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Abstract

In our recent paper, we have shown how to construct a fully- Program
automated program verification tool (so called a “software model

checker”) for a tiny subset of functional language ML, by combin- Step 1: Step 5:
ing higher-order model checking, predicate abstraction, and CE- Predicate Predicate
GAR. This can be viewed as a higher-order counterpart of previ- [ _Absiraction Discovery
ous software model checkers for imperative languages like BLAST
and SLAM. The née application of the proposed approach, how-
ever, suffered from scalability problems, both in terms of efficiency
and supported language features. To obtain more scalable software
model checkers for full-scale functional languages, we propose a
series of optimizations and extensions of the previous approach.
Among others, we introduce (i) selective CPS transformation, (ii)

Step 4:

Feasibility W) unsafe
Check [T€SPI®

Error Trace

selective predicate abstraction, and (iii) refined predicate discovery NG

as optimization techniques; and propose (iv) functional encoding of Step 2: CBN Step3: oK

recursive data structures and control operations to support a larger CPS Boolean Higher-Or der > safe
transformation Program Model Checking

subset of ML. We have implemented the proposed methods, and
obtained promising results.

. . . . Figure 1. Higher-Order Model Checking with Predicate Abstrac-
Categories and Subject DescriptorsD.2.4 [Software Engineer- tion and CEGAR

ing]: Software/Program Verification

Keywords Higher-Order Model Checking, Predicate Abstraction,

Abstraction Refinement, Dependent Types, CPS Transformation ~d0€s not support recursive data structures and our implementation

based on the framework does not support control operations. To
1. Introduction explain the problem of the previous framework/implementation, let
us first review our previous framework.

Our previous verification framework [15] is based on predicate
abstraction and CEGAR for a higher-order model checker. Figure 1
shows the overall structure of our previous method. In Step 1, an
input program, written in a simply typed call-by-value lambda cal-

In our recent paper [15], we have shown how to construct a fully-
automated program verification tool (so called a “software model
checker”) for a tiny subset of functional language ML, a simply-

typed lambda calculus with recursion and integers. The framework
is an extension of higher-order model checker (more precisely, the culus with recursion and integers, is abstracted to a higher-order

model checker for higher-order recursion scheme) for infinite data . .
domains such as integers, obtained by combining the techniquesb00|ean program by predicate abstraction. The abstracted program

of predicate abstraction [8] and counterexample-guided abstractionIS verified by a higher-order model checker, where models are de-
refpnements (CEGAR) [1[ 15] This can be vie peo-lis a higher-order scribed by higher-order recursion schemes, in Step 3. Higher-order

: ~) L4, ol Thi View! '9 “CT recursion schemes [18] can be viewed as a simply typed call-by-
counterpart of previous software model checkers for imperative

. : name lambda calculus with finite data domains and recursion. To
languages like BLAST [9] and SLAM [1]. We have implemented a resolve the gap between the evaluation strategies of higher-order
verification tool, MoCHi, based on the framework.

The ndve application of the proposed approach, however, suf- recursion schemes and higher-order boolean programs, we trans-
fered from scalability problems, both in terms of efficiency and late the call-by-value (CBV) program into a call-by-name (CBN)

ted | feat E le. th : f rogram in Step 2. If the abstracted program is safe (i.e., asser-
Supported language teatures. For example, the previous rameworky;o g neyer fail), the original functional program is also safe. If

not, by using a counterexample produced by the higher-order model
checker, we check whether the original program is in fact unsafe or
the abstraction is too coarse in Step 4. If the latter, we discover new
predicates in Step 5. We repeat these steps until we find whether
the program is safe or not.
© ACM, 2013. This is the author’s version of the work. It is posted here by permission In this paper, we address several Ilml.tatlons of our previous
of ACM for your personal use. Not for redistribution. The definitive version was work. We discuss each problem and explain our approach below.
published in the Proceedings of the ACM SIGPLAN 2013 Workshop on Partial 1. Continuation-passing style (CPS) transformation in Step 2
Evaluation and Program Manipulation (PEPM 2013) caused an efficiency problem for the previous version of MoCHi.



letrec check x f = f x; check (x+1) £ letrec copy x = if x=0 then O else 1 + copy (x-1)
let £ x = assert (x >= 0) let main n = assert (copy (copy n) = n)
let main n = check n f

. - - Figure 4. Example Program for Refined Predicate Discovery
Figure 2. Example Program of Selective CPS Transformation

letaddxy=x.+y else let b = sum () and u = add () () in *
letrec.sum x = if x<=0 then 0 else add x (sum(x-1)) let main x = assert (sum ())
let main x = assert (sum x >= x) Since the return value afdd is non-informative, the abstraction is
Figure 3. Example Program of Selective Predicate Abstraction too coarse for proving the safety of the original program.
To reduce the burden to the predicate discovery phase, we introduce
a refinement of predicate abstraction caketective predicate ab-
As stated above, our approach requires CPS transformation to re-Straction As the name suggests, the selective predicate abstraction
solve the gap between the evaluation strategies of higher-order@pplies predicate abstraction to only a certain set of functions, and
recursion schemes and higher-order boolean programs. Howeveravoids abstraction of the other functions by inlining them. The se-
CPS transformation significantly increases the drdéprograms. 'Iectlve predicate abstractlon generates the following safe program
Since the complexity of model checking of higher-order recursion PY using only the predicatér. » > « for the return values ofum
scheme isi-EXPTIME complete for order: recursion scheme, the ~ @nd inliningadd.
increase of the order of an input is crucial to the verification time. ~ 1etrec sum () =
For example, consider the program shown in Figure 2. The above  if * then true else if sum() then true else *

program is translated into the following program by aveacall- let main O = assert (S“_m O o )
by-value CPS transformation [20]. In this way the selective predicate abstraction improves the preci-

letrec check x kil = sion of abstraction and reduces the number of CEGAR iterations.
k1 (Af.X\k2.f x (\_.check (x+1) (\g.g f k2))) 3_. Even with ;he selectlve p_redlcate_ abstraction, the previous

let £ x k = assert (x >= 0); k O verS|on_of MoCHi sometimes falleq to discover an appropriate set

let main n k = check n (\g. g £ k) of predicates. For example, consider the program shown in Fig-
To preserve the evaluation order of an original call-by-value pro- Uré 4. The program can be_ successfully verified if we abstract the
gram, each function of the translated call-by-name program takes Program by using the predicate= z on the argument and the
a continuation and passes its return value to the continuation. Notef€turn valuer of copy. The old version of MoCHi, however, con-
here that the order of the translated program has increased to 5. Thdinued to f|_nd_ too Speu_flc_ predicates suchras OAr = 0,z = 1A
continuatiork1 of check can actually be omitted however, sincea 7 = 1 -, infinitely. This is due to the too much path- and context-
partial application okheck in the original program never causes ~Sensitivity of MOCHI. In Step 5, MoCHi first prepares a template of
side effects including an assertion failure. We can, therefore, obtain & refinement type foeachfunction call in the spurious error path.
the following order-3 program. For example, if there are two calls of thepy function, we prepare

letrec check x f k = f x (A_.check (x+1) f k) two templatese : {v:int | Pi(v)} = {r:int|Q:i(z,r)} and

let £ x k = assert (x >= 0); k () z:{v:int | P;(v)} = {r:int | Q2(z,r)}. MoCHi then gener-

let main n k = check n f k ates and solves constraints on the predicate variables in the tem-
Our CPS transformation avoids such unnecessary insertion of con-Plate. The advantages of the approach are the context-sensitivity

tinuations. We formalize this transformation, calleglective CPS  (different types can be assigned to different calls) and the existence
transformation of a complete algorithm (modulo certain assumptions) to solve the

2. The main bottleneck of the previous version of MOCHi was constraints, but the disadvantage is that the inferred constraints are
the predicate abstraction and discovery (Steps 1 and 5), rather tharPften too specific. To address this problem, we refine our predicate
higher-order model checking. Our previous method for predicate discovery method by merging information about multiple calls of
abstraction tried to abstraeveryfunction in the program. As a  the same function as much as possible; in the example above, we
result, verification of a program did not succeed until an appropriate Merger: with P, and@, with Q- as long as the resulting con-
set of predicates is found for every function. For example, consider Straints are satisfiable. Combined with some heuristic for using an

the program shown in Figure 3. The program can be SUCCeSSfu”yunderlying theorem prover, the refined method tends to discover a

verified if we abstract the program by using predicatgsy > 0 better set of predicates, as confirmed by experiments.

for the second argument afid andAr. r > z for the return values 4. Another limitation was that many important language fea-

of add andsum. The following is the abstracted program obtained tUres such as recursive dat_a structures anql exceptions were not sup-

by using the above predicates. ported. Predicate abstraction can in principle be applied to recur-
let add () b =b sive data structures, but there is not a good practical (interpolating)
letrec sum () = if * then true theorem prover that can be used for finding appropriate predicates

else add () (if sum () then true else *) on recursive data structurégo support recursive data structures

let main x = assert (sum ()) without relying on an interpolating theorem prover for them, we
Here, * means a non-deterministic boolean value. The argument €ncode recursive data structures using higher-order functions and
denotes whether > 0 holds or not. In the previous paper [15], we ~feduce verification of programs manipulating data structures to that
have adapted CEGAR to find such predicates, but the technique isOf Programs manipulating integers. For example, a list is encoded
necessarily heuristic, and often fails. If we cannot find the predi- t0 @ function that maps an indéxo thei-th element. Similarly,
cates foradd, we get the following abstracted program. we support control operations (e.g., exceptions eatll/cc) by

let add O O = O encoding them using higher-order functions.

letrec sum u = if * then true

20ne approach would be to treat data constructors as uninterpreted function
1The order of program is the maximum order of the types of functions in  (UF) symbols, and use an interpolating theorem prover that handles UF. It
t. The order of typer is defined byorder(int) = 0, order(t1 — 12) = cannot, however, be used for finding inductive predicates such as fadist
maz(order(T1) + 1, order(m2)). a sequence of the forifab)*”.




The rest of this paper is organized as follows. We first formalize I'tEn:int, N ~n (CPS-MnNsT)
the source language of verification in Section 2. Section 3 formal- Tz:7hkz:7, N~z (CPS-\AR)

izes the selective predicate abstraction and the selective CPS trans- Thty:int, N~ ¢ Tk ty:int, N ~

formation. Section 4 shows the refined predicate discovery. Sec- T e — (CPS-CPN)
tion 5 describes the language extensions for recursive data struc- op(t1,t2) : int, N ~ op(ty, t5)
tures and control operations. Section 6 reports experiments. Sec- PEtyrint 6y~ 1) ThHiaint, by~ t)
tion 7 discusses related work and Section 8 concludes the paper.r - op(t1, to) : int, N ~» @41 (], Ax1. @%2 (), Azo. op(z1, 22)))
For the space restriction, proofs are omitted, which will be avail- (CPS-CC)
able in the first author’s forthcoming PhD thesis. Tz btimo, N~ ¢t/
— o ST (CPS-ABsN)
2. Source Language DH Az tim =77, N Awt
. . !
In this section, we introduce the source language of our verifica- Le: ;1 Fiim bt o (CPS-ABSC)
tion method. The source language is a simply-typed call-by-value DEAz.t:m =% 72, N~ Az Ak Q(H, k)
higher-order functional language with recursion and integers (a la Phto:m N7, N~t) Dhtyim,N~t]
p e . . (CPS-APPN)
PCF”) with the syntax defined by: Thitotiim N~ tht]
D (programs) == {fi =wv1,..., fn =Un} Dhto:m =T bog~t) Tt~
¢ (terms) e || Aw.t ]ty | Op(tl’.t2) Dktoty:7,C~ M. @00 (8], Axg. Q%1 (8], Ax1. @% (20 21, k)))
| if0 tl then tz else t3 ‘ fail (CPS-APPC)
v (values) = nlz|ie.t [+ fail : 7, C ~ Ak. fail (CPS-RIL)
T (types) s= dnt |1 o

Pkt :int, N~t] Tkita:7, N~ Fth:T,N«»té

I' - if0 ¢ then t3 else t3 : 7, N ~ if0 ¢} then t/ else t}
(CPS-EN)
Fkiérzint, b~ t) Dhita:imlo~th Dhiz:r, 3~

The meta-variablep ranges over the set of operators over integers.
The expressions are standard except that there is a prinfiitive
that aborts a program. We useue and false as aliases off and

1, and we writeassert(t) for if0 ¢ then 0 else fail, let z =

t1 in tp for (A\z. t2) t1, (t1 op t2) for op(t1,t2). We assume that I+ if0t; then ts else ts : 7,0 ~» Ak. App® (#],

(i) a program is well-typed in the standard simple type system, (ii) Am. if0 m then @2 (}, k) else @Q“3 (1}, k))

every function in a progranD has a function type, and (jiip (CPS-FC)
contains a distinguished function symbekin € {f1,..., f.} Phtr:irli~t)  Thita:irla~th (CPS-B)
whose type idnt — int. The goal of our verification is to check Dt Wto:7,C~ @ (), k) MQ2 (), k)

whethermain n 7= fail for all integern. v is of the formAz 1. Aza. ... Ax;. ¢; t; is not of the form\zx. ¢/
3. Optimizations T(f;) is of the formr;; —41 70 =02 ... 54G-1 7, 5C ¢

Ik :D(fi), N~ v foreachi e {1,...,n}

This section introduces optimizations for each phase of CPS trans- ¢ " " YO = of ... fn = 0L}
formation (Step 2) and predicate abstraction (Step 1) in Figure 1. T P (cPS-mog)
3.1 Selective CPS transformation Figure 5. Selective CPS transformation

This section formalizes selective CPS transformation for abstracted
programs. As stated in Section 1, the idea of the selective CPS
transformation is to distinguish whether a continuation parameter [r]if I' - t: 7, N ~+ ' holds, and the transformed tetfrhas type
should be inserted to each expression or not based on whether it([[q-]] — X)—= X if '+ t:7,C ~ t' holds, whereX is the answer
has a side-effect. When a function application has no side-effects, type and]r] is defined by:
we need not insert a continuation. Hefail, non-deterministic . s N _
branch, and non-termination are considered as side-effects. A sim- %;ntlc ;_n]]t: HT[[?:([[TT?L )[[(T)IKQXHTQ]]
ilar transformation has been proposed by Nielsen [17]. The trans- ! 2 ! 2
formation does not fit our purpose to translate call-by-value pro- Thus, a continuation should be inserted only for functions of type
grams into equivalent call-by-name programs. A non-terminating r, — 7, not for functions of type; —" 7.
program may be transformed into a terminating (call-by-name) pro- Inthe rule CPS-ASsC, aterm\z. t is transformed in a standard
gram by his transformation. way, i.e. a continuation parameteis inserted and’, the CPS ver-
We first define the source language (and the target language)sion oft, is applied tdk. On the other hand, in the rule CP B8N,
of selective CPS transformation. The language is the same as theno continuation parameter is inserted and direct style is preserved.
one in Section 2 except: (i) the set of terms is extended with non- The rules for applications are similar. In the rule CPSPE, a
deterministic branch, B¢, and (i) a label € {C, N} is attached continuation is inserted, but not in the rule CP$aN. In the rule
to each function type, like; —¢ 7. The labels indicate whether ~ CPS-BR, atermt; B¢, should be transformed with and a contin-
we should insert a continuation or not. uation is needed because we need to treat non-deterministic branch
Below, we formalize the selective CPS as a type-based transfor-as a side-effect. In the rule CPSR@g, since an application of
mation. Figure 5 shows the rules of the selective CPS transforma-a top-level function may cause a side-effect, non-termination, the

tion. In the figure@*(—, —) is an operation defined &" (¢, k) = function type for the last argument is annotated with For the
ktand@C(t, k) = t k. The relatiorl - ¢ : 7, £ ~» ¢’ means that sake of simplicity, regardless of whether functions are recursive,
a termt is translated to a terrti by using a typer, under the as- we consider all the top-level functions may not terminate conserva-
sumption that (i) each free variableof ¢ has been transformed  tively. We can avoid redundant insertion of continuations by some
using the typd™(z), (i) t may have a side-effect#f= C, and (iii) termination analysis.

t has no side-effect if = N. The relationl’ - D ~» D’ means As an example, Figure 6 shows the selective CPS transforma-
that a progranD is translated to a prograf’ according td". The tion of A\z. \y. assert(z = y) with type int —" int =€ int

rules are designed in such a way that transformed téimas type for (a) andint —© int —¢ int for (b). The transformation of



I'zy | assert : bool —C unit, N ~» assertcps

(@) Tzy Ft:unit,C ~ Akt k
Iz F Ay.t:int =€ unit, N ~ \y. Me.t' k
Tk Az Ay.t:int =V int = unit, N ~ Az Ay. M\e. t/ k
(b) Ty F Ay.t:int =€ unit, N ~ \y. \k.t/ k

Tk Az. A\y.t: int - int - unit, N ~
Az MK K Ay k.t

k)
Figure 6. Transformations ofAz.\y.assert(z =vy). (¢
assert(z = y), t' = assertes(z = y), s I,z : int.
I'zy =,y : int. assertceps b k assertd and returns: ())

Ay.assert(z = y) in (b) is the same as the one in (a). In (a), there
is no need to insert a continuation parameter afteédn the other
hand, in (b), a continuation parameter is inserted.

When we infer types and labels, we attach labeto function
types as much as possible. Consider functiteck shown in
Figure 2. By the rule CPSHOG, the type ofcheck 7 must be
of the formint —* (int —* unit) —¢ unit. Since there is no
constraint such that = 1, —¢ 7», we instantiate to label N.

We state properties of the selective CPS transformation. The

first theorem below states that we can transform arbitrary simply-

*ngom(E) F(l):(ylim—>"'—>yn:0n—>0)
Doy1:01,..,%i—1:0-1 | BEF
Vi [U1/Y1, -5 Vie1/Yio1]oi ~ e
P ErFzv:[U/ylo~letyr =erin---lety, = e, inzy
(A-APP

foreachi € {1,...,n}

E(z) = Xz.e I'EF[U/Tle: o~ €
DNEFz0:0~¢
L'| EF v :D(f;) ~ ] for eachi s.t. f; ¢ dom(E)
EC{fi=vi, .., fn="ovn} dom(T") N dom(E) =0

r ‘ EF {fl =V1,..., fn :Un}“’* {fz :'U:; | fi % dom(E)}
(A-PrROG)

(A-APPEXP)

Figure 7. Selective Predicate Abstraction

T/ | EF z + s:int[Ar.r > z] ~ if0 s then true else *
I | EF add x s : int[Ar.r > z] ~ if0 s then true else *
I Etlets=sum(z—1)inaddz s:int[Ar.r > z] ~
let s = sum () in if0 s then true else *

Figure 8. Abstraction of addz (sum (z —1)). (I x
int,sum : (y:int[]] = intAr.r > y]), = > 0.7V =T, s:
int[As.s >z — 1]. E = {add = \z. \y. z + y}, * is a syntactic
sugar fortrue B false.)

Figure 7 shows the key rules of the selective predicate abstrac-

typed programs by the selective CPS transformation. The secondtjon. Other rules are the same as the previous predicate abstraction

theorem states that the selective CPS transformation is correct inre|ation [15] except that the set of inlined functiaiss added. The
the sense that the transformed program is reduced to the same valuge|ationI" | £ - ¢ : 7 ~» ¢ means that is abstracted t&/ by using

as the original program.

Theorem 3.1. SupposeD is typable inl". There existd” and D’
such thaf® = Elin(I") andI” + D ~» D’, whereElim(T") is the
type environment obtained frothby removing annotations.

Theorem 3.2(Correctness of CPS Transformationdj I' = D ~»
D’, then the following holdsmain n —7, fail if and only if
main n (Ax.z) — 7, fail.

3.2 Selective Predicate Abstraction

We introduce an optimization technique for predicate abstraction,
called selective predicate abstraction.

the abstraction type under the assumption that each free variable

x € dom(T") of t has been abstracted using the abstraction type
I'(z) and each free variable € dom(FE) of ¢ is inlined. If E is
empty, the selective predicate abstraction relation is the same as the
previous predicate abstraction.

Figure 8 shows a part of the abstraction of the program shown
in Figure 3 withE = {add = Az.Ay.z + y}. Due to the re-
striction of the source language of previous predicate abstrac-
tion [15], we translated the teradd = (sum (z — 1)) to let s =
sum (z — 1) in add z s. In the abstraction o&dd x s, add is in-
lined since the definition oddd is in E. On the top of the deriva-
tion, z + s is abstracted téf0 s then true else (true B false)
sinces > x holds if translated is true (that denotes > = — 1),

The idea of selective predicate abstraction is to apply predicate and we do not know whether> z otherwise.

abstractions only to a certain set of functions and inline the other
functions. For example, the program in Figure 3 can be verified by
abstracting onlsum andmain as stated in Section 1.

For someD and E, there isD" such thal” | E + D ~» D’ as
long as there is no cyclic definitions iilike { f = Az. g z, g = A\y. f}.
Therefore, one way to decidgis to find a maximal set of the func-

We formalize selective predicate abstraction as an extension tions that has no cyclic definitions. Evenif has some functions

of the previous predicate abstraction. In the previous framework,
predicate abstraction is defined as the relafiohys t : o ~» ¢/
which means that is abstracted t¢/ by using the abstraction type

o under the assumption that each free variablef ¢ has been
abstracted using the abstraction typer). Abstraction types are

types to express which predicate should be used to abstract eachlet main ()

value. For example, an abstraction typ¢[ P, . . ., P,] means that
a valuev of that type should be abstracted to a tu@le, . . ., b,,),
where b; denotes whetheP;(v) holds or not. See our previous

paper [15] for details. We extend the predicate abstraction relation

by adding the set of inlined function®' like I" | E + ¢
o ~ t'. Here, functions inF are not abstracted and are inlined

in the process of abstraction. An alternative approach would be to let main ()

inline all the functions in¥ first, and then apply ordinary predicate
abstraction [15]; we prefer the formalization below (that inline

which are recursive i, there isD’ suchthal” | E+ D ~» D’ in
some cases. For example, the following program can be abstracted
with £ = {Odd = 'Uodd}-
letrec even x = if x = 0 then true else odd (x-1)
and odd x = if x = O then false else even (x-1)

= assert (even (n+n))
The following is the abstraction of the program with= even :
int[P.]—bool, main:int[]—unit whereP. = A\z. (x mod 2 = 0).
letrec even b =

if (if b then * else false) then true

else if (if b then false else *) then false

else even b

assert (even b)
The abstracted program is safe. For comparison, consider the case
wherel’ = even : int[P.] — bool, 0dd : int[] — bool, main :

functions on-demand) as it seems more conveninent for further int[] — unit and £ = ) (which corresponds to our previous

optimizations such as memoization of abstractions.

approach [15] where the predicates éad have not been found).



letrec copy x = if x=0 then 0 else 1 + copy (x-1) in Figure 4. In the course of its verification, we may obtain the

let main n = assert (copy n = n) following SHP D.opy:
let copyl x = assume (x<>0); 1 + copy2 (x-1)
Figure 9. A Simplified Version of the Program in Figure 4 let copy2 x = assume (x=0); O

let main n = assume (copyl n <> n); fail
Here,assume e evaluatess and proceeds to the next command

letrec even b = if (if b then * else false) only if e evaluates to true. The SHP corresponds to an infeasible

then true else odd () error path where the else- and the then-branchesopj are re-
and odd () = if * then false else even * spectively taken in the first and the second function cakady,
let main () = assert (even b) and the assertion in theain function fails. Note here thabD oy

Since the abstraction afdd is too coarse, the abstractesten is safe (i.e.fail is not reachable), and hence is typable under the

returns a non-deterministic booleans. Thus, the abstracted prograni€finement type system. _ _ _

is unsafe. From a SHFD, we generate Horn-clause-like constraints which
We state properties of the selective predicate abstraction. The@'® Satisfiable if and only i) is typable. To this end, for each

theorem below states that the predicate abstraction is sound in thdunction in D, we prepare a refinement type template with predi-
sense that if the original program fails, so does its abstraction. cate variables, which act as placeholders of refinement predicates to

be inferred. We then generate a typing derivationfounder the
Theorem 3.3 (Soundness)If ' | E + D; ~ D, and type environment that associates each function with its type tem-
main n —p, fail, thenmain n —7, fail. plate. Horn-clause-like constraints on the predicate variables are
then extracted from the derivation. Since the SHRs linear and
recursion-free, generated constraints are non-recursive. This is de-
sirable since constraint solving of non-recursive Horn clauses over
decidable underlying theories (e.g., linear arithmetic) is decidable.
For the running exampl®..,;, we use the following templatés:
Proposition 3.4. If ' bys D : 7~ D1, ' | EF D ~ D5, and copyl: (z:int — {v:int | Pi(x,v)}) andcopy2 : (z : int —

The proposition below states that selective predicate abstraction
is more precise compared to our previous predicate abstraction.
Here,I' kys D : 7 ~ D, is the predicate abstraction relation
in our previous paper [15].

main n —p, fail, thenmain n —7,, fail. {v:iint | Pa(z,v)}).
copyl : (z:int— {v:int| Pi(z,v)})
4. Predicate Discovery copy2 : (w:int—{v:int| Py(w,v)})

By using them, we obtain the following sét.,, of constraints:
r=0Ay=0 = Ps(z,y)
P(z—-1,yyANe#0Az=14+y = Pi(z,z2)
Pi(n,z) = x=n

In this section, we propose an extension of our previous predicate
discovery method for higher-order programs used in MoCHi [15].
First, we briefly overview the previous method in Section 4.1 and
then discuss its limitation in Section 4.2. Section 4.3 explains the
extension of the method, which remedies the limitation. 4.1.2 Constraint Solving

4.1 Previous Method Given a setC' of non-recursive Horn clauses, our previous con-

. . . . straint solving algorithm returns a substitutiéfor predicate vari-
In MoCHi, predicates for abstracting each term of a given program gpeq inc such tha#C is valid. The algorithm iteratively finds a

are specified as a kind of dependent types called abstraction typesgqtion for each predicate variabie in C as follows: The algo-
MoCHi infers abstraction types automatically in a counterexample- ithm first computes equi-satisfiable constraieits of the follow-

guided manner (recall Figure 1):Ina CE.GAR iteration pf MoCHi, ing form by eliminating the other predicate variable€irthan P:
if the predicate abstraction at that point is not precise enough

to show the safety of the original program, an error path of the ¢p = P(Z) P(z) = ¢p
abstracted program is returned as a result of higher-order model oo FV(é / ~ o,

. S . . , p) N FV(¢p) C {x} always holds. Intuitively, the
checking. If the abstract error path is infeasible (i.e., not a gen- predicateP(’(i)) represgen}tas? an iév;riant of some subexpressiion
uine path of the original program), MoCHi generates a straightline SHP, where some variahlec {7} represents the value ef
higher-order program (SHP) that is safe if and only if the abstract 5,4 each variable ifiz} \ {1} represents a free variable in¢p
error path is infeasible. MOCHi then uses an existing method [24] 5 4. respectively represent the strongest condition satisfied by

to infer refinement types that witness the safety of the SHP. Here, 1,4 \31ye, and the weakest condition enrequired by the context
to make the inference context-sensitive and complete as discussedys , The algorithm then compute&(¢p, —¢») as a solution for

in Section 1, MoCHi ensures the generated SHP to be linear (i.e., p(z with the help of a technique called interpolation [4, 16] from
each function is called exactly once) and recursion-free by duplicat- automated theorem proving. Here, an interpolBfit: , ¢») of ¢

ing and renaming the functions called multiple times in the infeasi- ;.44 (such thats; ande- are inconsistent) is a formul that
ble error path (see [15] for more details). Finally, MoCHi extracts satisq;?eg the foIIoth\?ilng coﬁéition‘%: ) A

abstraction types from the refinement types, which contain precise 1 implies¢
enough predicates to refute the infeasible error path. o ¢ andes aré inconsistent. and
The key ingredient of the above predicate discovery procedure FV(¢) C FV(é1) N FV(’@).
is the refinement type inference method [24], which consists of two For the runnir?g exampl€..,,, we obtain the following constraints
steps: constraint generation and solving. We review the two stePSpy eliminating the other prgydicate variables tHan

respectively in Sections 4.1.1 and 4.1.2.
r=1ANy=0Nz#0Av=14y = Pi(z,v)

4.1.1 Constraint Generation Pi(z,v) = v==x

Given a spurious error path, we can construct a HRhich is 3 For the sake of simplicity, we here omit the type templatezifn as well
typable under a refinement type system (see, for example, [24] as the refinement predicates for the argumeriopfy1 andcopy2.

for the definition of the system). For example, let us consider 4Note that interpolants of; and ¢» are not unique. Actually, existing
the program in Figure 9, which is a simplified version of the one theorem provers [4, 16] return one of them, which is denote@i(@yi , ¢2).




We then obtain, for example, the following solution 8 (z, v): type of the function that type-checks the multiple calling contexts,
while preserving the path- and context-sensitivity. In other words,
the extended method generates constraints from multiple infeasible
By substituting this fotP; in Ceopy, We get: error paths (see Section 4.3.1), and tries to find the same solution
(if possible) for related predicate variables (see Section 4.3.2).

I(z=1ANy=0Az#0Av=14y,wv=2z)=v==x.

r=0Av=0 = Pz,v)
Py(z,v) = (@+1#0Az=1+v=z=x+1) 4.3.1 Extensions of Constraint Generation
We then get, for example, the following solution B85 (x, v): We extend the previous constraint generation algorithm overviewed

I(x=0Av=0(z+1#4A0Az2=1+v=z=x+1)) inSection4.1.1as follows. _
e For each CEGAR iteration, we generate constraints from

- x . i multiple infeasible error paths instead of a single path: We keep
We thus obtain the following refinement types 0ty : the set{r, - ,m,} of the infeasible error paths found so far,
copyl : (z:int— {v:int|z=1v}) generate the sef’; of Horn clauses for each path;, and pass
copy2 : (x:int— {v:int |z =v}) C = C1 U---UC, to the extended constraint solving algorithm
described in Section 4.3.2 as an input.
4.2 Limitation of Previous Method e We also construct and pass an equivalence reldfi@m the

We now explain the limitation of the previous method by using the Predicate variables i@’ such that” £ Q if and only if the predicate

program in Figure 4. Let us consider the following SBE.: variablesP and represent (possibly different) refinement pred-
let copyl x = assume (x<>0); 1 + copy2 (x-1) icates for the same argument or return value of the same function

in the original program. For example, we obtain the trivial equiva-

1et C°py§ * ~ assune EXZS()));-O1 . 4 (1) lence relationE.. = {Pi,...,Ps} x {P1,..., Py} for C... The
€L copys X = assume Axe2U); copyE X constraint solving algorithm in Section 4.3.2 explditso find gen-
let copy4 x = assume (x=0); O

let mai - ( 3 ( 1 1) <> n): fail eral solutions foC'.
oF raln m — assume Lcopyn “eopyt B nls el Thus, the extended algorithm generates a @i ) of Horn
The SHP corresponds to an infeasible error path where the else-qj3,sesC for multiple paths and an equivalence relatishon

branch ofcopy is taken in the first and the third calls eépy, the  he predicate variables i unlike the previous algorithm which
then-branch is taken in the second and the fourth caksp§, and generates only Horn clauses for a single path. Here, thé@ait)
the assertion in theain function fails. . of constraints can be viewed as hierarchical constraints wiiere
For the SHPD., we use the following type template: int — must be always satisfied atishould be satisfied if possible.
{v:int | P;(z,v)} for eachcopyi. We get the following se€.
of constraints: 4.3.2 Extensions of Constraint Solving
r=0Ay=0 = P(zy) In this section, we extend the previous constraint solving algorithm
Pz—-1lLy)Ae#0Az=1+y = Pi(z,2) overviewed in Section 4.1.2. Given a p&(t, E) of Horn clauses
z=0Ay=0 = Pz,y) C and an equivalence relatidfi on the predicate variables @,
Pz —Ly)hz#0Nz=1+y = DP3(z,2) the algorithm returns a substitutiérfor the predicate variables in
Pi(n,z) A Ps(z,y) = y=n C such thatiC is valid. A distinguishing feature of the algorithm is
By eliminating the other predicate variables th&n(and with that it tries to find the same solution for predicate variables related
some simplification), we get the following constraiits, : by E if possible. This enables the algorithm to obtain general
predicates, which are more likely to constitute invariants.
r=1Av=1 = Ps(z,v) The extended constraint solving algorithm proceeds as follows:
Py(z,v) = (z=1=v=1) 1. Find a setS of predicate variables which are related by
Existing interpolating provers such as [4] returns the following @and may have the same solution(in
solution for Ps(z, v): 2. Find a candidate solutionz.¢ for all predicate variable

_ QeSs.
Iz=1Av=1-@=1=v=1))=c=1Av=1 3. Substitute\z.¢ for predicate variable$ in C and repeat the

Note here that the solution is specific to the calling context of entire procedure if the result still contains a predicate variable.

]Ehe Ea”'c;”;r watLOWOPYs' ta;nd c?nnot be usedl as lat_s°|Ut|'.‘|3(n Finding a set$ of predicate variables: To find a set of predicate
or 2 and . ﬁ_ r(]ere wan OI'EIJ<eI more general SOIUlions 1K€ 4 japles that may have the same solutio@irfor each predicate
A(v,z).v = x which are more likely to constitute an invariant 2 iapiep in ', we compute constrain@p from C by eliminating

of the functioncopy in the original program. For this purpose, —q other predicate variables th&h For the running exampl€.,
we believe it is desirable to find the same solution (if possible) we obtain:

for “related” predicate variables which represent (possibly differ-

ent) refinement predicates for the same argument or return value Cp, = {z=1Av=1= Pi(z,v),
of the same function in the original program. For the running ex- Pi(z,v) = (v=1=z=1)}
ampleC.., we want to get the same solution &, . .., P, and Cp, = {z=0Av=0= Py(z,v),

Py(z,v) = (v=0= (z=—-1Va=0))},
Cp, {r=1Av=1= P3(x,v),
4.3 Extended Method Ps(z,v) = (x=1=v=1)},

We now explain our extension of the previous method to remedy Cry {; =0ny = O_:>0P4(m’ Z)’O

the limitation discussed in Section 4.2. The extended predicate dis- a(@,v) = (2 =0=v=0)}

covery method is based on the framework of the previous method Let {Pi,..., P»} be the set of predicate variables @ We
overviewed in Section 4.1, but the component for refinement type pick an equivalence clas% € {Pi, ..., Pn}/F (e.g., the largest
inference is extended so that it can merge and generalize informa-one), and further classif§, by usingCp,, ..., Cp,, so that pred-

tion from multiple calling contexts of a function in multiple infea- icate variables which never have the same solution are separated.
sible error paths. This enables MoCHi to infer a general refinement Formally, we findS; .. ., S, such that:

A(v, z).v = z in fact satisfies this extra constraint.



® So=51U---USy,

® ¢p,, V-V ¢p,, implies¢p Ao A¢p, , for each
1e€{l,...,n},and '

® ¢piy V-V bp, Vop, V-V ép, doesnotimply
O, N AA¢3>Mi Agp, N A¢p, , foreachi,j € {1,...,n}
such that # j. ’
Here,Cp = {¢p = P(Z), P(T) = ¢p}andS; = {P;1,...

We then pick someS € {Si,...,S»} (e.g., the largest
one). For the running examplé.., we getS = Sp = S1 =
{P1,..., P} sincegp, V-V ¢p, impliesgp, A--- A @p,.

Finding a candidate solution\z.¢ for S: We find a single can-
didate solution\z.¢ for all the predicate variable®1,...,Q, €
S by simultaneously solving’q,, ..., Cq, unlike the previous
method. Formally, we fing such that:

* 90, V-V ¢q, impliesy,

e ¢impliesgg, A--- A gg,, and

. FV(¢) C {z}.
Here,Cq, = {¢q, = Qi(@), Qi(T) = ¢5, }. We can compute
such a formulap as an interpolanf (¢q, V -+ V ¢q,, ~ (¢, A

) Pi,Zi}-
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Figure 10. The Verification Framework for Recursive Data Struc-
tures and Control Operators

Therefore, we find and substitute only a maximal nonempty
subsetM of S for which we can safely substitutéz.¢ (i.e.,

-+ A ¢g,)) but the three conditions of interpolants are not always {R — AZ.¢ | R € M}C is equi-satisfiable wittC). For the run-
sufficient for our purpose to find general predicates. Actually, we ning exampleC.., it is in fact safe to substitute the candidate solu-

want to obtain as simple interpolant as possible with respect to thetion A(z, v).z = v for Py, .

.., Py (i.e., M = S). As aresult of the

number of disjunctions. To this end, we propose a new heuristic substitution, all the predicate variables(ity. are eliminated. Thus,

operator 7 that combines the interpolatioh and convex hull
operators. Let us writé{(¢) to denote the convex hull a. For
formulasg: andg¢. (such thatp; andg. are inconsistent), the new
operatorJ (¢1, ¢2) is defined as follows:

Z(H(1), H(d2)) (if H(g1) L H(d2))
J((ﬁ ¢ ) _ I(H(¢1)»¢2) (If ﬁ(/H(qsl) L H(({b?))/\
bee H(p1) L ¢2)
Z(¢p1,¢2) (otherwise

Here, we write; L ¢ to denote thai, and¢. are inconsistent.

Note here that the use of the convex hull operator enables us to

eliminate disjunctions i and¢2, which are passed to an inter-

we obtain the refinement type: int — {v :int | z = v} for all
of copyl, ..., copy4.

5. Language Extensions

This section formalizes extensions of the target language of veri-
fication. Our approach is to translate a source program to a pro-
gram that has no recursive data structures and no control operators,
in a sound and complete manner. Figure 10 shows the verification
framework for recursive data structures and control operators. Sec-
tion 5.1 formalizes the encoding of recursive data structures, and
Section 5.2 introduces the extension for control operations.

polating theorem prover. In the experiments reported in Section 6, 51 Functional Encoding of Recursive Data Structures

this often reduced the number of disjunctions in the output of the

interpolating prover, and hence makes the output more likely to We first discuss encoding of lists, and then that of user-defined re-

constitute invariants. Thus, we use the new opergdtinstead ofZ
to Compute\z.J (¢q, V- - -Véq,, ~(dg, A - -Adg,)) as a candi-
date solutiom\z.¢ for all the predicate variableg:,...,Q, € S.
For the running exampl€'.., we obtain, for example, the following
candidate solution\(x, v).¢ for Py, ..., Ps:

¢ J(¢P1\/"'V¢P4aﬁ(¢;>l/\"'/\925/134))
IH(z=v=0Vz=v=1),~(¢p, A Adp,))
I0<z=v<1,~(¢p A - Adp,))
xr=v

Substituting A\z.¢ for S in C: We then substitute the candidate
solutionA\z.¢ for S = {Q1,...,Q.} in C. Note, however, that we
cannot always substitute all the predicate variableS§ inith the
candidate solution\z.¢ becaus&); may depend oi); for some

i # j. For example, let us consider the following constraints:

z=0=Q1i(z), Qi(z)=>Q2(z+1), Q2z)=0<z<2
From the constraints, we get:

Co, = {v=0=>Q1(v),Q:1(v) = -1<v <1}

Co, {v=1=Q2(v),Q2(v) = 0< v <2}.

Thus, we obtain, for examplegf (v = 0V v = 1,-(-1 < v <
1AN0 < v <2) =0< v <1 as a candidate solution for
Q1(v) andQ2(v). However,[Av.0 < v < 1/Q1,Av.0 < v <
1/Q2](Q1(x) = Q2(x + 1)) is not valid. Actually, it is only safe
to substitute\r.0 < v < 1 for either@: or Q.

cursive data structures. We assume that the target language of en-
coding is equipped with tuples. The extensions of selective predi-
cate abstractions and selective CPS transformation with tuples are
straightforward.

5.1.1 Functional Encoding of Lists

The idea is to encode a list into a pair of its length and a function
that maps indices to the elements of the list. For example, the list
[2; 3; 5] is encoded into the pa{B, f) wheref(0) = 2, f(1) = 3,
andf(2) = 5. The primitive operationgsil, cons, is_nil, head,
andtail for lists are defined as follows.
let nil = (0, fun _ -> fail)
let cons x (len,f) = (len+i,
Ai. if 1 = O then x else f (i-1))
let is_nil (len,f) = len = 0
let head (len,f) = if len=0 then fail else f O
let tail (len,f) =
((if len=0 then fail else len-1), Ai.f(i+1))
nil is translated into the pair of length and the function that
always fails.cons x xs is translated into the pair of its length and
the function{0 — x} U {i — f(i — 1) | ¢ # 0} wheref is the
function part of the encoding ofs. is_nil just checks whether
len is O or not.head returnst (0), i.e. the first element of the list.
tail returns the pair oflen-1,f’) wheref’ (i) = £ (i+1).
Note that we cannot use Church encoding for recursive data
structures, since Church encoding of data structures require recur-



sive or polymorphic types in general, which cannot be handled by exception NotPos
higher-order model checking. letrec fact n = if n <= 0 then raise NotPos
Our approach has the following advantages. First, by encod- else try n * fact (n - 1) with NotPos -> 1
ing lists into functions over integers, we can reuse the predicate let main n =
abstraction/discovery for integers. Second, the encoding induces try fact n with NotPos -> assert (n <= 0); O
a natural predicate abstraction of lists, which is general enough to We can translate this program to an exception-free program by CPS
subsume various abstractions known in the literature, such as Dillig transformation as follows:
et al.'s container abstraction [7]. With their abstraction method, a Jetrec fact n k exn =

list is represented a$§(vi, P1),. .., (vn, Pn)}, which means the if n <= 0 then exn NotPos

j-th elementiw; if P;(j) holds. For example((0, true)} denotes else let exn’ e = match e with NotPos -> k 1 in

that all the elements aand {(1, \i.imod 2 = 0)} denotes that fact (n - 1) (fun r -> k (n * r))) exn’

the even indexed elements areBy using our approach, the same let main n k = fact n k (fun e ->

information can be represented as a refinement fypént) — match e with NotPos -> assert (n <= 0); k 0)

{z:int | (P1(4) =z =v1) A+ A (Pa(i) = = = v,)}. FOrex- Once the exception is removed, we can apply our verification
ample {(1, A\i.imod 2 = 0)} is represented g$:int) —{z:int | method to the program.

tmod2 = 0 — x = 1}. Moreover, our approach can deal with

list properties like “thei-th element of a list is greater tharf 6. Implementation and Preliminary Experiments

which cannot be represented by the container abstraction. Thus

our method is strictly more expressive. To evaluate the extended framework, we have implemented a pro-

totype verifier for higher-order programs with lists and exceptions.
5.1.2 Extension for Recursive Data Structures Our verifier uses TRecS [12, 13] as the underlying higher-order

We now discuss encoding of other recursive data structures. Pro-.mOdel checker (for Step 3in Figure 1), and uses CSlsat [4] for pred-

grams with recursive data structures are translated into programsg:,[ate lecogery (c;'n Sttep tSJ)ItCVt(':S [2] |§tuseg for unsafety check (in
with lists by encoding recursive data structures to functions which St€P 4) and predicate abstraction (in Step 1). e
map paths of nodes to labels. Here, a path and a label are repre- Table 1 shows the results of the experiments. The column “size

. : : : shows the word counts of the program. The last column shows
igzg?gea:sb?ngsr;cgégt: gz;isnzgdai%ﬂgﬁg rrespectively. For example,the number of CEGAR-cycles and the running time measured. In

~ the last column, “C.”, “A”, and “D.” denote the uses of selective
type btree = Leaf | Node of btree * btree CPS transformation, selective predicate abstraction, and refined
A binary tree is encoded into a term of the typg list — int.® ' P !

: predicate discovery, respectively. The programs have been verified
il?]?(r) ?ﬁ?g%nt?ﬁ fﬂn(:iﬁilfﬁ f:?j:f(lfﬁfiezgglf [gmlz]o (Led correctly. The experiment was conducted on Intel Xeon 5570 CPU

- with 8 MB cache and 6 GB memory. The implementation can be
leaf, [2,2] — leaf} whereleaf andnode are defined as some 04 o a) programs are availablehatp: //www.kb.ecei.
integers. Here is another example.

. _ tohoku.ac. jp/~ryosuke/mochi/.
match x with Constri(xl, x2, ...) —> ¢t The programs used in the experiments are:
| Constr2(...) -> ...

The expression above is encoded to the following expression. » “rfile” and above are the programs used in the experiments

let Constri = 1 i let Constrn = n i in the previous paper [15].
et Lonstrl = L in ... L6t Lonstrn =1 in e “sum.intro”, “copy.intro”, and “factnotpos” are the example
match x nil with

Comstrl —> let xi - x ( 1 x8) i programs in Section 1 and Section 5.2.
onstr let Xt oxs _ x (Cons Xs) o t, ¢ “map-filter” and “risers” are examples of Ong and Ramsay’s
| Constr2 -> et xn xs = x fcons 1 xs) in verification framework [19] for higher-order recursion scheme

Here,t’ is the encoding ot. The pattern matching on trees is with a caseconstruct listed at their web pagetp: //mjolnir.

- cs.ox.ac.uk/cgi-bin/horsc/recheck-horsc/input. Our
translated to that on labels, represented as integers. A subterm of : ; ;
iree is obtained by adding the index to the head of the path. 3ramework can verify these programs without a special treatment

F ve data t 4 th triction that of case constructs unlike in their framework.
or recursive data types, we Impose the restriction that 1é- o ugeareh” js g program that manipulates user-defined data
cursive type variables cannot occur under function construc-

tors. Thus it 4+ (int — int) * « (which corresponds to structures.
ot > It} o) lR OK (in e Jxa : b e Other programs define generators of lists and functions on
(int — int) list) is OK, but neithefir. « — int nor pa. (int — «)

is allowed lists, and assert that the functions work correctly. For example,
Let [-] be the encoding discussed above. The transformed zip” defines a function that takes two lists and returns a list of

roaram is reduced fo the same value as the original broaram: corresponding pairs. The function fails if the two arguments have
prog ! u valu 'ginal prog ‘ different lengths. “zip” asserts thatip xs xs never fails for all

Proposition 5.1 (Correctness of encoding).et ¢t be a term in a integer listsxs.

programD.t —7, fail if and only if[t] — 1 fail. e A program of name “xxx-e” is a buggy version of the program
e

5.2 Extension for Control Operations The selective CPS transformation and the selective predicate ab-

. . straction reduced the time required for verification, and enabled
We can extend the framework to deal with control operations (e.g., " zip”, and

exceptions anatall/cc) by removing them from a program by verification of various programs including "a-cppr’,
al./cc ) ' “map_headfilter”, which could only be verified by using both of
CPS transformation [17]. We do not support exceptions which b y y 9

; . ! h -~" them. Especially, the selective CPS transformation reduced the time
carry function arguments, since the encoding of function-carrying required for higher-order model checking and the selective predi-
exceptions by CPS requires recursive types.

f . . cate abstraction reduced the number of CEGAR cycles as expected
_ The following program calculates factorial and raises an excep- (rgcq| their advantages discussed in Section 1). The refined pred-
tion if a negative number or zero is given. icate discovery (especially in combination with the selective pred-
5Terms with this type is encoded to terms with tyfiat — int) — int icate abstraction) enabled verification of not only “cdpyro” but
by the list encoding. also the list-manipulating programs “length”, “nth”, “risers”, and




Table 1. Results of preliminary experiments

cycle, time [sec]
program order none A. C.&A. D. C.&D. A.&D. C.&A.&D.
sum 1|2 012 1, 0.07| 1, 0.08] 2, 012] 2, 0.11| 1 0.07]| 1, 0.07
mult 1 - 3, 014| 2, 0.13] 4, 0.78| 4, 061| 3, 0.18] 3, 0.17
max 215 432 1, 0.20| 0, 0.08| 5 17.10| 5, 1.18| 3, 1.24| O, 0.08
mc9l 1|2 019 2, 018| 2, 0.18] 2, 032| 2, 032| 2, 040] 2, 0.39
ack 1 - 1, 0111, 0.10|f 4 108|5 050| 1 0.12]| 1, 0.10
a-cppr 2 - - | 7, 441 - - -7, 2.03
I-zipunzip 2 - - 12 014 -1 4 060|5 188]| 2 0.13
I-zipmap 217 136 2, 014| 2, 011} 7, 136| 6, 059| 3, 0.19] 4, 0.23
hors 212 043 1, 0.16 | 1, 0.07| 2, 391| 2, 011| 1, 0.16] 1, 0.07
e-simple 2|1 0.08 0, 006 O, 0.06] 1, 0.08| 1, 0.07| 0, 0.06| O, 0.06
e-fact 212 013 2, 009| 2, 010} 2, 015| 2, 0.11| 2, 0.11] 2, 0.10
r-lock 1|6, 083 0, 0.08| 0, 0.07|| 6, 094| 6, 039| 0, 0.07] 0, 0.08
r-file 1 - 10,2.69| 7, 0.92 - - 18 319] 6, 1.50
sumintro 1|2 017 1, 0.07| 1, 0.08] 2, 018| 2, 0.14| 1, 0.07| 1, 0.08
copy.intro 1 - - -3 036| 3, 035| 2 014 2, 0.14
factnotpos 13 028 2, 011| 2, 011} 3, 051| 3, 049| 2, 014] 2, 0.12
fold_right 2 - 2, 045] 2, 0.22 - - 12 1.04] 2, 0.31
forall _eq pair 1 - 2, 0.38| 1, 0.20 - -1 2 039] 1, 0.22
forall _leq 2|6, 1754 2, 036 1, 0.19 - - 12, 033]1, 0.22
isnil 1|3 022 2, 013| 2, 012} 3, 035| 3, 022|2 012] 2, 0.12
iter 2 - 1, 018 | 1, 0.16 - - 11, 021]1, 0.18
length 1 - - - || 4, 142] 2, 024| 2, 014 2, 0.14
mem 1|5 346 3, 046 3, 0.30 - |7, 17.83| 4, 0.61]| 4, 0.37
nth 1 - - - -1 3, 1.18]| 4, 055] 4, 0.42
nthO 1|3 048 026| 3, 022 4, 377| 4, 100| 3, 0.28] 3, 0.21
harmonic 2 - 0.39| 1, 0.20 - - 11, 072] 1, 0.25
fold_left 2 - , 0.39] 2, 0.22 - -1 2 079] 2, 0.30
zip 1 - - | 6, 24.16 - |7, 3245| 7, 5.23| 8, 22.17
map_filter 2 - - | 3, 39.84 - -1 4, 546 3, 5.82
risers 1 - - - - - | 8, 18.67] 8, 9.78
search 2 - 7, 4, 228 | 3, 071 -8 1549| 5 465 8, 9.65
fold _fun_list 3 - - - - - 12, 2140] 2, 2.74
factnotpos-e 1)1 012] 1, 1, 0091, 0.09| 1, 0.12|1, 014| 1, 0.09] 1, 0.08
harmonic-e 210, 0111, 0, 0.09| 0, 0.08| 0, 011| 1, 0.19| 0, 0.10] O, 0.08
map_filter-e 2|4, 810] 2, 3, 216| 0, 0.13 - 12 5625 765]|0, 0.13
search-e 2|5 1256 4, 2, 065| 1, 0.18 -|5 6.00|2 085] 4, 1.50

“fold _fun_list” by finding general predicates for abstraction as dis-

cussed in Section 1. Note here that “fdleh_list” is order3 and

the other ordett: list-manipulating programs were transformed to
order2 programs before verification by encoding lists as functions.

It is also worth noting that the columns “... & D.” show the
experimental results for the refined predicate discovery without ification method for higher-order multi-tree transducers [14]. Their
the feature of merging multiple infeasible paths enabled. The fea- method can verify regular properties of recursive data structures
ture actually slowed down verification of some programs (such as provided that certain invariant annotations are given.

“map_filter”) but improved the analysis precision of MOCHIi. In par-
ticular, the feature enabled us to verify the following accumulator infer dependent types for higher-order programs with recursive

version of “length” in 0.36 seconds with 3 CEGAR-cycles:
let rec length acc xs

[1 -> acc |

make_list (n-1)

match xs with
::xs’ -> length (acc+l) xs’
let rec make_list n
if n = 0 then [] elsen ::
let main n = assert (length O (make_list n)

For the success of verification, an abstraction predieatgh(r) =
length(acc) +length(xs) on the return value and the arguments

acc andxs of length was essential. The predicate could only be
found if the feature of merging multiple paths was enabled.
7. Related Work

7.1 Verification of Higher-Order Programs with Recursive
Data Structures

properties (such as “a and b occur alternately”) and numerical
properties (such ast*+ y < z” where z, y, z are the length of
lists).

Unno et al. [25] also proposed a verification method for higher-
order tree processing functional programs, which is based on a ver-

There are several studies [5, 10, 11, 21, 24-28] that aim to

data structures. Rondon et al.’s liquid type inference [11, 21] is a
semi-automated verification method that requires users to provide
templates of predicates, called logical qualifiers. The expressive
power of their method and ours is incomparable. They can deal
with “recursive dependent types”, such ag list< = ut. nil

+ cons(z: :int, {v : int | 1 < v} t), which represents ordered
lists of integers, while our method cannot. On the other hand, our
method can deal with the properties of list elements related to their
indices like “thei-th element of a list is greater thari while

they cannot. Unno and Kobayashi [24], and Jhala et al. [10] pro-
posed a method for automated refinement type inference, where
templates of refinement types are first prepared and then con-
straints on unknown refinement predicates are generated. Unno and
Kobayashi [24] then solve the constraints by using an interpolating

Ong and Ramsay [19] proposed a verification method for functional theorem prover, and Jhala et al. [10] solves the constraints by a re-
programs with recursive data structures, called Pattern Matching duction to model-checking of first-order programs. Those methods
Recursion Schemes (PMRS). The method cannot handle regularcan deal with data structures such as lists and arrays as long as type
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