int | Q2(x, r)}. MoCHi then gener-
ates and solves constraints on the predicate variables in the tem-
plate. The advantages of the approach are the context-sensitivity
(different types can be assigned to different calls) and the existence
of a complete algorithm (modulo certain assumptions) to solve the
constraints, but the disadvantage is that the inferred constraints are
often too specific. To address this problem, we refine our predicate
discovery method by merging information about multiple calls of
the same function as much as possible; in the example above, we
mergeP1 with P2, andQ1 with Q2 as long as the resulting con-
straints are satisfiable. Combined with some heuristic for using an
underlying theorem prover, the refined method tends to discover a
better set of predicates, as confirmed by experiments.

4. Another limitation was that many important language fea-
tures such as recursive data structures and exceptions were not sup-
ported. Predicate abstraction can in principle be applied to recur-
sive data structures, but there is not a good practical (interpolating)
theorem prover that can be used for finding appropriate predicates
on recursive data structures.2 To support recursive data structures
without relying on an interpolating theorem prover for them, we
encode recursive data structures using higher-order functions and
reduce verification of programs manipulating data structures to that
of programs manipulating integers. For example, a list is encoded
to a function that maps an indexi to the i-th element. Similarly,
we support control operations (e.g., exceptions andcall/cc) by
encoding them using higher-order functions.

2 One approach would be to treat data constructors as uninterpreted function
(UF) symbols, and use an interpolating theorem prover that handles UF. It
cannot, however, be used for finding inductive predicates such as “a listℓ is
a sequence of the form(ab)∗”.

The rest of this paper is organized as follows. We first formalize
the source language of verification in Section 2. Section 3 formal-
izes the selective predicate abstraction and the selective CPS trans-
formation. Section 4 shows the refined predicate discovery. Sec-
tion 5 describes the language extensions for recursive data struc-
tures and control operations. Section 6 reports experiments. Sec-
tion 7 discusses related work and Section 8 concludes the paper.
For the space restriction, proofs are omitted, which will be avail-
able in the first author’s forthcoming PhD thesis.

2. Source Language
In this section, we introduce the source language of our verifica-
tion method. The source language is a simply-typed call-by-value
higher-order functional language with recursion and integers (a la
“PCF”) with the syntax defined by:

D (programs) ::= {f1 = v1, . . . , fn = vn}
t (terms) ::= n | x | λx. t | t1 t2 | op(t1, t2)

| if0 t1 then t2 else t3 | fail
v (values) ::= n | x | λx. t
τ (types) ::= int | τ1 → τ2

The meta-variableop ranges over the set of operators over integers.
The expressions are standard except that there is a primitivefail
that aborts a program. We usetrue and false as aliases of0 and
1, and we writeassert(t) for if0 t then 0 else fail, let x =
t1 in t2 for (λx. t2) t1, (t1 op t2) for op(t1, t2). We assume that
(i) a program is well-typed in the standard simple type system, (ii)
every function in a programD has a function type, and (iii)D
contains a distinguished function symbolmain ∈ {f1, . . . , fn}
whose type isint → int. The goal of our verification is to check
whethermain n ̸−→∗

D fail for all integern.

3. Optimizations
This section introduces optimizations for each phase of CPS trans-
formation (Step 2) and predicate abstraction (Step 1) in Figure 1.

3.1 Selective CPS transformation

This section formalizes selective CPS transformation for abstracted
programs. As stated in Section 1, the idea of the selective CPS
transformation is to distinguish whether a continuation parameter
should be inserted to each expression or not based on whether it
has a side-effect. When a function application has no side-effects,
we need not insert a continuation. Here,fail, non-deterministic
branch, and non-termination are considered as side-effects. A sim-
ilar transformation has been proposed by Nielsen [17]. The trans-
formation does not fit our purpose to translate call-by-value pro-
grams into equivalent call-by-name programs. A non-terminating
program may be transformed into a terminating (call-by-name) pro-
gram by his transformation.

We first define the source language (and the target language)
of selective CPS transformation. The language is the same as the
one in Section 2 except: (i) the set of terms is extended with non-
deterministic brancht1■t2, and (ii) a labelℓ ∈ {C,N} is attached
to each function type, likeτ1 →ℓ τ2. The labels indicate whether
we should insert a continuation or not.

Below, we formalize the selective CPS as a type-based transfor-
mation. Figure 5 shows the rules of the selective CPS transforma-
tion. In the figure,@ℓ(−,−) is an operation defined as@N (t, k) =
k t and@C(t, k) = t k. The relationΓ ⊢ t : τ, ℓ ; t′ means that
a termt is translated to a termt′ by using a typeτ , under the as-
sumption that (i) each free variablex of t has been transformed
using the typeΓ(x), (ii) t may have a side-effect ifℓ = C, and (iii)
t has no side-effect ifℓ = N . The relationΓ ⊢ D ; D′ means
that a programD is translated to a programD′ according toΓ. The
rules are designed in such a way that transformed termt′ has type

Γ ⊢ n : int, N ; n (CPS-CONST)

Γ, x : τ ⊢ x : τ,N ; x (CPS-VAR)

Γ ⊢ t1 : int, N ; t′1 Γ ⊢ t2 : int, N ; t′2
Γ ⊢ op(t1, t2) : int, N ; op(t′1, t

′
2)

(CPS-OPN)

Γ ⊢ t1 : int, ℓ1 ; t′1 Γ ⊢ t2 : int, ℓ2 ; t′2
Γ ⊢ op(t1, t2) : int, N ; @ℓ1 (t′1, λx1.@ℓ2 (t′2, λx2. op(x1, x2)))

(CPS-OPC)

Γ, x : τ1 ⊢ t : τ2, N ; t′

Γ ⊢ λx. t : τ1 →N τ2, N ; λx. t′
(CPS-ABSN)

Γ, x : τ1 ⊢ t : τ2, ℓ ; t′

Γ ⊢ λx. t : τ1 →C τ2, N ; λx. λk.@ℓ(t′, k)
(CPS-ABSC)

Γ ⊢ t0 : τ1 →N τ,N ; t′0 Γ ⊢ t1 : τ1, N ; t′1
Γ ⊢ t0 t1 : τ,N ; t′0 t′1

(CPS-APPN)

Γ ⊢ t0 : τ1 →ℓ τ , ℓ0 ; t′0 Γ ⊢ t1 : τ1, ℓ1 ; t′1
Γ ⊢ t0 t1 : τ, C ; λk.@ℓ0 (t′0, λx0.@ℓ1 (t′1, λx1.@ℓ(x0 x1, k)))

(CPS-APPC)

Γ ⊢ fail : τ, C ; λk. fail (CPS-FAIL)

Γ ⊢ t1 : int, N ; t′1 Γ ⊢ t2 : τ,N ; t′2 Γ ⊢ t3 : τ,N ; t′3
Γ ⊢ if0 t1 then t2 else t3 : τ,N ; if0 t′1 then t′2 else t′3

(CPS-IFN)

Γ ⊢ t1 : int, ℓ1 ; t′1 Γ ⊢ t2 : τ, ℓ2 ; t′2 Γ ⊢ t3 : τ, ℓ3 ; t′3
Γ ⊢ if0 t1 then t2 else t3 : τ, C ; λk.Appℓ1 (t′1,

λm. if0 m then @ℓ2 (t′2, k) else @ℓ3 (t′3, k))
(CPS-IFC)

Γ ⊢ t1 : τ, ℓ1 ; t′1 Γ ⊢ t2 : τ, ℓ2 ; t′2
Γ ⊢ t1 ■ t2 : τ, C ; @ℓ1 (t′1, k) ■@ℓ2 (t′2, k)

(CPS-BR)

vi is of the formλx1. λx2. . . . λxj . ti ti is not of the formλx. t′i
Γ(fi) is of the formτi1 →ℓ1 τi2 →ℓ2 · · · →ℓi(j−1) τij →C τ

Γ ⊢ vi : Γ(fi), N ; v′i for eachi ∈ {1, . . . , n}
Γ ⊢ {f1 = v1, . . . , fn = vn} ; {f1 = v′1, . . . , fn = v′n}

(CPS-PROG)

Figure 5. Selective CPS transformation

[[τ]] if Γ ⊢ t : τ,N ; t′ holds, and the transformed termt′ has type
([[τ]]→X)→X if Γ ⊢ t : τ, C ; t′ holds, whereX is the answer
type and[[τ]] is defined by:

[[int]] = int [[τ1 →N τ2]] = [[τ1]]→ [[τ2]]
[[τ1 →C τ2]] = [[τ1]]→ ([[τ2]]→ X)→ X

Thus, a continuation should be inserted only for functions of type
τ1 →C τ2, not for functions of typeτ1 →N τ2.

In the rule CPS-ABSC, a termλx. t is transformed in a standard
way, i.e. a continuation parameterk is inserted andt′, the CPS ver-
sion oft, is applied tok. On the other hand, in the rule CPS-ABSN,
no continuation parameter is inserted and direct style is preserved.
The rules for applications are similar. In the rule CPS-APPC, a
continuation is inserted, but not in the rule CPS-APPN. In the rule
CPS-BR, a termt1■t2 should be transformed withC and a contin-
uation is needed because we need to treat non-deterministic branch
as a side-effect. In the rule CPS-PROG, since an application of
a top-level function may cause a side-effect, non-termination, the
function type for the last argument is annotated withC. For the
sake of simplicity, regardless of whether functions are recursive,
we consider all the top-level functions may not terminate conserva-
tively. We can avoid redundant insertion of continuations by some
termination analysis.

As an example, Figure 6 shows the selective CPS transforma-
tion of λx. λy. assert(x = y) with type int →N int→C int
for (a) andint →C int→C int for (b). The transformation of

(a)

Γxy ⊢ assert : bool→C unit, N ; assertCPS
...

Γxy ⊢ t : unit, C ; λk. t′ k

Γx ⊢ λy. t : int→C unit, N ; λy. λk. t′ k

Γ ⊢ λx. λy. t : int→N int→C unit, N ; λx. λy. λk. t′ k

(b)

...

Γx ⊢ λy. t : int→C unit, N ; λy. λk. t′ k

Γ ⊢ λx. λy. t : int→C int→C unit, N ;

λx. λk′. k′ (λy. λk. t′ k)

Figure 6. Transformations ofλx. λy. assert(x = y). (t =
assert(x = y), t′ = assertCPS(x = y), Γx = Γ, x : int.
Γxy = Γx, y : int. assertCPS b k assertsb and returnsk ())

λy. assert(x = y) in (b) is the same as the one in (a). In (a), there
is no need to insert a continuation parameter afterx. On the other
hand, in (b), a continuation parameter is inserted.

When we infer types and labels, we attach labelN to function
types as much as possible. Consider functioncheck shown in
Figure 2. By the rule CPS-PROG, the type ofcheck τ must be
of the form int →ℓ (int→ℓ′ unit)→C unit. Since there is no
constraint such thatτ = τ1 →C τ2, we instantiateℓ to labelN .

We state properties of the selective CPS transformation. The
first theorem below states that we can transform arbitrary simply-
typed programs by the selective CPS transformation. The second
theorem states that the selective CPS transformation is correct in
the sense that the transformed program is reduced to the same value
as the original program.

Theorem 3.1. SupposeD is typable inΓ. There existsΓ′ andD′

such thatΓ = Elim(Γ′) andΓ′ ⊢ D ; D′, whereElim(Γ) is the
type environment obtained fromΓ by removing annotations.

Theorem 3.2(Correctness of CPS Transformation). If Γ ⊢ D ;

D′, then the following holds:main n −→∗
D fail if and only if

main n (λx. x) −→∗
D′ fail.

3.2 Selective Predicate Abstraction

We introduce an optimization technique for predicate abstraction,
called selective predicate abstraction.

The idea of selective predicate abstraction is to apply predicate
abstractions only to a certain set of functions and inline the other
functions. For example, the program in Figure 3 can be verified by
abstracting onlysum andmain as stated in Section 1.

We formalize selective predicate abstraction as an extension
of the previous predicate abstraction. In the previous framework,
predicate abstraction is defined as the relationΓ ⊢NS t : σ ; t′

which means thatt is abstracted tot′ by using the abstraction type
σ under the assumption that each free variablex of t has been
abstracted using the abstraction typeΓ(x). Abstraction types are
types to express which predicate should be used to abstract each
value. For example, an abstraction typeint[P1, . . . , Pn] means that
a valuev of that type should be abstracted to a tuple(b1, . . . , bn),
wherebi denotes whetherPi(v) holds or not. See our previous
paper [15] for details. We extend the predicate abstraction relation
by adding the set of inlined functionsE like Γ | E ⊢ t :
σ ; t′. Here, functions inE are not abstracted and are inlined
in the process of abstraction. An alternative approach would be to
inline all the functions inE first, and then apply ordinary predicate
abstraction [15]; we prefer the formalization below (that inline
functions on-demand) as it seems more conveninent for further
optimizations such as memoization of abstractions.

x /∈ dom(E) Γ(x) = (y1 : σ1 → · · · → yn : σn → σ)
Γ, y1 : σ1, . . . , yi−1 : σi−1 | E ⊢

vi : [v1/y1, . . . , vi−1/yi−1]σi ; ei
for eachi ∈ {1, . . . , n}

Γ | E ⊢ x ṽ : [ṽ/ỹ]σ ; let y1 = e1 in · · · let yn = en in x ỹ
(A-A PP)

E(x) = λx̃. e Γ | E ⊢ [ṽ/x̃]e : σ ; e′

Γ | E ⊢ x ṽ : σ ; e′
(A-A PPEXP)

Γ | E ⊢ vi : Γ(fi) ; v′i for eachi s.t.fi /∈ dom(E)
E ⊆ {f1 = v1, . . . , fn = vn} dom(Γ) ∩ dom(E) = ∅

Γ | E ⊢ {f1 = v1, . . . , fn = vn} ; {fi = v′i | fi /∈ dom(E)}
(A-PROG)

Figure 7. Selective Predicate Abstraction

...

...
Γ′ | E ⊢ x+ s : int[λr. r ≥ x] ; if0 s then true else ∗
Γ′ | E ⊢ add x s : int[λr. r ≥ x] ; if0 s then true else ∗

Γ | E ⊢ let s = sum (x− 1) in add x s : int[λr. r ≥ x] ;
let s = sum () in if0 s then true else ∗

Figure 8. Abstraction of add x (sum (x− 1)). (Γ = x :
int[], sum : (y : int[] → int[λr. r ≥ y]), x > 0. Γ′ = Γ, s :
int[λs. s ≥ x− 1]. E = {add = λx. λy. x+ y}, * is a syntactic
sugar fortrue ■ false.)

Figure 7 shows the key rules of the selective predicate abstrac-
tion. Other rules are the same as the previous predicate abstraction
relation [15] except that the set of inlined functionsE is added. The
relationΓ | E ⊢ t : τ ; t′ means thatt is abstracted tot′ by using
the abstraction typeτ under the assumption that each free variable
x ∈ dom(Γ) of t has been abstracted using the abstraction type
Γ(x) and each free variablex ∈ dom(E) of t is inlined. If E is
empty, the selective predicate abstraction relation is the same as the
previous predicate abstraction.

Figure 8 shows a part of the abstraction of the program shown
in Figure 3 withE = {add = λx. λy. x+ y}. Due to the re-
striction of the source language of previous predicate abstrac-
tion [15], we translated the termadd x (sum (x− 1)) to let s =
sum (x− 1) in add x s. In the abstraction ofadd x s, add is in-
lined since the definition ofadd is in E. On the top of the deriva-
tion, x + s is abstracted toif0 s then true else (true ■ false)
sinces ≥ x holds if translateds is true (that denotess ≥ x − 1),
and we do not know whethers ≥ x otherwise.

For someD andE, there isD′ such thatΓ | E ⊢ D ; D′ as
long as there is no cyclic definitions inE like {f = λx. g x, g = λy. f}.
Therefore, one way to decideE is to find a maximal set of the func-
tions that has no cyclic definitions. Even ifE has some functions
which are recursive inD, there isD′ such thatΓ | E ⊢ D ; D′ in
some cases. For example, the following program can be abstracted
with E = {odd = vodd}.
letrec even x = if x = 0 then true else odd (x-1)

and odd x = if x = 0 then false else even (x-1)
let main () = assert (even (n+n))

The following is the abstraction of the program withΓ = even :
int[Pe]→bool, main:int[]→unitwherePe = λx. (xmod2 = 0).
letrec even b =

if (if b then * else false) then true
else if (if b then false else *) then false
else even b

let main () = assert (even b)
The abstracted program is safe. For comparison, consider the case
whereΓ = even : int[Pe] → bool, odd : int[] → bool, main :
int[] → unit andE = ∅ (which corresponds to our previous
approach [15] where the predicates forodd have not been found).

letrec copy x = if x=0 then 0 else 1 + copy (x-1)
let main n = assert (copy n = n)

Figure 9. A Simplified Version of the Program in Figure 4

letrec even b = if (if b then * else false)
then true else odd ()

and odd () = if * then false else even *
let main () = assert (even b)

Since the abstraction ofodd is too coarse, the abstractedeven
returns a non-deterministic booleans. Thus, the abstracted program
is unsafe.

We state properties of the selective predicate abstraction. The
theorem below states that the predicate abstraction is sound in the
sense that if the original program fails, so does its abstraction.

Theorem 3.3 (Soundness). If Γ | E ⊢ D1 ; D2, and
main n −→∗

D1
fail, thenmain n −→∗

D2
fail.

The proposition below states that selective predicate abstraction
is more precise compared to our previous predicate abstraction.
Here,Γ ⊢NS D : τ ; D1 is the predicate abstraction relation
in our previous paper [15].

Proposition 3.4. If Γ ⊢NS D : τ ; D1, Γ | E ⊢ D ; D2, and
main n −→∗

D2
fail, thenmain n −→∗

D1
fail.

4. Predicate Discovery
In this section, we propose an extension of our previous predicate
discovery method for higher-order programs used in MoCHi [15].
First, we briefly overview the previous method in Section 4.1 and
then discuss its limitation in Section 4.2. Section 4.3 explains the
extension of the method, which remedies the limitation.

4.1 Previous Method

In MoCHi, predicates for abstracting each term of a given program
are specified as a kind of dependent types called abstraction types.
MoCHi infers abstraction types automatically in a counterexample-
guided manner (recall Figure 1): In a CEGAR iteration of MoCHi,
if the predicate abstraction at that point is not precise enough
to show the safety of the original program, an error path of the
abstracted program is returned as a result of higher-order model
checking. If the abstract error path is infeasible (i.e., not a gen-
uine path of the original program), MoCHi generates a straightline
higher-order program (SHP) that is safe if and only if the abstract
error path is infeasible. MoCHi then uses an existing method [24]
to infer refinement types that witness the safety of the SHP. Here,
to make the inference context-sensitive and complete as discussed
in Section 1, MoCHi ensures the generated SHP to be linear (i.e.,
each function is called exactly once) and recursion-free by duplicat-
ing and renaming the functions called multiple times in the infeasi-
ble error path (see [15] for more details). Finally, MoCHi extracts
abstraction types from the refinement types, which contain precise
enough predicates to refute the infeasible error path.

The key ingredient of the above predicate discovery procedure
is the refinement type inference method [24], which consists of two
steps: constraint generation and solving. We review the two steps
respectively in Sections 4.1.1 and 4.1.2.

4.1.1 Constraint Generation

Given a spurious error path, we can construct a SHPD which is
typable under a refinement type system (see, for example, [24]
for the definition of the system). For example, let us consider
the program in Figure 9, which is a simplified version of the one

in Figure 4. In the course of its verification, we may obtain the
following SHPDcopy:
let copy1 x = assume (x<>0); 1 + copy2 (x-1)
let copy2 x = assume (x=0); 0
let main n = assume (copy1 n <> n); fail

Here,assume e evaluatese and proceeds to the next command
only if e evaluates to true. The SHP corresponds to an infeasible
error path where the else- and the then-branches ofcopy are re-
spectively taken in the first and the second function call ofcopy,
and the assertion in themain function fails. Note here thatDcopy

is safe (i.e.,fail is not reachable), and hence is typable under the
refinement type system.

From a SHPD, we generate Horn-clause-like constraints which
are satisfiable if and only ifD is typable. To this end, for each
function inD, we prepare a refinement type template with predi-
cate variables, which act as placeholders of refinement predicates to
be inferred. We then generate a typing derivation forD under the
type environment that associates each function with its type tem-
plate. Horn-clause-like constraints on the predicate variables are
then extracted from the derivation. Since the SHPD is linear and
recursion-free, generated constraints are non-recursive. This is de-
sirable since constraint solving of non-recursive Horn clauses over
decidable underlying theories (e.g., linear arithmetic) is decidable.
For the running exampleDcopy, we use the following templates:3

copy1 : (x : int → {ν : int | P1(x, ν)}) andcopy2 : (x : int →
{ν : int | P2(x, ν)}).

copy1 : (x : int→{ν : int | P1(x, ν)})
copy2 : (x : int→{ν : int | P2(x, ν)})

By using them, we obtain the following setCcopy of constraints:
x = 0 ∧ y = 0 ⇒ P2(x, y)

P2(x− 1, y) ∧ x ̸= 0 ∧ z = 1 + y ⇒ P1(x, z)
P1(n, x) ⇒ x = n

4.1.2 Constraint Solving

Given a setC of non-recursive Horn clauses, our previous con-
straint solving algorithm returns a substitutionθ for predicate vari-
ables inC such thatθC is valid. The algorithm iteratively finds a
solution for each predicate variableP in C as follows: The algo-
rithm first computes equi-satisfiable constraintsCP of the follow-
ing form by eliminating the other predicate variables inC thanP :

ϕP ⇒ P (x̃) P (x̃) ⇒ ϕ′
P

Here,FV (ϕP) ∩ FV (ϕ′
P) ⊆ {x̃} always holds. Intuitively, the

predicateP (x̃) represents an invariant of some subexpressione in
the SHP, where some variableν ∈ {x̃} represents the value ofe
and each variable in{x̃} \ {ν} represents a free variable ine. ϕP

andϕ′
P respectively represent the strongest condition satisfied by

the valueν and the weakest condition onν required by the context
of e. The algorithm then computesI(ϕP ,¬ϕ′

P) as a solution for
P (x̃) with the help of a technique called interpolation [4, 16] from
automated theorem proving. Here, an interpolantI(ϕ1, ϕ2) of ϕ1

andϕ2 (such thatϕ1 andϕ2 are inconsistent) is a formulaϕ that
satisfies the following conditions:4

• ϕ1 impliesϕ,
• ϕ andϕ2 are inconsistent, and
• FV (ϕ) ⊆ FV (ϕ1) ∩ FV (ϕ2).

For the running exampleCcopy, we obtain the following constraints
by eliminating the other predicate variables thanP1:

x = 1 ∧ y = 0 ∧ x ̸= 0 ∧ ν = 1 + y ⇒ P1(x, ν)
P1(x, ν) ⇒ ν = x

3 For the sake of simplicity, we here omit the type template ofmain as well
as the refinement predicates for the argument ofcopy1 andcopy2.
4 Note that interpolants ofϕ1 andϕ2 are not unique. Actually, existing
theorem provers [4, 16] return one of them, which is denoted byI(ϕ1, ϕ2).

We then obtain, for example, the following solution forP1(x, ν):

I(x = 1 ∧ y = 0 ∧ x ̸= 0 ∧ ν = 1 + y,¬ν = x) ≡ ν = x.

By substituting this forP1 in Ccopy, we get:

x = 0 ∧ ν = 0 ⇒ P2(x, ν)
P2(x, ν) ⇒ (x+ 1 ̸= 0 ∧ z = 1 + ν ⇒ z = x+ 1)

We then get, for example, the following solution forP2(x, ν):

I(x = 0 ∧ ν = 0,¬(x+ 1 ̸= 0 ∧ z = 1 + ν ⇒ z = x+ 1))
≡ ν = x.

We thus obtain the following refinement types forDcopy:

copy1 : (x : int→{ν : int | x = ν})
copy2 : (x : int→{ν : int | x = ν})

4.2 Limitation of Previous Method

We now explain the limitation of the previous method by using the
program in Figure 4. Let us consider the following SHPDcc:
let copy1 x = assume (x<>0); 1 + copy2 (x-1)
let copy2 x = assume (x=0); 0
let copy3 x = assume (x<>0); 1 + copy4 (x-1)
let copy4 x = assume (x=0); 0
let main n = assume (copy3 (copy1 n) <> n); fail

The SHP corresponds to an infeasible error path where the else-
branch ofcopy is taken in the first and the third calls ofcopy, the
then-branch is taken in the second and the fourth calls ofcopy, and
the assertion in themain function fails.

For the SHPDcc, we use the following type template:x : int→
{ν : int | Pi(x, ν)} for eachcopyi. We get the following setCcc

of constraints:
x = 0 ∧ y = 0 ⇒ P2(x, y)

P2(x− 1, y) ∧ x ̸= 0 ∧ z = 1 + y ⇒ P1(x, z)
x = 0 ∧ y = 0 ⇒ P4(x, y)

P4(x− 1, y) ∧ x ̸= 0 ∧ z = 1 + y ⇒ P3(x, z)
P1(n, x) ∧ P3(x, y) ⇒ y = n

By eliminating the other predicate variables thanP3 (and with
some simplification), we get the following constraintsCP3 :

x = 1 ∧ ν = 1 ⇒ P3(x, ν)
P3(x, ν) ⇒ (x = 1 ⇒ ν = 1)

Existing interpolating provers such as [4] returns the following
solution forP3(x, ν):

I(x = 1 ∧ ν = 1,¬(x = 1 ⇒ ν = 1)) ≡ x = 1 ∧ ν = 1.

Note here that the solution is specific to the calling context of
the particular functioncopy3, and cannot be used as a solution
for P2 andP4. We here want to get more general solutions like
λ(ν, x).ν = x which are more likely to constitute an invariant
of the functioncopy in the original program. For this purpose,
we believe it is desirable to find the same solution (if possible)
for “related” predicate variables which represent (possibly differ-
ent) refinement predicates for the same argument or return value
of the same function in the original program. For the running ex-
ampleCcc, we want to get the same solution forP1, . . . , P4, and
λ(ν, x).ν = x in fact satisfies this extra constraint.

4.3 Extended Method

We now explain our extension of the previous method to remedy
the limitation discussed in Section 4.2. The extended predicate dis-
covery method is based on the framework of the previous method
overviewed in Section 4.1, but the component for refinement type
inference is extended so that it can merge and generalize informa-
tion from multiple calling contexts of a function in multiple infea-
sible error paths. This enables MoCHi to infer a general refinement

type of the function that type-checks the multiple calling contexts,
while preserving the path- and context-sensitivity. In other words,
the extended method generates constraints from multiple infeasible
error paths (see Section 4.3.1), and tries to find the same solution
(if possible) for related predicate variables (see Section 4.3.2).

4.3.1 Extensions of Constraint Generation

We extend the previous constraint generation algorithm overviewed
in Section 4.1.1 as follows.

• For each CEGAR iteration, we generate constraints from
multiple infeasible error paths instead of a single path: We keep
the set{π1, · · · , πn} of the infeasible error paths found so far,
generate the setCi of Horn clauses for each pathπi, and pass
C = C1 ∪ · · · ∪ Cn to the extended constraint solving algorithm
described in Section 4.3.2 as an input.

• We also construct and pass an equivalence relationE on the
predicate variables inC such thatP E Q if and only if the predicate
variablesP andQ represent (possibly different) refinement pred-
icates for the same argument or return value of the same function
in the original program. For example, we obtain the trivial equiva-
lence relationEcc = {P1, . . . , P4} × {P1, . . . , P4} for Ccc. The
constraint solving algorithm in Section 4.3.2 exploitsE to find gen-
eral solutions forC.
Thus, the extended algorithm generates a pair(C,E) of Horn
clausesC for multiple paths and an equivalence relationE on
the predicate variables inC unlike the previous algorithm which
generates only Horn clauses for a single path. Here, the pair(C,E)
of constraints can be viewed as hierarchical constraints whereC
must be always satisfied andE should be satisfied if possible.

4.3.2 Extensions of Constraint Solving

In this section, we extend the previous constraint solving algorithm
overviewed in Section 4.1.2. Given a pair(C,E) of Horn clauses
C and an equivalence relationE on the predicate variables inC,
the algorithm returns a substitutionθ for the predicate variables in
C such thatθC is valid. A distinguishing feature of the algorithm is
that it tries to find the same solution for predicate variables related
by E if possible. This enables the algorithm to obtain general
predicates, which are more likely to constitute invariants.

The extended constraint solving algorithm proceeds as follows:
1. Find a setS of predicate variables which are related byE

and may have the same solution inC.
2. Find a candidate solutionλx̃.ϕ for all predicate variable

Q ∈ S.
3. Substituteλx̃.ϕ for predicate variablesS in C and repeat the

entire procedure if the result still contains a predicate variable.

Finding a setS of predicate variables: To find a set of predicate
variables that may have the same solution inC, for each predicate
variableP in C, we compute constraintsCP fromC by eliminating
the other predicate variables thanP . For the running exampleCcc,
we obtain:

CP1 = {x = 1 ∧ ν = 1 ⇒ P1(x, ν),
P1(x, ν) ⇒ (ν = 1 ⇒ x = 1)},

CP2 = {x = 0 ∧ ν = 0 ⇒ P2(x, ν),
P2(x, ν) ⇒ (ν = 0 ⇒ (x = −1 ∨ x = 0))},

CP3 = {x = 1 ∧ ν = 1 ⇒ P3(x, ν),
P3(x, ν) ⇒ (x = 1 ⇒ ν = 1)},

CP4 = {x = 0 ∧ ν = 0 ⇒ P4(x, ν),
P4(x, ν) ⇒ (x = 0 ⇒ ν = 0)}.

Let {P1, . . . , Pm} be the set of predicate variables inC. We
pick an equivalence classS0 ∈ {P1, . . . , Pm}/E (e.g., the largest
one), and further classifyS0 by usingCP1 , . . . , CPm so that pred-
icate variables which never have the same solution are separated.
Formally, we findS1 . . . , Sn such that:

• S0 = S1 ∪ · · · ∪ Sn,
• ϕPi,1 ∨ · · · ∨ ϕPi,ℓi

implies ϕ′
Pi,1

∧ · · · ∧ ϕ′
Pi,ℓi

for each
i ∈ {1, . . . , n}, and

• ϕPi,1 ∨ · · · ∨ ϕPi,ℓi
∨ ϕPj,1 ∨ · · · ∨ ϕPj,ℓj

does not imply

ϕ′
Pi,1

∧· · ·∧ϕ′
Pi,ℓi

∧ϕ′
Pj,1

∧· · ·∧ϕ′
Pj,ℓj

for eachi, j ∈ {1, . . . , n}
such thati ̸= j.
Here,CP = {ϕP ⇒ P (x̃), P (x̃) ⇒ ϕ′

P } andSi = {Pi,1, . . . , Pi,ℓi}.
We then pick someS ∈ {S1, . . . , Sn} (e.g., the largest

one). For the running exampleCcc, we getS = S0 = S1 =
{P1, . . . , P4} sinceϕP1 ∨ · · · ∨ ϕP4 impliesϕ′

P1
∧ · · · ∧ ϕ′

P4
.

Finding a candidate solutionλx̃.ϕ for S: We find a single can-
didate solutionλx̃.ϕ for all the predicate variablesQ1, . . . , Qℓ ∈
S by simultaneously solvingCQ1 , . . . , CQℓ unlike the previous
method. Formally, we findϕ such that:

• ϕQ1 ∨ · · · ∨ ϕQℓ impliesϕ,
• ϕ impliesϕ′

Q1
∧ · · · ∧ ϕ′

Qℓ
, and

• FV (ϕ) ⊆ {x̃}.
Here,CQi = {ϕQi ⇒ Qi(x̃), Qi(x̃) ⇒ ϕ′

Qi
}. We can compute

such a formulaϕ as an interpolantI(ϕQ1 ∨ · · · ∨ ϕQℓ ,¬(ϕ
′
Q1

∧
· · · ∧ ϕ′

Qℓ
)) but the three conditions of interpolants are not always

sufficient for our purpose to find general predicates. Actually, we
want to obtain as simple interpolant as possible with respect to the
number of disjunctions. To this end, we propose a new heuristic
operatorJ that combines the interpolationI and convex hull
operators. Let us writeH(ϕ) to denote the convex hull ofϕ. For
formulasϕ1 andϕ2 (such thatϕ1 andϕ2 are inconsistent), the new
operatorJ (ϕ1, ϕ2) is defined as follows:

J (ϕ1, ϕ2) =

I(H(ϕ1),H(ϕ2)) (if H(ϕ1) ⊥H(ϕ2))
I(H(ϕ1), ϕ2) (if ¬(H(ϕ1) ⊥H(ϕ2))∧

H(ϕ1) ⊥ ϕ2)
I(ϕ1, ϕ2) (otherwise)

Here, we writeϕ1 ⊥ ϕ2 to denote thatϕ1 andϕ2 are inconsistent.
Note here that the use of the convex hull operator enables us to
eliminate disjunctions inϕ1 andϕ2, which are passed to an inter-
polating theorem prover. In the experiments reported in Section 6,
this often reduced the number of disjunctions in the output of the
interpolating prover, and hence makes the output more likely to
constitute invariants. Thus, we use the new operatorJ instead ofI
to computeλx̃.J (ϕQ1∨· · ·∨ϕQℓ ,¬(ϕ

′
Q1

∧· · ·∧ϕ′
Qℓ

)) as a candi-
date solutionλx̃.ϕ for all the predicate variablesQ1, . . . , Qℓ ∈ S.
For the running exampleCcc, we obtain, for example, the following
candidate solutionλ(x, ν).ϕ for P1, . . . , P4:
ϕ = J (ϕP1 ∨ · · · ∨ ϕP4 ,¬(ϕ′

P1
∧ · · · ∧ ϕ′

P4
))

= I(H(x = ν = 0 ∨ x = ν = 1),¬(ϕ′
P1

∧ · · · ∧ ϕ′
P4

))
= I(0 ≤ x = ν ≤ 1,¬(ϕ′

P1
∧ · · · ∧ ϕ′

P4
))

≡ x = ν

Substitutingλx̃.ϕ for S in C: We then substitute the candidate
solutionλx̃.ϕ for S = {Q1, . . . , Qℓ} in C. Note, however, that we
cannot always substitute all the predicate variables inS with the
candidate solutionλx̃.ϕ becauseQi may depend onQj for some
i ̸= j. For example, let us consider the following constraints:

x = 0 ⇒ Q1(x), Q1(x) ⇒ Q2(x+ 1), Q2(x) ⇒ 0 ≤ x ≤ 2

From the constraints, we get:

CQ1 = {ν = 0 ⇒ Q1(ν), Q1(ν) ⇒ −1 ≤ ν ≤ 1},
CQ2 = {ν = 1 ⇒ Q2(ν), Q2(ν) ⇒ 0 ≤ ν ≤ 2}.

Thus, we obtain, for example,J (ν = 0 ∨ ν = 1,¬(−1 ≤ ν ≤
1 ∧ 0 ≤ ν ≤ 2)) ≡ 0 ≤ ν ≤ 1 as a candidate solution for
Q1(ν) andQ2(ν). However,[λν.0 ≤ ν ≤ 1/Q1, λν.0 ≤ ν ≤
1/Q2](Q1(x) ⇒ Q2(x+ 1)) is not valid. Actually, it is only safe
to substituteλν.0 ≤ ν ≤ 1 for eitherQ1 orQ2.

CPS transformation (Section 5.2)

Program with control operations + recursive data structures

Program with recursive data structures

Program with lists

Encoding recursive data structures as functions on lists (Section 5.1.2)

Encoding lists as functions on integers (Section 5.1.1)

Program with integers

Verification (Our previous paper [15])

Figure 10. The Verification Framework for Recursive Data Struc-
tures and Control Operators

Therefore, we find and substitute only a maximal nonempty
subsetM of S for which we can safely substituteλx̃.ϕ (i.e.,
{R 7→ λx̃.ϕ | R ∈ M}C is equi-satisfiable withC). For the run-
ning exampleCcc, it is in fact safe to substitute the candidate solu-
tionλ(x, ν).x = ν for P1, . . . , P4 (i.e.,M = S). As a result of the
substitution, all the predicate variables inCcc are eliminated. Thus,
we obtain the refinement typex : int → {ν : int | x = ν} for all
of copy1, . . . , copy4.

5. Language Extensions
This section formalizes extensions of the target language of veri-
fication. Our approach is to translate a source program to a pro-
gram that has no recursive data structures and no control operators,
in a sound and complete manner. Figure 10 shows the verification
framework for recursive data structures and control operators. Sec-
tion 5.1 formalizes the encoding of recursive data structures, and
Section 5.2 introduces the extension for control operations.

5.1 Functional Encoding of Recursive Data Structures

We first discuss encoding of lists, and then that of user-defined re-
cursive data structures. We assume that the target language of en-
coding is equipped with tuples. The extensions of selective predi-
cate abstractions and selective CPS transformation with tuples are
straightforward.

5.1.1 Functional Encoding of Lists

The idea is to encode a list into a pair of its length and a function
that maps indices to the elements of the list. For example, the list
[2; 3; 5] is encoded into the pair(3, f) wheref(0) = 2, f(1) = 3,
andf(2) = 5. The primitive operationsnil, cons, is nil, head,
andtail for lists are defined as follows.
let nil = (0, fun _ -> fail)
let cons x (len,f) = (len+1,

λi. if i = 0 then x else f (i-1))
let is_nil (len,f) = len = 0
let head (len,f) = if len=0 then fail else f 0
let tail (len,f) =

((if len=0 then fail else len-1), λi.f(i+1))
nil is translated into the pair of length0 and the function that
always fails.cons x xs is translated into the pair of its length and
the function{0 7→ x} ∪ {i 7→ f(i − 1) | i ̸= 0} wheref is the
function part of the encoding ofxs. is nil just checks whether
len is 0 or not.head returnsf(0), i.e. the first element of the list.
tail returns the pair of(len-1,f’) wheref’(i) = f(i+1).

Note that we cannot use Church encoding for recursive data
structures, since Church encoding of data structures require recur-

sive or polymorphic types in general, which cannot be handled by
higher-order model checking.

Our approach has the following advantages. First, by encod-
ing lists into functions over integers, we can reuse the predicate
abstraction/discovery for integers. Second, the encoding induces
a natural predicate abstraction of lists, which is general enough to
subsume various abstractions known in the literature, such as Dillig
et al.’s container abstraction [7]. With their abstraction method, a
list is represented as{(v1, P1), . . . , (vn, Pn)}, which means the
j-th element isvi if Pi(j) holds. For example,{(0, true)} denotes
that all the elements are0 and{(1, λi. i mod 2 = 0)} denotes that
the even indexed elements are1. By using our approach, the same
information can be represented as a refinement type(i : int) →
{x : int | (P1(i) → x = v1) ∧ · · · ∧ (Pn(i) → x = vn)}. For ex-
ample,{(1, λi. i mod 2 = 0)} is represented as(i : int)→{x : int |
i mod 2 = 0 → x = 1}. Moreover, our approach can deal with
list properties like “thei-th element of a list is greater thani,”
which cannot be represented by the container abstraction. Thus,
our method is strictly more expressive.

5.1.2 Extension for Recursive Data Structures

We now discuss encoding of other recursive data structures. Pro-
grams with recursive data structures are translated into programs
with lists by encoding recursive data structures to functions which
map paths of nodes to labels. Here, a path and a label are repre-
sented as a list of integers and an integer respectively. For example,
consider binary trees defined as follows.
type btree = Leaf | Node of btree * btree

A binary tree is encoded into a term of the typeint list → int.5

For example, the treenode(leaf ,node(leaf , leaf)) is encoded
into a function{[] 7→ node, [1] 7→ leaf , [2] 7→ node, [2, 1] 7→
leaf , [2, 2] 7→ leaf} whereleaf andnode are defined as some
integers. Here is another example.
match x with Constr1(x1, x2, ...) -> t

| Constr2(...) -> ...
The expression above is encoded to the following expression.
let Constr1 = 1 in ... let Constrn = n in
match x nil with

Constr1 -> let x1 xs = x (cons 1 xs) in ...
let xn xs = x (cons n xs) in t’

| Constr2 -> ...
Here,t’ is the encoding oft. The pattern matching on trees is
translated to that on labels, represented as integers. A subterm of a
tree is obtained by adding the index to the head of the path.

For recursive data types, we impose the restriction that re-
cursive type variables cannot occur under function construc-
tors. Thus,µα.unit+ (int→ int) ∗ α (which corresponds to
(int→ int) list) is OK, but neitherµα. α→ int norµα. (int→ α)
is allowed.

Let [[−]] be the encoding discussed above. The transformed
program is reduced to the same value as the original program:

Proposition 5.1 (Correctness of encoding). Let t be a term in a
programD. t −→∗

D fail if and only if[[t]] −→∗
D fail.

5.2 Extension for Control Operations

We can extend the framework to deal with control operations (e.g.,
exceptions andcall/cc) by removing them from a program by
CPS transformation [17]. We do not support exceptions which
carry function arguments, since the encoding of function-carrying
exceptions by CPS requires recursive types.

The following program calculates factorial and raises an excep-
tion if a negative number or zero is given.
5 Terms with this type is encoded to terms with type(int→ int) → int
by the list encoding.

exception NotPos
letrec fact n = if n <= 0 then raise NotPos

else try n * fact (n - 1) with NotPos -> 1
let main n =

try fact n with NotPos -> assert (n <= 0); 0

We can translate this program to an exception-free program by CPS
transformation as follows:
letrec fact n k exn =

if n <= 0 then exn NotPos
else let exn’ e = match e with NotPos -> k 1 in

fact (n - 1) (fun r -> k (n * r))) exn’
let main n k = fact n k (fun e ->

match e with NotPos -> assert (n <= 0); k 0)

Once the exception is removed, we can apply our verification
method to the program.

6. Implementation and Preliminary Experiments
To evaluate the extended framework, we have implemented a pro-
totype verifier for higher-order programs with lists and exceptions.
Our verifier uses TRecS [12, 13] as the underlying higher-order
model checker (for Step 3 in Figure 1), and uses CSIsat [4] for pred-
icate discovery (in Step 5). CVC3 [2] is used for unsafety check (in
Step 4) and predicate abstraction (in Step 1).

Table 1 shows the results of the experiments. The column “size”
shows the word counts of the program. The last column shows
the number of CEGAR-cycles and the running time measured. In
the last column, “C.”, “A.”, and “D.” denote the uses of selective
CPS transformation, selective predicate abstraction, and refined
predicate discovery, respectively. The programs have been verified
correctly. The experiment was conducted on Intel Xeon 5570 CPU
with 8 MB cache and 6 GB memory. The implementation can be
tested and all programs are available athttp://www.kb.ecei.
tohoku.ac.jp/~ryosuke/mochi/.

The programs used in the experiments are:
• “r-file” and above are the programs used in the experiments

in the previous paper [15].
• “sum intro”, “copy intro”, and “fact notpos” are the example

programs in Section 1 and Section 5.2.
• “map filter” and “risers” are examples of Ong and Ramsay’s

verification framework [19] for higher-order recursion scheme
with a caseconstruct listed at their web pagehttp://mjolnir.
cs.ox.ac.uk/cgi-bin/horsc/recheck-horsc/input. Our
framework can verify these programs without a special treatment
of case constructs unlike in their framework.

• “search” is a program that manipulates user-defined data
structures.

• Other programs define generators of lists and functions on
lists, and assert that the functions work correctly. For example,
“zip” defines a function that takes two lists and returns a list of
corresponding pairs. The function fails if the two arguments have
different lengths. “zip” asserts thatzip xs xs never fails for all
integer listsxs.

• A program of name “xxx-e” is a buggy version of the program
“xxx”.

The selective CPS transformation and the selective predicate ab-
straction reduced the time required for verification, and enabled
verification of various programs including “a-cppr”, “zip”, and
“map headfilter”, which could only be verified by using both of
them. Especially, the selective CPS transformation reduced the time
required for higher-order model checking and the selective predi-
cate abstraction reduced the number of CEGAR cycles as expected
(recall their advantages discussed in Section 1). The refined pred-
icate discovery (especially in combination with the selective pred-
icate abstraction) enabled verification of not only “copyintro” but
also the list-manipulating programs “length”, “nth”, “risers”, and

Table 1. Results of preliminary experiments
cycle, time [sec]

program size order none C. A. C. & A. D. C. & D. A. & D. C. & A. & D.
sum 24 1 2, 0.12 2, 0.12 1, 0.07 1, 0.08 2, 0.12 2, 0.11 1, 0.07 1, 0.07
mult 31 1 - 4, 53.67 3, 0.14 2, 0.13 4, 0.78 4, 0.61 3, 0.18 3, 0.17
max 42 2 5, 4.32 5, 1.02 1, 0.20 0, 0.08 5, 17.10 5, 1.18 3, 1.24 0, 0.08
mc91 32 1 2, 0.19 2, 0.20 2, 0.18 2, 0.18 2, 0.32 2, 0.32 2, 0.40 2, 0.39
ack 53 1 - - 1, 0.11 1, 0.10 4, 1.08 5, 0.50 1, 0.12 1, 0.10
a-cppr 149 2 - - - 7, 4.41 - - - 7, 2.03
l-zipunzip 81 2 - 5, 3.15 - 2, 0.14 - 4, 0.60 5, 1.88 2, 0.13
l-zipmap 65 2 7, 1.36 6, 0.44 2, 0.14 2, 0.11 7, 1.36 6, 0.59 3, 0.19 4, 0.23
hors 64 2 2, 0.43 2, 0.11 1, 0.16 1, 0.07 2, 3.91 2, 0.11 1, 0.16 1, 0.07
e-simple 27 2 1, 0.08 1, 0.07 0, 0.06 0, 0.06 1, 0.08 1, 0.07 0, 0.06 0, 0.06
e-fact 55 2 2, 0.13 2, 0.10 2, 0.09 2, 0.10 2, 0.15 2, 0.11 2, 0.11 2, 0.10
r-lock 54 1 6, 0.83 6, 0.39 0, 0.08 0, 0.07 6, 0.94 6, 0.39 0, 0.07 0, 0.08
r-file 168 1 - 17, 27.87 10, 2.69 7, 0.92 - - 8, 3.19 6, 1.50
sum intro 33 1 2, 0.17 2, 0.14 1, 0.07 1, 0.08 2, 0.18 2, 0.14 1, 0.07 1, 0.08
copy intro 24 1 - - - - 3, 0.36 3, 0.35 2, 0.14 2, 0.14
fact notpos 97 1 3, 0.28 3, 0.25 2, 0.11 2, 0.11 3, 0.51 3, 0.49 2, 0.14 2, 0.12
fold right 64 2 - 8, 84.61 2, 0.45 2, 0.22 - - 2, 1.04 2, 0.31
forall eq pair 55 1 - - 2, 0.38 1, 0.20 - - 2, 0.39 1, 0.22
forall leq 55 2 6, 17.54 - 2, 0.36 1, 0.19 - - 2, 0.33 1, 0.22
isnil 52 1 3, 0.22 3, 0.20 2, 0.13 2, 0.12 3, 0.35 3, 0.22 2, 0.12 2, 0.12
iter 59 2 - 7, 46.22 1, 0.18 1, 0.16 - - 1, 0.21 1, 0.18
length 49 1 - - - - 4, 1.42 2, 0.24 2, 0.14 2, 0.14
mem 74 1 5, 3.46 4, 0.70 3, 0.46 3, 0.30 - 7, 17.83 4, 0.61 4, 0.37
nth 59 1 - - - - - 3, 1.18 4, 0.55 4, 0.42
nth0 78 1 3, 0.48 3, 0.30 3, 0.26 3, 0.22 4, 3.77 4, 1.00 3, 0.28 3, 0.21
harmonic 101 2 - - 1, 0.39 1, 0.20 - - 1, 0.72 1, 0.25
fold left 64 2 - - 2, 0.39 2, 0.22 - - 2, 0.79 2, 0.30
zip 69 1 - - - 6, 24.16 - 7, 32.45 7, 5.23 8, 22.17
map filter 111 2 - - - 3, 39.84 - - 4, 5.46 3, 5.82
risers 79 1 - - - - - - 8, 18.67 8, 9.78
search 109 2 - 7, 4.20 4, 2.28 3, 0.71 - 8, 15.49 5, 4.65 8, 9.65
fold fun list 78 3 - - - - - - 2, 21.40 2, 2.74
fact notpos-e 97 1 1, 0.12 1, 0.11 1, 0.09 1, 0.09 1, 0.12 1, 0.14 1, 0.09 1, 0.08
harmonic-e 101 2 0, 0.11 1, 0.16 0, 0.09 0, 0.08 0, 0.11 1, 0.19 0, 0.10 0, 0.08
map filter-e 111 2 4, 8.10 2, 0.83 3, 2.16 0, 0.13 - 2, 5.62 5, 7.65 0, 0.13
search-e 78 2 5, 12.56 4, 0.91 2, 0.65 1, 0.18 - 5, 6.00 2, 0.85 4, 1.50

“fold fun list” by finding general predicates for abstraction as dis-
cussed in Section 1. Note here that “foldfun list” is order-3 and
the other order-1 list-manipulating programs were transformed to
order-2 programs before verification by encoding lists as functions.

It is also worth noting that the columns “... & D.” show the
experimental results for the refined predicate discovery without
the feature of merging multiple infeasible paths enabled. The fea-
ture actually slowed down verification of some programs (such as
“map filter”) but improved the analysis precision of MoCHi. In par-
ticular, the feature enabled us to verify the following accumulator
version of “length” in 0.36 seconds with 3 CEGAR-cycles:
let rec length acc xs = match xs with
[] -> acc | _::xs’ -> length (acc+1) xs’

let rec make_list n =
if n = 0 then [] else n :: make_list (n-1)

let main n = assert (length 0 (make_list n) = n)
For the success of verification, an abstraction predicatelength(r) =
length(acc)+length(xs) on the return valuer and the arguments
acc andxs of length was essential. The predicate could only be
found if the feature of merging multiple paths was enabled.

7. Related Work
7.1 Verification of Higher-Order Programs with Recursive

Data Structures

Ong and Ramsay [19] proposed a verification method for functional
programs with recursive data structures, called Pattern Matching
Recursion Schemes (PMRS). The method cannot handle regular

properties (such as “a and b occur alternately”) and numerical
properties (such as “x + y ≤ z” where x, y, z are the length of
lists).

Unno et al. [25] also proposed a verification method for higher-
order tree processing functional programs, which is based on a ver-
ification method for higher-order multi-tree transducers [14]. Their
method can verify regular properties of recursive data structures
provided that certain invariant annotations are given.

There are several studies [5, 10, 11, 21, 24–28] that aim to
infer dependent types for higher-order programs with recursive
data structures. Rondon et al.’s liquid type inference [11, 21] is a
semi-automated verification method that requires users to provide
templates of predicates, called logical qualifiers. The expressive
power of their method and ours is incomparable. They can deal
with “recursive dependent types”, such asint list≤ = µt.nil
+ cons(x1 : int, {ν : int | x1 ≤ ν} t), which represents ordered
lists of integers, while our method cannot. On the other hand, our
method can deal with the properties of list elements related to their
indices like “thei-th element of a list is greater thani,” while
they cannot. Unno and Kobayashi [24], and Jhala et al. [10] pro-
posed a method for automated refinement type inference, where
templates of refinement types are first prepared and then con-
straints on unknown refinement predicates are generated. Unno and
Kobayashi [24] then solve the constraints by using an interpolating
theorem prover, and Jhala et al. [10] solves the constraints by a re-
duction to model-checking of first-order programs. Those methods
can deal with data structures such as lists and arrays as long as type

templates for the data structures are given a priori. Compared with
our “data structures as functions” approach, however, the supported
properties seem to be limited; for example, their method cannot rea-
son about a relation between a list index and the corresponding ele-
ment (like “thei-th element is greater thani”). Unlike our method,
the dependent type inference methods stated above [10, 11, 21, 24]
do not support refinement intersection types, which are necessary
for precise, context-sensitive analysis of higher-order functions.

Xi and Pfenning [26] proposed a dependently-typed language
Dependent ML. Its type system captures program properties such
as absence of array bounds errors and violations of data structure
invariants. Unlike our method, Dependent ML requires users to
provide dependent types of top-level functions.

7.2 Automated Verification of First-Order Programs with
Recursive Data Types

Chin et al. [5] proposed sized type inference. Their method infers
invariant of recursive functions by fixed-point computation. By ab-
stracting lists as multisets, their method can deal with the inclusion
relation and the membership relation on lists. For example, their
method can verify thatexists x xs returns true if and only ifxs
hasx as an element. The method, however, cannot properly handle
higher-order functions.

Suter et al. [23] proposed a verification method for first-order
functional programs that manipulate recursive data structures. They
use a decision procedure [22] that is complete for recursive func-
tions that are sufficiently surjective catamorphisms. For example,
their method can verify that an insertion function preserves invari-
ants of binary search trees, while our method cannot. On the other
hand, their method cannot deal with higher-order functions in a
context-sensitive way unlike our method.

Dillig et al. [7] proposed an automatic technique for statically
reasoning about containers. The proposed method is based on an
abstract interpretation for containers. Their method is similar to our
method in the sense that they model containers as mappings from
locations to values. They consider only a client-side use of specific
data structures (i.e. containers) such as primitive data structures and
those defined in a standard library. In contrast, our method can
deal with user-defined data structures. Moreover, as discussed in
Section 5, our method is strictly more expressive than their method.

7.3 Path-sensitive Predicate Discovery

Beyer et al. [3] proposed a predicate discovery method for imper-
ative programs. Like our method, theirs addresses the problem of
finding general predicates in the context of a path-sensitive analy-
sis. The method uses full-fledged programs (called path programs)
as counterexamples instead of infeasible error paths (or straightline
programs). A path program can be viewed as a set of finite paths
that are obtained by unwinding the path program. By synthesizing
invariants of a path program, their method prevents appearance of
infinite simple variations of infeasible error paths. Our method, in a
sense, generalizes theirs to path- and context-sensitive verification
of higher-order programs.

8. Conclusion
We have proposed extensions and refinements to realize a scalable
software model checker for higher-order programs. We have iden-
tified the problems of the previous verification method, and pro-
posed the optimization techniques to overcome the problems. We
have implemented a prototype verifier for higher-order programs
with lists, which works well for several programs.

Acknowledgment

We would like to thank anonymous referees for useful com-
ments. This work was partially supported by Kakenhi 24·8057 and
23220001.

References
[1] T. Ball and S. K. Rajamani. The SLAM project: debugging system

software via static analysis. InPOPL 2002, pages 1–3, 2002.

[2] C. Barrett and C. Tinelli. CVC3. InCAV 2007, pages 298–302, 2007.

[3] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. InPLDI 2007, pages 300–309, June 2007.

[4] D. Beyer, D. Zufferey, and R. Majumdar. CSIsat: Interpolation for
LA+EUF. In CAV 2008, pages 304–308, 2008.

[5] W.-N. Chin, S.-C. Khoo, and D. N. Xu. Extending sized type with
collection analysis. InPEPM 2003, pages 75–84, 2003.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InCAV 2000, pages
154–169, 2000.

[7] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using
containers. InPOPL 2011, pages 187–200, 2011.

[8] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In CAV 1997, pages 72–83, 1997.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL 2002, pages 58–70, 2002.

[10] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying func-
tional programs using abstract interpreters. InCAV 2011, pages 470–
485, 2011.

[11] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure
verification. InPLDI 2009, pages 304–315, 2009.

[12] N. Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. InPOPL 2009, pages 416–428, 2009.

[13] N. Kobayashi. Model-checking higher-order functions. InPPDP
2009, pages 25–36, 2009.

[14] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program veri-
fication. InPOPL 2010, pages 495–508, 2010.

[15] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CE-
GAR for higher-order model checking. InPLDI 2011, pages 222–233,
2011.

[16] K. L. McMillan. An interpolating theorem prover.Theoretical Com-
puter Science, 345(1):101–121, 2005.

[17] L. R. Nielsen. A selective CPS transformation.Electronic Notes in
Theoretical Computer Science, 45:311–331, 2001.

[18] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. InLICS 2006, pages 81–90, 2006.

[19] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional
programs with pattern-matching algebraic data types. InPOPL 2011,
pages 587–598, 2011.

[20] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
TCS, 1(2):125–159, 1975.

[21] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. InPLDI
2008, pages 159–169, 2008.

[22] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic
data types with abstractions. InPOPL 2010, pages 199–210, 2010.

[23] P. Suter, A. S. K̈oksal, and V. Kuncak. Satisfiability modulo recursive
programs. InSAS 2011, pages 298–315, 2011.

[24] H. Unno and N. Kobayashi. Dependent type inference with inter-
polants. InPPDP ’09, pages 277–288, 2009.

[25] H. Unno, N. Tabuchi, and N. Kobayashi. Verification of tree-
processing programs via higher-order model checking. InAPLAS
2010, pages 312–327, 2010.

[26] H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL 1999, pages 214–227, 1999.

[27] D. N. Xu. Hybrid contract checking via symbolic simplification. In
PEPM 2012, pages 107–116, Jan. 2012.

[28] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for haskell. InPOPL 2009, pages 41–52, 2009.

