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Abstract. Dependent types are useful for statically checking detailed
specifications of programs and detecting pattern match or array bounds
errors. We propose a novel approach to applications of dependent types
to practical programming languages: Instead of requiring programmers’
declaration of dependent function types (as in Dependent ML) or trying
to infer them from function definitions only (as in size inference), we mine
the output specification of a dependent function from the function’s call
sites, and then propagate that specification backward to infer the input
specification. We have implemented a prototype type inference system
which supports higher-order functions, parametric polymorphism, and
algebraic data types based on our approach, and obtained promising
experimental results.

1 Introduction

Dependent types are useful for statically verifying that programs satisfy detailed
specifications and for detecting data-dependent errors such as pattern match
or array bounds errors. For example, the function λx.x + 1 is given a type
int → int in the simple type system, but with dependent types, it is given a
type Πx : int.{y : int | y = x + 1}, so that we can conclude that the array
access a[(λx.x + 1)0] is safe (if the size of array a is more than 1).

There are several approaches to introducing dependent types into program-
ming languages. Size inference [1–3] fixes the shape of dependent types a priori
(e.g., a list type is of the form τ listn where n is the length of a list), and tries to
infer a dependent type of a function automatically from the function’s definition.
Shortcomings of that approach are inflexibility and inefficiency; for example, it
would be hard to infer that a sorting function indeed returns a sorted list. De-
pendent ML (DML) [4, 5] lets users declare the dependent type of each function
manually, and checks whether the declaration is correct. A shortcoming of that
approach is that it is often cumbersome for programmers to declare dependent
types for all functions. For example, consider the following function isort for
insertion sort, and suppose that one wants to verify that isort returns a sorted
list.

fun insert (x, xs) = match xs with

Nil _ -> Cons (x, Nil ())

| Cons (y, ys) -> if x <= y then Cons(x, xs) else Cons(y, insert (x, ys))

fun isort xs = match xs with
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Nil _ -> Nil ()

| Cons (x, xs’) -> insert (x, isort xs’)

It would be fine to declare that isort returns a sorted list (because that is indeed
the property to be verified). It is, however, cumbersome to declare a dependent
type of the auxiliary function insert as well. Knowles and Flanagan [6] proposes
a complete type reconstruction algorithm for a certain dependent type system,
but the inferred types include fixed-point operators on predicates, so that the
inferred types alone cannot be used for actual verification or bug finding (without
a reasonable algorithm for computing fixed-points).

We propose an alternative, complementary approach to the previous ap-
proaches discussed above. Instead of requiring programmers’ declaration of de-
pendent function types or trying to infer them from function definitions only, we
infer a function’s type using information about not only the function’s definition
but also the function’s call sites. Another related, distinguishing feature of our
approach is that types are refined on-demand ; we start with the simplest type
for each function, and refine the type gradually, when it turns out that more
precise type information is required by a call site of the function. For example,
the function f

4
= λx.x + 1 is first given a type int → int, but if a calling con-

text a[f y] is encountered, the type is refined to Πx : int.{y : int | y = x + 1}
(since from the calling context, we know that the actual return value of f is im-
portant for the whole program to be typed). For another example, consider the
sorting function isort above. The auxiliary function insert is first given a type
int list→ int list. If the type of sort is declared as int list→ int ordlist
(where int ordlist denotes the type of sorted lists), however, we can find from
the call site insert (x, isort xs’) that the type of the output of insert
should be int ordlist. We can then propagate that information backward to
infer the type of an argument of insert (see Section 5 for a more detailed de-
scription of this refinement step). In this manner, we expect that our approach
can deal with more flexible dependent types (without losing efficiency) than
the size inference. Indeed, we have already implemented the prototype inference
system and succeeded in verifying the sorting function above.

The idea of on-demand type refinement mentioned above, so called type-error-
guided type refinement, has been inspired from that of counter-example-guided
abstraction refinement (CEGAR) in abstract model checking [7]. In CEGAR,
the coarsest abstraction is first used for model checking; the predicates used for
abstraction are gradually refined when a false counter-example is encountered. In
our approach, simple types are first used for type-checking. If the type-checking
fails, types are gradually refined by inspecting a fragment of the program which
causes the failure (until no further refinement is possible, when a type error is
reported).

To formalize the idea mentioned above, Section 2 introduces a simple first-
order functional language with assert expressions and a dependent type system
for it. The assert expressions are used to model array bound checks and user-
supplied specifications. Section 3 formalizes our type inference algorithm, and
proves its soundness. In Section 4, we discuss extension of the type inference
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algorithm to deal with higher-order functions, parametric polymorphism, and
algebraic data types. Section 5 reports on a prototype implementation of our
algorithm (for the full language, including higher-order functions, parametric
polymorphism, and algebraic data types) and experiments. Section 6 discusses
related work and Section 7 concludes.

2 Language and Dependent Type System

We use a call-by-value, first-order functional language to present our type infer-
ence algorithm. We extend the language with higher-order functions in Section 4.
The language is essentially an “implicitly-typed” version of a subset of DML [4, 5]
extended with assert expressions.

The syntax of the language is defined as follows:

(expressions) e ::= x | n | (e1, e2) | fun f x = e1 in e2 | f e

| let x = e1 in e2 | let (x1, x2) = e1 in e2

| if e1 then e2 else e3 | assert e1 in e2

(values) v ::= n | (v1, v2) | fun f x = e

Here, x, n, and f are meta-variables ranging over a set of variables, integer
constants, and function names respectively. We write FV(e) for the set of free
variables in e. We assume given primitive operators such as +, ×, = and ≤ on
integers, and ¬, ∧, and ⇒ on booleans. Actually, booleans are represented by
integers (the truth > by a non-zero integer, and the false ⊥ by zero). Thus,
e1 ≤ e2 returns 1 if the value of e1 is less than or equal to that of e2, and returns
0 otherwise. In the function definition fun f x = e1 in e2, f may appear in e1

for recursive calls. However, we do not allow mutually recursive functions in the
language for the sake of simplicity. Our framework can be easily extended to deal
with mutually recursive functions. An assertion assert e1 in e2 evaluates to e2

only if the conditional e1 holds. Otherwise, it gets stuck. Assertions are used for
modeling array bounds errors and user-supplied specifications. For example, the
array access a[x] is modeled as assert 0 ≤ x < h in · · ·, where h is the size of
a. See Appendix B for the operational semantics.

We introduce a dependent type system, which ensures that well-typed pro-
grams never get stuck. In particular, an assertion assert e1 in e2 is accepted
only if e1 is statically guaranteed to have a non-zero integer.

The syntax of types is defined as follows:

(base types) t ::= intρ | t1 × t2

(expression types) τ ::= {t | φ}
(function types) σ ::= ∀ρ̃.〈φ | t → τ〉

(constraints) φ ::= ρ | n | op(φ̃) | ∀ρ.φ | ∃ρ.φ

(type environments) Γ ::= ∅ | Γ, x : t | Γ, f : σ

A constraint, denoted by φ, is an index variable ρ, a constant n, an operator
expression op(φ̃), or quantifier expressions. We often write > for 1 and ⊥ for 0.
Note that the set of operators contains standard logical operators like ∧ and ¬.
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The base type intρ is the type of an integer whose value is denoted by ρ.
The base type t1 × t2 is the type of pairs consisting of values with the types t1
and t2. The expression type {t | φ} is a subtype of t whose index variables are
constrained by φ. For example, {intρ1 × intρ2 | ρ1 > ρ2} is the type of integer
pairs whose first element is greater than the second element. The index variables
in t are bound in {t | φ}. The function type ∀ρ̃.〈φ | t → τ〉 is the type of functions
that take an argument of the type {t | φ} and return a value of the type τ . For
example, 〈ρ1 > 0 ∧ ρ2 > 0 | intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉 is the type
of functions that take a pair of positive integers as an argument, and return the
sum of the integers. The index variables in t and ρ̃ are bound in ∀ρ̃.〈φ | t → τ〉.
We often abbreviate ∀ρ̃.〈φ | t → τ〉 as ∀ρ̃.{t | φ} → τ if the index variables in
t do not occur in τ and as ∀ρ̃.t → τ if φ ≡ >. We assume that α-conversion is
implicitly performed so that bound variables are different from each other and
free variables.

A typing judgment is of the form φ;Γ ` e : τ . It reads that on the assump-
tion that index variables satisfy φ, the expression has type τ under the type
environment Γ . For example, ρ > 0; x : intρ ` x + 1 : {intρ′ | ρ′ > 1}.

The typing rules are given in Figure 1. In the figure, FIV(o) is the set of free
index variables in some object o. η |= φ means that an index environment η (a
function from index variables to integers) satisfies a constraint φ. We write |= φ
if ∅ |= ∀ρ̃.φ, where {ρ̃} = FIV(φ).

The subtyping relation φ ` σ 6 σ′ on function types is defined by:

|= φ ⇒ ∀ρ̃′, FIV(t1).(φ′1 ⇒ ∃ρ̃.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′2)))

φ ` ∀ρ̃.〈φ1 | t1 → {t2 | φ2}〉 6 ∀ρ̃′.〈φ′1 | t1 → {t2 | φ′2}〉

We say that Γ is valid if and only if for any f : σ ∈ Γ and v, if φ; Γ ` f v : τ
then, [[f ]](v) is defined (i.e., f is a primitive operator) and φ; Γ ` [[f ]](v) : τ is
derivable (i.e., the type Γ (f) captures the behavior of the primitive operator f
correctly).

The refinement relation φ ` Γ 6 Γ ′ on type environments is defined as fol-
lows:

φ ` ∅ 6 ∅
φ ` Γ 6 Γ ′

φ ` Γ, x : t 6 Γ ′, x : t

φ ` Γ 6 Γ ′ φ ` σ 6 σ′

φ ` Γ, f : σ 6 Γ ′, f : σ′

The type system ensures that evaluation of a well-typed program never gets
stuck. Formally, the following theorem holds (see the Appendix C for the proof).

Theorem 1 (Soundness). If >; Γ ` e : τ is derivable, FV(e) = ∅, and Γ is
valid, then e either evaluates to a value or diverges.

3 Type Inference Algorithm

This section formalizes our type inference algorithm and proves its soundness.
First, we extend the syntax of constraints with predicate variables to denote
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x : t ∈ Γ eρ′ = FIV(t)
eρ ∩ FIV(φ, Γ ) = ∅

φ; Γ ` x : {[eρ/eρ′]t | eρ = eρ′} (T-Var)

φ; Γ ` n : {intρ | ρ = n} (T-Int)

φ; Γ ` e1 : {t1 | φ1}
φ; Γ ` e2 : {t2 | φ2}

φ; Γ ` (e1, e2) : {t1 × t2 | φ1 ∧ φ2}
(T-Pair)

φ ∧ φ1; Γ, f : σ, x : t1 ` e1 : τ1

eρ ∩ FIV(Γ, φ) = ∅
σ = ∀eρ.〈φ1 | t1 → τ1〉
φ; Γ, f : σ ` e2 : τ2

φ; Γ ` fun f x = e1 in e2 : τ2

(T-Let-Fun)

f : σ ∈ Γ φ ` σ 6 τ1 → τ2

φ; Γ ` e : τ1

φ; Γ ` f e : τ2

(T-App)

φ; Γ ` e1 : {t | φ′}
φ ∧ φ′; Γ, x : t ` e2 : τ
FIV(t) ∩ FIV(τ) = ∅

φ; Γ ` let x = e1 in e2 : τ
(T-Let)

φ; Γ ` e1 : {t1 × t2 | φ′}
φ ∧ φ′; Γ, x1 : t1, x2 : t2 ` e2 : τ

FIV(t1, t2) ∩ FIV(τ) = ∅
φ; Γ ` let (x1, x2) = e1 in e2 : τ

(T-Let-Pair)

φ; Γ ` e1 : {intρ | φ′}
φ ∧ ∃ρ.(φ′ ∧ ρ 6= 0); Γ ` e2 : τ
φ ∧ ∃ρ.(φ′ ∧ ρ = 0); Γ ` e3 : τ

φ; Γ ` if e1 then e2 else e3 : τ
(T-If)

φ; Γ ` e1 : {intρ | ρ 6= 0}
φ; Γ ` e2 : τ

φ; Γ ` assert e1 in e2 : τ
(T-Assert)

φ′1; Γ ` e : {t | φ′2}
|= φ1 ⇒ (φ′1 ∧ (φ′2 ⇒ φ2))

φ1; Γ ` e : {t | φ2}
(T-Sub)

Fig. 1. Typing Rules

unknown predicates. We also introduce extended type environments to model an
intermediate state for on-demand type refinement.

(type constraints) φ ::= · · · | P (φ̃)
(constraint substitutions) S ::= ∅ | S, P 7→ λρ̃.φ

(extended function types) T ::= (σ;φ; S̃)
(extended type environments) ∆ ::= ∅ | ∆, x : t | ∆, f : T

Here, P is a meta-variable ranging over the set of predicate variables, which are
used to express unknown specifications of functions. We write FPV(o) for the set
of free predicate variables in some object o. Constraint substitutions map pred-
icate variables to predicates (i.e., functions from index variables to constraints).
An extended type environment ∆ maps a function name f to an extended func-
tion type which is a triple of the form (σ; φ; S̃). Here, σ is a template for the
type of f , which may contain predicate variables. For example, a template for a
function from integers to integers is 〈P (ρx) | intρx → {intρy | Q(ρx, ρy)}〉. The
second element φ is a constraint that records a sufficient condition on predicate
variables for the definition of f to be well-typed; this is used to avoid re-checking
the function’s definition when the function’s type needs to be refined. The third
element S̃ records solutions for φ (which are substitutions for predicate variables)
found so far.
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The type inference algorithm is specified as inference rules for the 5-tuple
relation ∆ B e : τ a φ; ∆′. Here, ∆, e, and τ should be regarded as inputs of
the algorithm, and φ and ∆′ as outputs of the algorithm. Intuitively, φ is a
sufficient condition for e to have type τ , and ∆′ describes types refined during
the inference. For example, let e, τ , and ∆ be f(z), {intρ | ρ > 1}, and z :
intρz , f : (σ;φ1; {S}), where:

σ = 〈P (ρx) | intρx → {intρy | Q(ρx, ρy)}〉
φ1 = ∀ρx, ρy.P (ρx) ⇒ (ρy = ρx + 1 ⇒ Q(ρx, ρy))
S = {P 7→ λρx.>, Q 7→ λ(ρx, ρy).>}

Then, φ and ∆′ would be ρz > 0 and z : intρz , f : (σ; φ; {S, S′}), where S′ is
{P 7→ λρx.ρx > 0, Q 7→ λ(ρx, ρy).ρy > 1}.

The inference rules for the relation ∆B e : τ a φ; ∆′ (which are a declarative
description of our type inference algorithm) are given in Figures 2 and 3. Figure 3
shows the rules for function definitions and applications, and Figure 2 shows the
rules for other expressions. In the figures, TypeOf(∆, e) is a template for the
type of e, obtained from the simple type of e by decorating it with fresh index
variables and predicate variables. For example, if the simple type of e is int, then
TypeOf(∆, e) returns intρ; if the simple type of e is int→ int, TypeOf(∆, e)
returns 〈P (ρx) | intρx → {intρy | Q(ρx, ρy)}〉.

In the rules in Figure 2, type inference proceeds in a backward manner:
For example, in B-Var, given the required type {t | φ} of the variable x, if
x : t′ ∈ ∆, we check whether |t| = |t′| (where |t| is the simple type obtained from
t by removing index variables and constraints). If the check succeeds, we produce
the constraint [t′/t]φ, which is the constraint obtained from φ by replacing each
occurrence of an index variable of t with the corresponding index variable of t′.

In B-Pair, given the required type {t1 × t2 | φ} of the pair (e1, e2), we
compute the constraint φ2 which is sufficient for e2 to have {t2 | φ}. Then,
we compute the constraint φ1 which is sufficient for e1 to have {t1 | φ2}. The
remaining rules in Figure 2 can be read in a similar manner.

We now explain the rules for functions in Figure 3. In B-Let-Fun, a template
for the function’s type is first prepared (see the first line). We then check the
function’s definition, and compute a sufficient condition ψ on predicate variables
for the definition to be well-typed (see the second line). Then, we find a solution
S for ψ (i.e., a substitution such that |= S(ψ)) by using an auxiliary algorithm
Solve(FPV(σ); ψ), which is explained later. As a result, we obtain the input
specification of f which is sufficient for no assertion violation to occur in f . At
this stage, there is no requirement for the output of f , so that the inferred return
type of f is of the form {t | >}. Finally, we check e2 and produce φ2 and ∆′.
Note that f ’s type may be refined during the type inference for e2.

B-App is the rule for applications. From the type τ of f e and the simple
type of e, we prepare a template of f ’s type: {t | P (ρ̃)} → τ . The value of the
predicate variable P is computed by a sub-algorithm, expressed by using the
relation ∆ B f : σ a{P} S; ∆′ (which is defined using B-Reuse and B-Refine:
see below). Finally, we check that the function’s argument e has the required
type {t | S(P (ρ̃))}.
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We have two rules B-Reuse and B-Refine for the auxiliary judgment ∆Bf :
σ a eP S; ∆′. The rule B-Reuse supports the case where the type of f in ∆ is
precise enough to be a subtype of σ, while B-Refine supports the case where
the type of f needs to be refined. The rules are non-deterministic, in the sense
that both rules may be applied. In the actual implementation, B-Reuse is given
a higher priority, so that B-Refine is used only when applications of B-Reuse
fail. For recursive calls and primitive operators, B-Refine is not used.

In B-Reuse, we pick up an already inferred type Sk(σ′), and match it with
the required type σ. (Since the argument type of σ is a predicate variable, we
actually match the return types of σ and σ′ here.) The constraint ψ, computed
by using B-Sub, is a sufficient condition for Sk(σ′) to be a subtype of σ. We
then solve ψ by using Solve.

In B-Refine, we match the template σ′ of the function’s type with the
required type σ, and compute a sufficient condition ψ for σ′ to be a subtype of
σ. We then compute a solution for ψ ∧ φ by using Solve. The key point here is
that both information about the function’s definition (expressed by φ) and that
about the call site (expressed by ψ) are used to compute the function’s type.
Solve can use predicates occurring in ψ as hints for computing a solution of ψ∧φ.

x : t′ ∈ ∆ |t| = |t′|
∆B x : {t | φ} a [t′/t]φ; ∆

(B-Var)

∆B n : {intρ | φ} a [n/ρ]φ; ∆
(B-Int)

∆B e2 : {t2 | φ} a φ2; ∆2

∆2 B e1 : {t1 | φ2} a φ1; ∆1

∆B (e1, e2) : {t1 × t2 | φ} a φ1; ∆1

(B-Pair)

t = TypeOf(∆, e1)
∆, x : tB e2 : τ a φ2; ∆2

∆2 \ xB e1 : {t | φ2} a φ1; ∆1

∆B let x = e1 in e2 : τ a φ1; ∆1

(B-Let)

t1 × t2 = TypeOf(∆, e1)
∆, x1 : t1, x2 : t2 B e2 : τ a φ2; ∆2

∆2 \ {x1, x2}B e1 : {t1 × t2 | φ2} a φ1; ∆1

∆B let (x1, x2) = e1 in e2 : τ a φ1; ∆1

(B-Let-Pair)

∆B e2 : τ a φ2; ∆2 ∆2 B e3 : τ a φ3; ∆3

ρ : fresh φ = (ρ 6= 0 ∧ φ2) ∨ (ρ = 0 ∧ φ3)
∆3 B e1 : {intρ | φ} a φ1; ∆1

∆B if e1 then e2 else e3 : τ a φ1; ∆1

(B-If)

ρ : fresh ∆B e1 : {intρ | ρ 6= 0} a φ1; ∆1

∆1 B e2 : τ a φ2; ∆2

∆B assert e1 in e2 : τ a φ1 ∧ φ2; ∆2

(B-Assert)

Fig. 2. Type inference rules (for basic expressions)

Constraint Solving We now describe a heuristic algorithm Solve(P̃ ; ϕ) to obtain
a solution for ϕ (i.e., a substitution for the predicate variables P̃ that satisfy ϕ).

If ϕ contains a subformula of the form ∀ρ̃.(P (ρ̃) ⇒ ψ(ρ̃, P )), and ψ(ρ̃, P )
does not contain negative occurrences of P , then the algorithm tries to compute
the greatest fixed-point of F = λP.λρ̃.ψ(ρ̃, P ) by iterations from λρx.> (i.e.,
by computing Fn(λρx.>) for n = 1, 2, . . .). (As a special case, if ψ(ρ̃, P ) does
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σ = ∀eρ.〈φ | t → τ1〉 = TypeOf(∆, fun f x = e1)
∆, f : σ, x : tB e1 : τ1 a φ1; ∆1, f : σ, x : t ψ = ∀eρ, FIV(t).(φ ⇒ φ1)

S = Solve(FPV(σ); ψ) ∆1, f : (σ; ψ; {S})B e2 : τ a φ2; ∆2

∆B fun f x = e1 in e2 : τ a φ2; ∆2 \ f
(B-Let-Fun)

t = TypeOf(∆, e) eρ = FIV(t) P : fresh
∆B f : {t | P (eρ)} → τ a{P} S; ∆1 ∆1 B e : {t | S(P (eρ))} a φ2; ∆2

∆B f e : τ a φ2; ∆2

(B-App)

f : (σ′; φ; {Sj}m
j=1) ∈ ∆ 1 ≤ k ≤ m Sk(σ′) 6 σ a ψ S = Solve( eP ; ψ)

∆B f : σ a eP S; ∆
(B-Reuse)

∆ = ∆b, f : (σ′; φ; {Sj}m
j=1), ∆a σ′ 6 σ a ψ

dom(S) = eP dom(Sm+1) = FPV(σ′) S, Sm+1 = Solve( eP ∪ FPV(σ′); ψ ∧ φ)

∆B f : σ a eP S; ∆b, f : (σ′; φ; {Sj}m+1
j=1 ), ∆a

(B-Refine)

φ = ∀eρ′, FIV(t1).(φ
′
1 ⇒ ∃eρ.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′2)))

∀eρ.〈φ1 | t1 → {t2 | φ2}〉 6 ∀eρ′.〈φ′1 | t1 → {t2 | φ′2}〉 a φ
(B-Sub)

Fig. 3. Type inference rules (for functions)

not contain P , then the iteration immediately converges with the solution P =
λρx.ψ(ρ̃, P ).) The algorithm also use widening [8] to accelerate convergence.

If the above iteration does not converge, the algorithm chooses a new starting
point of iterations by extracting a sub-formula of ψ(ρ̃, P ) which does not contain
P and generalizing its constants. (This phase roughly corresponds to predicate
discovery in abstract model checking. Unlike model checking, however, we do not
repeat the whole verification process; we just redo the fixed-point computation.)

Example 1. fun pred x = assert x > 0 in x− 1 in assert y = pred z in ()
By B-Let-Fun, we first check the definition of pred. We prepare the tem-

plate σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of pred,
where ρ̃ denotes a sequence of index variables (whose length is unknown). Then
we check ∆ B assert x > 0 in x − 1 : {intρy | Q(ρ̃, ρx, ρy)} a φ′;∆′ for
∆ = ∆0, pred : σ, and obtain φ′ = ρx > 0∧Q(ρ̃, ρx, ρx − 1). Here, ∆0 = + : 〈> |
intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉, . . . ,≤ :〈> | intρ1 × intρ2 → {intρ3 |
ρ3 = ρ1 ≤ ρ2}〉, . . . is the extended type environment for primitive operators.
Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and Q. We then
check assert y = pred z in () under ∆1 = ∆0, pred : (σ; φ; {P 7→ λρ̃, ρx.ρx >
0, Q 7→ λρ̃, ρx, ρy.>}).
To check pred z against the type {intρy | ρ = ρy}, the rule B-Refine is used.
From σ 6 ∀ρ̃.〈P1(ρ̃, ρx) | intρx → {intρy | ρ = ρy}〉 a ψ, we get

ψ = ∀ρ̃, ρx.P1(ρ̃, ρx) ⇒ ∃ρ̃′.(P (ρ̃′, ρx) ∧ ∀ρy.(Q(ρ̃′, ρx, ρy) ⇒ ρ = ρy)).
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Then, ψ∧φ is passed to Solve as an input. From the subformula Q(ρ̃′, ρx, ρy) ⇒
ρ = ρy), Solve infers that Q(ρ, ρx, ρy) ≡ ρ = ρy. From the subformula φ, P (ρ, ρx)
is inferred to be ρx > 0 ∧ ρ = ρx − 1. Thus, we obtain the refined type ∀ρ.〈ρx >
0 ∧ ρ = ρx − 1 | intρx → {intρy | ρ = ρy}〉 of pred.

Example 2.

fun fact x = if x ≤ 0 then 1 else x ∗ fact (x− 1) in assert fact y > 0 in ()

By B-Let-Fun, we first check the definition of fact. We prepare the tem-
plate σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of fact,
where ρ̃ denotes a sequence of index variables (whose length is unknown). Then
we check ∆Bif x ≤ 0 then 1 else x∗fact (x−1) : {intρy | Q(ρ̃, ρx, ρy)} a φ′;∆′

for ∆ = ∆0, fact : σ, and obtain φ′ = (ρx ≤ 0 ∧ φ1) ∨ (ρx > 0 ∧ φ2). Here, φ1 =
Q(ρ̃, ρx, 1) and φ2 = ∃ρ̃′.(P (ρ̃′, ρx−1)∧∀ρy.(Q(ρ̃′, ρx−1, ρy) ⇒ Q(ρ̃, ρx, ρx∗ρy)))
are respectively obtained from the then- and else- branches of the if-expression
by B-If. B-App and B-Reuse are used to generate the subformula φ2 for the
else-branch. Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and
Q. We then check assert fact y > 0 in () under ∆1 = ∆0, fact : (σ;φ; {P 7→
λρ̃, ρx.>, Q 7→ λρ̃, ρx, ρy.>}).
To check fact y against the type {intρy | ρy > 0}, the rule B-Refine is used.
From σ 6 ∀ρ̃.〈P1(ρ̃, ρx) | intρx → {intρy | ρy > 0}〉 a ψ, we get

ψ = ∀ρ̃, ρx.P1(ρ̃, ρx) ⇒ ∃ρ̃′.(P (ρ̃′, ρx) ∧ ∀ρy.(Q(ρ̃′, ρx, ρy) ⇒ ρy > 0)).

Then, ψ∧φ is passed to Solve as an input. From the subformula Q(ρ̃′, ρx, ρy) ⇒
ρy > 0), Solve infers that Q(ρx, ρy) ≡ ρy > 0. From the subformula φ, P (ρx)
is inferred to be > as the result of the greatest fixed-point computation of the
function F = λP.λρx.(ρx ≤ 0 ∧ 1 > 0) ∨ (ρx > 0 ∧ P (ρx − 1) ∧ ∀ρy.(ρy > 0 ⇒
ρx ∗ ρy > 0)) ≡ λP.λρx.ρx ≤ 0 ∨ (ρx > 0 ∧ P (ρx − 1)) by iterations from λρx.>,
which converge immediately since F (λρx.>) ≡ λρx.ρx ≤ 0 ∨ ρx > 0 ≡ λρx.>.
Thus, we obtain the refined type 〈> | intρx → {intρy | ρy > 0}〉 of fact.

3.1 Soundness

We say that ∆ is valid if and only if for any f : (σ;φ; {Sj}m
j=1) ∈ ∆, |= Sk(φ)

holds for any k ∈ {1, . . . , m}.
Let us define the function (|∆|), which maps an extended type environment

∆ to an ordinary type environment, as follows:

(|∅|) = ∅ (|∆,x : t|) = (|∆|), x : t

(|∆, f : (σ;φ; {Sj}m
j=1)|) = (|∆|), f : merge({Sj(σ)}m

j=1).

Here, merge({σj}m
j=1) = 〈φ1∨· · ·∨φm | t → {t′ | (φ1 ⇒ φ′1)∧· · ·∧ (φm ⇒ φ′m)}〉

if σj = 〈φj | t → {t′ | φ′j}〉 for any j ∈ {1, . . . ,m}. The following theorem
states that the type inference algorithm is sound with respect to the dependent
type system presented in Section 2. (We assume the soundness of Solve here; see
Appendix D for the proof).
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Theorem 2 (Soundness). If ∆Be : τ a φ; ∆′ is derivable and ∆ is valid then,
∆′ is valid, ` (|∆′|) 6 (|∆|), and φ; (|∆′|) ` e : τ is derivable.

Theorems 1 and 2 imply that if the type inference algorithm returns a type of
an expression and a refined type environment ∆ such that (|∆|) is valid, then
the evaluation of the expression never gets stuck (in particular, assertions in the
expression are never violated).

Note that the type inference algorithm is not complete with respect to the
type system because of the incompleteness of Solve.

4 Extensions

In this section, we discuss how to extend our type inference algorithm formal-
ized in Section 3 with higher-order functions, parametric polymorphism, and
algebraic data types.

Higher-Order Functions A main new issue in handling higher-order functions is
what kind of template is prepared for higher-order functions. For example, for a
function of type (int→ int) → int, one may be tempted to consider a template
of the form: 〈R1(P1, Q1) | 〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 |
R2(P1, Q1, ρ3)}〉, which is the type of a function that takes a function whose
precondition P1 and postcondition Q1 satisfy R1(P1, Q1), and returns an integer
that satisfies R2(P1, Q1, ρ3). This allows us to express a higher-order function
that is polymorphic on the property of a function argument, but requires a
significant extension of the constraint solving algorithm due to the presence of
higher-order predicates.

Instead, we consider only first-order predicate variables, and use a template
〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 | Q2(ρ3)} for (int→ int) →
int. This allows us to extend the algorithm in Section 3 in a fairly straightfor-
ward manner. A shortcoming of the approach is that a higher-order function is
monomorphic on the property of function arguments; we use parametric poly-
morphism to overcome that disadvantage to some extent.

Parametric Polymorphism The above treatment of higher-order functions some-
times results in too specific types. For example, from the calling context (map (λx.x+
1) l) : {intw list | w ≥ 0}, the following type of map would be inferred:

({intx | x ≥ −1} → {inty | y ≥ 0}) → {intz list | z ≥ −1} → {intw list | w ≥ 0}.

This is too specific to be used in other calling contexts of map. To remedy the
problem, we use parametric polymorphism. In the case of map function, the
polymorphic type ∀α, β.(α → β) → α list → β list is assigned to map,
which can be instantiated to ({intx | P (x)} → {inty | Q(y)}) → {intz list |
P (z)} → {intw list | Q(w)} for any P and Q.
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Algebraic Data Types We require users to declare a data type invariant and
dependent types for constructors of each user-defined algebraic data type as in
DML. Then, our algorithm infers dependent types of functions automatically un-
like in DML. We allow users to declare multiple types for each data constructor;
for example, for lists, users may declare Nil as ∀α.unit → {α listρ | ρ = 0}
and ∀ρ.unit → {ordlistρ1 | ρ1 = ρ} (see Section 5.1). This allows users to
specify multiple properties like the list length and sortedness.

The main new difficulty in type inference is how to handle multiple types de-
clared for each constructor as mentioned above. An extended type environment∆
now maps each function name to a set of extended function types, instead of
a single extended function type. For example, for a list function, the following
four templates may be generated: { 〈P1(ρx) | int listρx → {int listρy |
Q1(ρx, ρy)}〉, 〈P2(ρx) | int listρx → {ordlistρy | Q2(ρx, ρy)}〉, 〈P3(ρx) |
ordlistρx → {int listρy | Q3(ρx, ρy)}〉, 〈P4(ρx) | ordlistρx → {ordlistρy |
Q4(ρx, ρy)}〉}. These templates are generated on-demand (based on calling con-
texts), in order to avoid a combinatorial explosion of the number of templates.
Once an appropriate template is chosen, the rest of the algorithm is basically
the same as the one described in Section 3: constraints on predicate variables
are generated and solved.

4.1 Formalization

We formalize the extensions described above in this section.
The syntax of expressions, base types, function types, and extended type

environments are extended as follows:

(expressions) e ::= · · · | fun f f̃ x = e1 in e2 | f f̃ e

| () | c e | match e with {cj xj → ej}m
j=1

(base types) t ::= · · · | α | unit | t̃ deρ

(function types) σ ::= · · · | ∀α̃.σ̃ → ∀ρ̃.〈φ | t → τ〉
(extended type environments) ∆ ::= ∅ | ∆,x : t | ∆, f : T̃

Here, c, α, and d are meta-variables ranging over a set of names of user-defined
data constructors, a set of type variables, and a set of names of user-defined
algebraic data types respectively.

The function definition fun f f̃ x = e1 in e2 defines a function f which
takes zero or more function arguments f̃ and an expression argument x. The
function application f f̃ e applies the function f to the actual function ar-
guments f̃ and the actual expression argument e. We do not allow partial
applications in our language for the sake of simplicity. The restriction causes
no loss of generality since they can be encoded in our language. For exam-
ple, the expression let add = λx.λy.x + y in (add 1) 2 can be encoded as
fun add (x, y) = x + y in fun add1 y = add (1, y) in add1 2 in our language.
Actually, it is not difficult to formalize our method for a language without the
restriction. The syntax of expressions is also extended with a unit primitive, and
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introduction and elimination forms for algebraic data types. The algebraic data
type t̃ deρ is parametrized by the base types t̃ and the index variables ρ̃. We write
CN(d) for the set of the constructor names and ι(deρ) for the data type invariant
for d expressed as a constraint on ρ̃. We define the type invariant ι(t) of t as
follows:

ι(t) = > (if t = α, unit, intρ)
ι(t1 × t2) = ι(t1) ∧ ι(t2)

ι(t̃ deρ) = ι(t̃) ∧ ι(deρ)
ι(t1, . . . , tm) = ι(t1) ∧ · · · ∧ ι(tm)

We assume that type assignments for constructors of user-defined algebraic data
types are added to the initial type environment ∆0. Namely, we regard construc-
tors as built-in functions. For example, we may define the algebraic data type
α listρ of polymorphic lists whose lengths are referred to by ρ as follows. The
algebraic data type has the two constructors Nil : ∀α.unit→ {α listρ | ρ = 0}
and Cons : ∀α.α× α listρ1 → {α listρ2 | ρ2 = ρ1 + 1}, and has the data type
invariant ι(listρ) = ρ ≥ 0, which is obvious from the types of the constructors.
The function type ∀α̃.σ̃ → ∀ρ̃.〈φ | t → τ〉 with the type parameters α̃ is the type
of polymorphic functions which take function arguments of the types σ̃ and an
expression argument of the type {t | φ}, and returns a value of the type τ .

The extended type inference rules are presented in Figure 4. In B-Let-Fun’,
the auxiliary function TypeOf(∆, fun f f̃ x = e1) returns a set of all possible
templates for f with only first-order predicate variables. Note that it is waste-
ful to generate all possible templates and corresponding sufficient conditions
on predicate variables at function definition sites as in B-Let-Fun’. It is not
difficult to generate them on-demand (based on calling contexts).

In B-App’, we obtain the type t of the actual expression argument e and
the function types σ̃ of the actual function arguments f̃ whose predicate vari-
ables are replaced with fresh ones by using auxiliary functions TypeOf(∆, e) and
TypeOf(∆, f̃) respectively. Since TypeOf(∆, o) returns all possible types of o,
we try all possible combination of t and σ̃ in order.3 We then guess that f has
the type σ̃ → {t | P (ρ̃)} → τ . We then generate and solve the sufficient condi-
tion for P and FPV(σ̃) by the auxiliary judgement ∆ B {f : σ̃ → {t | P (ρ̃)} →
τ, f̃ : σ̃} a{P}∪FPV(eσ) S; ∆1 which internally applies B-Reuse’ and B-Refine’
for backward propagation and works as follows. We first propagate the output
specification τ of the higher-order function f backward to mine output specifi-
cations of function arguments in f̃ . We then propagate them backward to obtain
the input specifications of the functions. We mine output specifications of other
function arguments in f̃ by using the propagated input specifications, and repeat
the above procedure until we obtain the input and output specifications of all
the function arguments. Finally, we infer the input specification of f by using
3 The number of all possible combination is not so large in our experience; For exam-

ple, we did not confront to this kind of non-determinism for verification of sorting
algorithms in Section 5.1.
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{σj}m
j=1 = {∀fαj . eσj → ∀ eρj .〈φj | tj → τj〉}m

j=1 = TypeOf(∆, fun f ef x = e1) ∆1 = ∆

∆j , f : σj , ef : eσj , x : tj B e1 : τj a φ′j ; ∆j+1, f : σj , ef : eσj , x : tj ψj = ∀ eρj , FIV(tj).(φj ⇒ φ′j)
Sj = Solve(FPV(σj); ψj) (j = 1, . . . , m) ∆m+1, f : {(σj ; ψj ; {Sj})}m

j=1 B e2 : τ a φ′; ∆′

∆B fun f ef x = e1 in e2 : τ a φ′; ∆′ \ f
(B-Let-Fun’)

eσ ∈ TypeOf(∆, ef) t ∈ TypeOf(∆, e) eρ = FIV(t) P : fresh

∆B {f : eσ → {t | P (eρ)} → τ, ef : eσ} a{P}∪FPV(eσ) S; ∆1

∆1 B e : {t | S(P (eρ))} a φ2; ∆2

∆B f ef e : τ a φ2; ∆2

(B-App’)

f : { eT , (σ′; φ; {Sj}m
j=1)} ∈ ∆ 1 ≤ k ≤ m Sk(σ′) 6 σ afP ′ ψ

dom(S) = eP dom(S′) = fP ′ S, S′ = Solve( eP ∪fP ′; ψ)

∆B f : σ a eP S; ∆
(B-Reuse’)

∆ = ∆b, f : { eT , (σ′; φ; {Sj}m
j=1)}, ∆a σ′ 6 σ afP ′ ψ

dom(S) = eP dom(S′) = fP ′ dom(Sm+1) = FPV(σ′)
S, S′, Sm+1 = Solve( eP ∪fP ′ ∪ FPV(σ′); ψ ∧ φ)

∆B f : σ a eP S; ∆b, f : { eT , (σ′; φ; {Sj}m+1
j=1 )}, ∆a

(B-Refine’)

σ ÂfP1
eσ → ∀eρ.{t1 | φ1} → {t2 | φ2} σ′ = ∀ eα′. eσ′ → ∀eρ′.{t1 | φ′1} → {t2 | φ′2} eσ′ 6 eσ afP2

φ

σ 6 σ′ afP1∪fP2
φ ∧ ∀eρ′, FIV(t1).((φ

′
1 ∧ ι(t1)) ⇒ ∃eρ.(φ1 ∧ ∀FIV(t2).((φ2 ∧ ι(t2)) ⇒ φ′2)))

(B-Sub’)

∆B () : {unit | φ} a φ; ∆
(B-Unit)

et deρ ∈ TypeOf(∆, e) CN(d) = {cj}m
j=1 ∪ {cj}m′

j=m+1

∆1 = ∆ cj : {fTj , σj} ∈ ∆j σj Â∅ 〈φ1
j | tj → {et deρ | φ2

j}〉
if j ≤ m then ∆j , xj : tj B ej : τ a φj ; ∆j+1, xj : tj

else φj = ⊥ and ∆j+1 = ∆j

φ′j = ∀FIV(tj).((φ
1
j ∧ ι(tj) ∧ φ2

j ) ⇒ φj) (j = 1, . . . , m′)
∆m′+1 B e : {et deρ | φ′1 ∧ · · · ∧ φ′m′} a φ; ∆′

∆B match e with {cj xj → ej}m
j=1 : τ a φ; ∆′ (B-Match)

Fig. 4. The Extended Type Inference Rules
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the output specification τ of f and the mined- or propagated- specifications of
the function arguments f̃ .

In B-Reuse’ and B-Refine’, we pick up an extended function type (σ′; φ; {Sj}m
j=1)

for f from the type environment ∆ which has the same shape as the function
type σ required by the context.

In B-Sub’, we first instantiate the possibly polymorphic type σ to the type
of the form σ̃ → ∀ρ̃.{t1 | φ1} → {t2 | φ2} with parametricity in mind by a
type instantiation relation σ Â eP σ̃ → ∀ρ̃.{t1 | φ1} → {t2 | φ2}. The type
instantiation may introduce fresh predicate variables P̃ , which are concretized
later in B-Reuse’ or B-Refine’. For example let us find φ and P̃ such that
∀α.α → α 6 {intρ1 | Q(ρ1)} → {intρ2 | ρ2 ≥ 0} a eP φ. We get ∀α.α → α Â{P}
{intρ1 | P (ρ1)} → {intρ2 | P (ρ2)} for the fresh predicate variable P . Thus,
we have P̃ = {P} and φ ≡ ∀ρ1.(Q(ρ1) ⇒ (P (ρ1) ∧ ∀ρ2.(P (ρ2) ⇒ ρ2 ≥ 0))). In
B-Reuse’ or B-Refine’, we obtain P ≡ λρ2.ρ2 ≥ 0 since φ contains the sub-
formula P (ρ2) ⇒ ρ2 ≥ 0. Thus, we get (P 7→ λρ2.ρ2 ≥ 0)(φ) ≡ ∀ρ1.(Q(ρ1) ⇒
ρ1 ≥ 0), and then Q ≡ λρ1.ρ1 ≥ 0.

The type inference rule B-Unit for the unit primitive is straightforward. The
rule for the introduction form c e is the same as B-App’. The rule B-Match
for the elimination form match e with {cj xj → ej}m

j=1 requires that {cj}m
j=1 is

a subset of CN(d), where d is the algebraic data type of e.

5 Implementation and Experiments

We have implemented a prototype type inference system (available from http:
//web.yl.is.s.u-tokyo.ac.jp/∼uhiro/depinf/) according to the formaliza-
tion in Section 3. It supports higher-order functions, parametric polymorphism,
and algebraic data types as described in Section 4. We adopted Cooper’s algo-
rithm for checking satisfiability of integer constraints. We report two kinds of
experiments to show the effectiveness of our approach. All the experiments were
performed on Intel Xeon CPU 3GHz with 3GB RAM.

5.1 Verification of sorting algorithms

This experiment shows an application of our system to infer the specifications for
auxiliary functions from the specification of the top-level function. The programs
used in the experiment are the insertion sort defined in Section 1, and a merge
sort. We discuss below the experiment for the insertion sort. The experiment for
the merge sort is similar: The merge sort program consists of a main function
msort and two auxiliary functions merge and msplit. The types of merge and
msplit have been automatically inferred from only the type specification that
msort should return a sorted list.

In the experiment, Nil is defined as a constructor having two types: ∀α.unit→
{α listρ | ρ = 0} and ∀ρ.unit → {ordlistρ1 | ρ1 = ρ}. Cons is defined as a
constructor having two types: ∀α.α× α listρ1 → {α listρ2 | ρ2 = ρ1 + 1} and
〈ρ1 ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ3 = ρ1}〉. Here, α listn is the
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type of lists of length n, whose elements have the type α. ordlistn is the type
of ordered lists, whose elements are integers greater than or equal to n. As in
this example, multiple types can be declared for each constructor in our system,
and an appropriate type is chosen depending on each context. We also added
a type declaration that isort should return a value of type {ordlistρ | >}.
Appendix A shows the whole code used in the experiment.

Our system succeeded in verifying the program, and inferred the following
types in 0.912 seconds:

insert : ∀ρ.〈ρ ≤ ρ1 ∧ ρ ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ ≤ ρ3}〉,
isort : int list→ ordlist.

The type of insert means that insert returns a sorted list whose head is greater
than or equal to the first argument and the head of the second argument if a
sorted list is given as the second argument.

We describe below how the type of the auxiliary function insert is refined.
From the definition of insert, the initial type assigned to insert is int ×
int list → int list. When the call site insert (x, isort xs′) (on the last
line of the definition of isort) is checked (with the required output specification
{ordlistρ | >}), the following new template for the type of insert is prepared:

∀ρ.〈P (ρ, ρ1, ρ2) | intρ1 × ordlistρ2 → {ordlistρ3 | Q(ρ, ρ1, ρ2, ρ3)}〉,
Since the required type for insert (x, isort xs′) is {ordlistρ | >}, the system
first tries to let Q(ρ, ρ1, ρ2, ρ3) be >, and checks the constraint extracted from
the definition of isort. That type is, however, not precise enough to check the
recursive call insert(x, ys) (on the last line of the definition of insert), which
requires that ∀ρret.Q(ρ′, ρx, ρys, ρret) ⇒ ρy ≤ ρret holds. Thus, Q(ρ, ρ1, ρ2, ρ3)
is strengthened to ρ ≤ ρ3. Then, the system successfully propagates the output
specification backward to infer the input specification P (ρ, ρ1, ρ2) ≡ ρ ≤ ρ1∧ρ ≤
ρ2 of insert.

5.2 Experiment with functions from the OCaml list module

In this experiment, we demonstrate an application of our system to learn specifi-
cations of library functions. We use the list module of the OCaml programming
language (http://caml.inria.fr/) as the target of the experiment.

The experiment proceeded as follows.

1. We manually translated the source code of the list module into our language.
We have also added the definition of list constructors Nil : ∀α.unit →
{α listρ | ρ = 0} and Cons : ∀α.α× α listρ1 → {α listρ2 | ρ2 = ρ1 + 1}.

2. We executed our system for the translated code above. No call site informa-
tion was used in this phase (except for the calls inside libraries).

3. Let f be a function whose argument type constraint inferred in the previous
step is not >. (For example, the argument type of combine was inferred to
be {α listρ1 × β listρ2 | ρ1 = ρ2} in Step 2.) Let g be another library
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function. Then, we searched for code fragments of the form f (. . . g (. . .) . . .)
from various application programs. (Here, we have used Google Code Search,
http://www.google.com/codesearch/.)

4. We executed our system to the code fragments collected in the above step,
to refine the types of library functions.

The first and third steps of the experiment have been conducted manually, but
automation of those steps would not be difficult.

The result of the experiment is summarized in Table 1. A manually simplified
version of the result is also presented in Table 2. This simplification process can
be automated easily. Table 3 shows some of the call sites used in the final step.
The filed “time” indicates the time spent in the second and fourth steps.

For most of the library functions, the inferred types are the same as the
expected types (modulo simplification of some constraints). For some functions,
the inferred types were less precise than expected: For example, the type of
rev map2 in Table 1 does not capture the property that the length of the returned
list is the same as that of the second argument. We expect that those types can
be refined by using more appropriate call sites.

As for the efficiency, our system was slow for length, map2, and combine.
We think that this is due to the present naive implementation of the fixed-point
computation algorithm, and that we can remedy the problem by using convex-
hull or selective hull operator [9] to keep the size of the constraints small.

As already mentioned, we have collected the call sites manually in step 3.
To confirm that our choice of call sites did not much affect the quality of the
inferred types, we have tested our system also with call sites other than those
shown in Table 3, and confirmed that similar types are inferred from them.

We explain some of the results in Table 1. The types of append and split
were refined at the call sites:

combine (append (fst (split a), fst (split b)),
append (snd (split a), snd (split b)))

Since combine takes a pair of lists with the same length, the output specification
{α listρ3 | ρ3 = ρ} of append for some polymorphic index variables ρ was mined
from the call site append (snd (split a), snd (split b)). Then, our system
propagated the output specification backward to obtain the input specification
{α listρ1 × α listρ2 | ρ1 + ρ2 = ρ} of append. Our system propagated the
input specification of append, and mined the output specification {α listρ2 ×
β listρ3 | ρ3 = ρ} of split for some polymorphic index variables ρ from
the call site snd (split b). Here, our system reused the polymorphic type
∀α, β.α × β → β of snd to mine the output specification of split. Then,
our system propagated the output specification backward to obtain the input
specification {(α×β) listρ1 | ρ1 = ρ} of split. The input specification of split
is reused for the call site snd (split a). Our system analyzed the other call
sites append (fst (split a), fst (split b)) similarly, and obtained the type
∀α, β.∀ρ.{(α× β) listρ1 | ρ1 = ρ} → {α listρ2 × β listρ3 | ρ2 = ρ} of split.
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function inferred specifications time (sec.)

length ∀α.∀ρ, ρ′.{α listρ1 | ρ ≥ ρ1 ≥ ρ′} → {intρ2 | ρ ≥ ρ2 ≥ ρ′} 27.773
hd ∀α.{α listρ | ρ > 0} → α 0.004
tl ∀α.∀ρ.{α listρ1 | ρ1 > 0 ∧ ρ1 = ρ + 1} → {α listρ2 | ρ2 = ρ} 0.064

nth ∀α.{α listρ1 × intρ2 | ρ1 > ρ2 ≥ 0} → α 0.268
rev ∀α.∀ρ.{α listρ1 | ρ1 = ρ} → {α listρ2 | ρ2 = ρ} 0.540

append ∀α.∀ρ.{α listρ1 × α listρ2 | ρ1 + ρ2 = ρ} → 2.892
{α listρ3 | ρ3 = ρ}

map ∀α, β.(α → β) → ∀ρ.{α listρ1 | ρ1 = ρ} → {β listρ2 | ρ2 = ρ} 0.292
iter2 ∀α, β.(α× β → unit) → 0.276

{α listρ1 × β listρ2 | ρ1 = ρ2} → unit

map2 ∀α, β, γ.(α× β → γ) → 14.236
∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → {γ listρ3 | ρ3 = ρ}

rev map2 ∀α, β, γ.(α× β → γ) → 0.448
{α listρ1 × β listρ2 | ρ1 = ρ2} → γ list

fold left2 ∀α, β, γ.(α× β × γ → α) → 0.276
{α× (β listρ1 × γ listρ2) | ρ1 = ρ2} → α

fold right2 ∀α, β, γ.(α× β × γ → γ) → 0.276
{(α listρ1 × β listρ2)× γ | ρ1 = ρ2} → γ

for all2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

exists2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

split ∀α, β.∀ρ.{(α× β) listρ1 | ρ1 = ρ} → 0.340
{α listρ2 × β listρ3 | ρ2 = ρ3 = ρ}

combine ∀α, β.∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → 15.576
{(α× β) listρ3 | ρ3 = ρ}

Table 1. The specifications of the library functions from the OCaml list module. Our
system automatically inferred them from the call sites of the functions in Table 3.

By merging the inferred types, we obtained the type ∀α, β.∀ρ.{(α× β) listρ1 |
ρ1 = ρ} → {α listρ2 × β listρ3 | ρ2 = ρ3 = ρ} of split.

6 Related Work

As already mentioned in Section 1, closely related to ours is the work on DML [4,
5] and size inference [1–3].

DML [4, 5] is an extension of ML with a restricted form of dependent types.
DML requires users to declare function types, and then automatically performs
implicit argument inference and type checking. An advantage of our approach
is that users need not always declare function types, as demonstrated in the
verification of sorting functions. On the other hand, advantages of DML are that
the type checking algorithm is complete. In practice, therefore, combination of
DML’s approach and our approach seems useful.

Size inference can automatically infer size relations between arguments and
return values of functions [1–3]. A main difference is that the size inference tries
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function inferred specifications time (sec.)

length ∀α.α listρ1 → {intρ2 | ρ2 = ρ1} 27.773
hd ∀α.{α listρ | ρ > 0} → α 0.004
tl ∀α.〈ρ1 > 0 | α listρ1 → {α listρ2 | ρ2 = ρ1 − 1}〉 0.064

nth ∀α.{α listρ1 × intρ2 | ρ1 > ρ2 ≥ 0} → α 0.268
rev ∀α.α listρ1 → {α listρ2 | ρ2 = ρ1} 0.540

append ∀α.α listρ1 × α listρ2 → {α listρ3 | ρ3 = ρ1 + ρ2} 2.892
map ∀α, β.(α → β) → α listρ1 → {β listρ2 | ρ2 = ρ1} 0.292

iter2 ∀α, β.(α× β → unit) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → unit

map2 ∀α, β, γ.(α× β → γ) → 14.236
〈ρ1 = ρ2 | α listρ1 × β listρ2 → {γ listρ3 | ρ3 = ρ1}〉

rev map2 ∀α, β, γ.(α× β → γ) → 0.448
{α listρ1 × β listρ2 | ρ1 = ρ2} → γ list

fold left2 ∀α, β, γ.(α× β × γ → α) → 0.276
{α× (β listρ1 × γ listρ2) | ρ1 = ρ2} → α

fold right2 ∀α, β, γ.(α× β × γ → γ) → 0.276
{(α listρ1 × β listρ2)× γ | ρ1 = ρ2} → γ

for all2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

exists2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

split ∀α, β.(α× β) listρ1 → {α listρ2 × β listρ3 | ρ2 = ρ3 = ρ1} 0.340
combine ∀α, β.〈ρ1 = ρ2 | α listρ1 × β listρ2 → {(α× β) listρ3 | ρ3 = ρ1}〉 15.576

Table 2. A manually simplified version of the specifications in Table 3.

to infer as specification as possible from the definition of a function, while our
algorithm starts with simple types, and gradually refines the types based on
information about functions’ call sites. A main advantage of our approach is
that we can allow more flexible dependent types based on the user’s demand
(as demonstrated in the verification of sorting functions, where two kinds of
list types were declared). Another possible advantage of our approach (that has
yet to be confirmed by more experiments) is that the on-demand inference can
be more efficient, especially when precise specification is not required for most
functions. On the other hand, an advantage of size inference is that it can find
more precise specification than ours, and that it needs to infer the specification
of a function just once.

Rich type systems have been introduced to practical programming languages
so that non-trivial program invariants can be expressed as types. Datasort refine-
ments (often called refinement types) as well as type reconstruction algorithm
for a finite set of user-defined refinements were introduced by Freeman et al. [10].
The algorithm infers refinement types of functions without requiring type anno-
tations. However, the datasort refinements cannot express linear constraints (e.g.
those on the lengths of lists) unlike in the index refinements of DML. Datasort
refinements were also introduced to programming languages with computational
effects [11]. Dunfield et al. combined the datasort refinements and the index
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file code refined funcs.

predabst.ml combine (a1, (tl a2)) tl

completion.ml nth (a3, (length a3 - 1)) length

xdr.ml let (a4, a5) = split a6 in map, split

combine (a4, map f1 a5)

pmlize.ml combine (rev a7, a8) rev

ass.ml combine (append (fst (split a9), fst (split a10)), append, split

append (snd (split a9), snd (split a10)))

printtyp.ml map2 f2 (a11, map2 f3 (a12, a13)) map2

ctype.ml fold_left2 f4 (a14, a15, combine (a16, a17)) combine

Table 3. The call sites used to infer the specifications of the functions in Table 1. We
collected them from the existing programs written in OCaml.

refinements, and presented type reconstruction algorithms for them [12, 13]. Re-
cently, generalized algebraic data types (GADT) have been introduced to prac-
tical functional programming languages such as Haskell. Several researchers pro-
posed GADT inference algorithms [14–16]. Partial type inference in the spirit
of local type inference [17] is employed in those type systems, to reduce type
annotations. Type information can, however, be propagated locally, so that the
types of recursive functions cannot be inferred automatically.

Flanagan proposed hybrid type checking which allows users to refine data
types with arbitrary program terms [18]. A type reconstruction algorithm for
that type system has been proposed by Knowles and Flanagan [6]. The result of
their type inference algorithm, however contains fixed-point operators on predi-
cates, so that their algorithm alone can neither statically detect errors, nor pro-
duce useful documentations for the program. Their algorithm does not support
compound data structures and parametric polymorphism.

There are other approaches to applying dependent types to practical pro-
gramming languages [19–21]. They require either more type annotations than
DML or dynamic checks.

As mentioned in Section 1, the idea of our approach has been inspired by
automatic predicate discovery and loop invariant inference in other verifica-
tion techniques, such as predicate abstraction [7, 22–24], the induction-iteration
method [25, 26], on-demand loop invariant refinement by Leino [27], and constraint-
based invariant generation which solves unknown parameters in invariant tem-
plates [28, 29]. Our main contribution in this respect is to bring those techniques
into the context of dependently-typed functional languages; The advantage of
using the type-based setting is that the verification technique can be smoothly
extended to support algebraic data types, higher-order functions, etc.

7 Conclusion

We have proposed a novel approach to applying dependent types to practical
programming languages: Our type inference system first assigns simple types
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to functions, and refine them on demand, using information about both the
functions’ definitions and call sites. A prototype type inference system has been
already implemented and tested for non-trivial programs.
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Appendix

A Insertion Sort and Merge Sort Programs

The following is the actual code used in the experiment described in Section 5.1.

type ’a list(n) with n>=0 =
Nil of unit where n=0

| Cons of ’a * ’a list(r) where n=r+1

type ordlist(h) with tt =
{ r : tt } Nil of unit where h=r

| { r1, r2 : r1 <= r2 }
Cons of int(r1) * ordlist(r2) where h=r1

fun isort xs =
fun insert (x, xs) =
match xs with

Nil _ -> Cons (x, Nil ())
| Cons (y, ys) ->

if x <= y then Cons(x, Cons(y, ys))
else Cons(y, insert (x, ys))

in
match xs with
Nil _ -> Nil ()

| Cons (x, xs’) -> insert (x, isort xs’)
in

(isort xs : ordlist)

fun merge (l1, l2) =
match l1 with
Nil _ -> l2

| Cons (h1, t1) ->
(match l2 with

Nil _ -> l1
| Cons (h2, t2) ->

if h1 <= h2 then Cons (h1, merge (t1, l2))
else Cons (h2, merge (l1, t2)))

in
fun msort xs =

fun msplit xs =
match xs with

Nil _ -> (Nil (), Nil ())
| Cons (x, xs’) ->

(match xs’ with
Nil _ -> (Cons (x, Nil ()), Nil ())

[  /  ]



[  /  ]

| Cons (y, ys) ->
let (zs1, zs2) = msplit ys in
(Cons (x, zs1), Cons (y, zs2)))

in
let (ys1, ys2) = msplit xs in
merge (msort ys1, msort ys2)

in
(msort xs : ordlist)

B Operational Semantics

The operational semantics of the language is given in Figure 5.

Evaluation Contexts

E ::= [•] | (E, e) | (v, E) | (fun f x = e) E | f E

| let x = E in e | let (x1, x2) = E in e

| if E then e1 else e2 | assert E in e

Evaluation Rules

fun f x = e1 in e2

−→ [fun f x = e1/f ]e2

(E-Let-Fun)

(fun f x = e) v
−→ [v/x, fun f x = e/f ]e

(E-Fun-App)

f v −→ [[f ]](v)
(E-Ext-Fun-App)

let x = v in e −→ [v/x]e
(E-Let)

let (x1, x2) = (v1, v2) in e
−→ [v1/x1, v2/x2]e

(E-Let-Pair)

n 6= 0

if n then e1 else e2 −→ e1

(E-If-True)

n = 0

if n then e1 else e2 −→ e2

(E-If-False)

n 6= 0

assert n in e −→ e
(E-Assert)

e −→ e′

E[e] −→ E[e′]
(E-Context)

e −→∗ e

e −→∗ e′′ e′′ −→ e′

e −→∗ e′

Fig. 5. The Operational Semantics

C Proof of Soundness of the Type System

We introduce typing rules T-Fun and T-Fun-App for run-time function clo-
sures.
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φ ∧ φ′; Γ, f : σ, x : t ` e : τ
ρ̃ ∩ FIV(Γ, φ) = ∅ σ = ∀ρ̃.〈φ′ | t → τ〉

φ; Γ ` fun f x = e : σ
(T-Fun)

φ; Γ ` fun f x = e1 : σ φ ` σ 6 τ1 → τ2

φ;Γ ` e2 : τ1

φ;Γ ` (fun f x = e1) e2 : τ2

(T-Fun-App)

Theorem 1 (Soundness). If >; Γ ` e : τ is derivable, FV(e) = ∅, and Γ is
valid, then e either evaluates to a value or diverges.

Proof. A corollary of the type preservation (Lemma 3) and the progress (Lemma 5),
which are proved later in this section.

C.1 Preservation

Lemma 1 (Substitution).

1. If φ; Γ ` v : {t | φ′}, φ ∧ φ′; Γ, x : t ` e : τ , and FIV(t) ∩ FIV(τ) = ∅ then,
φ; Γ ` [v/x]e : τ is derivable.

2. If φ; Γ ` v : σ and φ; Γ, f : σ ` e : τ then, φ; Γ ` [v/f ]e : τ is derivable.

Lemma 2 (Subtyping). If φ; Γ ` fun f x = e : σ and φ ` σ 6 σ′ then
φ; Γ ` fun f x = e : σ′.

Lemma 3 (Preservation). Suppose that φ;Γ ` e : τ , e −→ e′, and Γ is valid.
Then, φ;Γ ` e′ : τ is derivable.

Proof. We prove the theorem by induction on the derivation of φ; Γ ` e : τ .

T-Sub we have φ = φ1 and τ = {t | φ2} where φ′1; Γ ` e : {t | φ′2} and
|= φ1 ⇒ (φ′1 ∧ (φ′2 ⇒ φ2)).
By I.H., we get φ′1; Γ ` e′ : {t | φ′2}. By T-Sub, we obtain φ1; Γ ` e′ : {t |
φ′2}.

Otherwise By induction on the derivation of e −→ e′.
E-Let-Fun We have e = fun f x = e1 in e2 and e′ = [fun f x = e1/f ]e2.

By T-Let-Fun, we have φ∧φ1; Γ, f : σ, x : t1 ` e1 : τ1, ρ̃∩FIV(Γ, φ) = ∅,
σ = ∀ρ̃.〈φ1 | t1 → τ1〉, and φ; Γ, f : σ ` e2 : τ .
By T-Fun, we obtain φ; Γ ` fun f x = e1 : σ.
By Lemma 1, we have φ; Γ ` [fun f x = e1/f ]e2 : τ .

E-Fun-App We have e′ = [v/x, fun f x = e1/f ]e1 and e = (fun f x =
e1) v.
By T-Fun-App, we get φ;Γ ` fun f x = e1 : σ, φ ` σ 6 τ ′ → τ , and
φ;Γ ` v : τ ′.
By Lemma 2, we get φ;Γ ` fun f x = e1 : τ ′ → τ ,
By T-Fun, we obtain φ ∧ φ′; Γ, f : τ ′ → τ, x : t ` e1 : τ .
By Lemma 1, we have φ; Γ ` [v/x, fun f x = e1/f ]e1 : τ .
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E-Ext-Fun-App We have e = f v and e′ = [[f ]](v). Because Γ is valid,
[[f ]](v) is defined and φ; Γ ` [[f ]](v) : τ .

E-Let We have e = let x = v in e1 and e′ = [v/x]e1.
By T-Let, we have φ; Γ ` v : {t | φ′}, φ ∧ φ′;Γ, x : t ` e1 : τ , and
FIV(t) ∩ FIV(τ) = ∅.
By Lemma 1, we obtain φ; Γ ` [v/x]e1 : τ .

E-Let-Pair Similar to the case E-Let
E-If-True We have e = if n then e1 else e2 and e′ = e1 where n 6= 0.

By T-If, we have φ; Γ ` n : {intρ | φ′} and φ ∧ (∃ρ.(φ′ ∧ ρ 6= 0)); Γ `
e1 : τ .
By T-Int (and T-Sub), we get |= φ ⇒ (ρ = n ⇒ φ′). Since ρ 6∈ FIV(φ),
we have |= φ ⇒ (∃ρ.(φ′∧ρ = n)). Then, we get |= φ ⇒ (∃ρ.(φ′∧ρ 6= 0)).
By T-Sub, we obtain φ;Γ ` e1 : τ .

E-If-False Similar to the case E-If-True
E-Assert We have e = assert n in e1 and e′ = e1.

By T-Assert, we have φ; Γ ` e1 : τ .
E-Context We have e = E[e1] and e′ = E[e′1] where e1 −→ e′1. We can

obtain φ; Γ ` E[e′1] : τ by case analysis of the structure of E[e1].

C.2 Progress

Lemma 4 (Canonical Form). If v is a value such that φ;Γ ` v : {intρ | φ′},
then v = n for some integer n such that |= φ ⇒ [n/ρ]φ′.

Lemma 5 (Progress). Suppose that φ; Γ ` e : τ , φ is satisfiable, FV(e) = ∅,
and Γ is valid. Then, either e is a value or there exist e′ such that e −→ e′.

Proof. We prove the theorem by induction on the derivation of φ; Γ ` e : τ .

T-Var This case is impossible since FV(e) = ∅.
T-Int We have e = n. n is a value.
T-Pair We have e = (e1, e2) where φ; Γ ` e1 : {t1 | φ1} and φ; Γ ` e2 : {t2 | φ2}.

By I.H., either
– e1 is a value. By I.H., either

• e2 is a value. Then, (e1, e2) is a value.
• There exists e′2 such that e2 −→ e′2. E-Context applies.

– There exists e′1 such that e1 −→ e′1. E-Context applies.
T-Let-Fun We have e = fun f x = e1 in e2.

We can apply E-Let-Fun.
T-App We have e = f e1 where φ; Γ ` e1 : τ1.

By I.H., either
– e1 is a value v. Since Γ is valud, [[f ]](v) is defined. Therefore, E-Ext-Fun-App

applies.
– There exists e′1 such that e1 −→ e′1. Therefore, E-Context applies.

T-Let We have e = let x = e1 in e2 where φ; Γ ` e1 : {t | φ′}.
By I.H., either
– e1 is a value. E-Let applies.
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– There exists e′1 such that e1 −→ e′1. E-Context applies.
T-Let-Pair Similar to the case T-Let
T-If We have e = if e1 then e2 else e3 where φ; Γ ` e1 : {intρ | φ′}.

By I.H., either
– e1 is a value. By Lemma 4, e1 = n for some integer n. Therefore,

E-If-True or E-If-False applies.
– There exists e′1 such that e1 −→ e′1. E-Context applies.

T-Assert We have e = assert e1 in e2 where φ; Γ ` e1 : {intρ | ρ 6= 0}.
By I.H., either
– e1 is a value. By Lemma 4, e1 = n for some integer n such that |= φ ⇒

n 6= 0. We get n 6= 0 since φ is satisfiable. Therefore, E-Assert applies.
– There exists e′1 such that e1 −→ e′1. E-Context applies.

T-Sub We have φ = φ1 and τ = {t | φ2} where φ′1;Γ ` e : {t | φ′2} and
|= φ1 ⇒ (φ′1 ∧ (φ′2 ⇒ φ2)).
φ′1 is satisfiable since φ1 is satisfiable. By I.H., either e is a value or there
exists e′ such that e −→ e′.

T-Fun We have e = fun f x = e1.
fun f x = e1 is a value.

T-Fun-App Similar to the case T-App

D Proof of Soundness of Type Inference Rules

Lemma 6. If ` Γ ′ 6 Γ and Γ ; e ` τ : is derivable then, Γ ′; e ` τ : is derivable.

Lemma 7. If φ;Γ ` e1 : {t1 | φ1} and φ1; Γ ` e2 : {t2 | φ2} and derivable then,
φ; Γ ` e2 : {t2 | φ2} is derivable.

Lemma 8. If ∆Bf : σ a eP S; ∆′ and ∆ is valid, then ∆′ is valid, ` (|∆′|) 6 (|∆|),
and f : σ′ ∈ (|∆′|) for some σ′ such that ` σ′ 6 S(σ).

Theorem 2 (Soundness). If ∆Be : τ a φ; ∆′ is derivable and ∆ is valid then,
∆′ is valid, ` (|∆′|) 6 (|∆|), and φ; (|∆′|) ` e : τ is derivable.

Proof. We prove the theorem by induction on the derivation of ∆Be : τ a φ; ∆′.

B-Var We have e = x, τ = {t | φ′}, φ = [t′/t]φ′, and ∆′ = ∆ where x : t′ ∈ ∆

and |t| = |t′|. ρ̃′ = FIV(t′).
By T-Var, we get [t′/t]φ′; (|∆|) ` x : {t | ρ̃ = ρ̃′} and ρ̃ = FIV(t). We have
|= [t′/t]φ′ ⇒ (ρ̃ = ρ̃′ ⇒ φ′). By T-Sub, we obtain [t′/t]φ′; (|∆|) ` x : {t | φ′}.

B-Int We have e = n, τ = {intρ | φ′}, φ = [n/ρ]φ′, and ∆′ = ∆.
By T-Int, we get [n/ρ]φ′; (|∆|) ` n : {intρ | ρ = n}. We have |= [n/ρ]φ′ ⇒
(ρ = n ⇒ φ′). By T-Sub, we obtain [n/ρ]φ′; (|∆|) ` n : {intρ | φ′}.

B-Pair We have e = (e1, e2), τ = {t1 × t2 | φ′}, φ = φ1, and ∆′ = ∆1 where
∆ B e2 : {t2 | φ′} a φ2; ∆2 and ∆2 B e1 : {t1 | φ2} a φ1; ∆1.
By I.H., we obtain φ2; (|∆2|) ` e2 : {t2 | φ′} and φ1; (|∆1|) ` e1 : {t1 | φ2}.
We have ` (|∆1|) 6 (|∆2|).
By Lemma 6 and Lemma 7, we get φ1; (|∆1|) ` e2 : {t2 | φ′}.
By T-Pair, we get φ1; (|∆1|) ` (e1, e2) : {t1 × t2 | φ′}.
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B-Let-Fun We have e = fun f x = e1 in e2 and ∆′ = ∆2 \ f where σ =
∀ρ̃.〈φ′ | t → τ1〉 = TypeOf(∆, fun f x = e1), ∆, f : σ, x : t B e1 : τ1 a
φ1; ∆1, f : σ, x : t, ψ = ∀ρ̃,FIV(t).(φ′ ⇒ φ1), dom(S) = FPV(σ), |= S(ψ),
and ∆1, f : (σ; ψ; {S}) B e2 : τ a φ;∆2.
By I.H., we obtain φ1; (|∆1, f : σ, x : t|) ` e1 : τ1 and ` (|∆1, f : σ, x : t|) 6
(|∆, f : σ, x : t|), and φ; (|∆2|) ` e2 : τ and ` (|∆2|) 6 (|∆1, f : (σ; ψ; {S})|).
Suppose that (|∆2|) = Γ, f : S′(σ).
We have ` Γ, f : S′(σ), x : t 6 (|∆1, f : S′(σ), x : t|) and |= S′(ψ).
By T-Sub and Lemma 6, we obtain φ∧S′(φ′); Γ, f : S′(σ), x : t ` e1 : S′(τ1).
By T-Let-Fun, we have φ; (|∆2 \ f |) ` fun f x = e1 in e2 : τ .

B-App We have e = f e′ and ∆′ = ∆2 where t = TypeOf(∆, e′), ρ̃ = FIV(t),
P : fresh, ∆ B f : {t | P (ρ̃)} → τ a{P} S; ∆1, and ∆1 B e′ : {t | S(P (ρ̃))} a
φ2; ∆2.
By I.H., we obtain φ2; (|∆2|) ` e′ : {t | S(P (ρ̃))} and ` (|∆2|) 6 (|∆1|).
By Lemma 8, we get f : σ′ ∈ (|∆1|) for some σ′ such that ` σ′ 6 {t |
S(P (ρ̃))} → τ .
By T-App, we get φ; (|∆1|) ` f e′ : τ .
By Lemma 6, we obtain φ; (|∆2|) ` f e′ : τ .

B-Let We have e = let x = e1 in e2, φ = φ1, and ∆′ = ∆1 where t =
TypeOf(∆, e1), ∆,x : t B e2 : τ a φ2; ∆2, and ∆2 \ x B e1 : {t | φ2} a φ1;∆1.
By I.H., we get φ2; (|∆2|) ` e2 : τ and ` (|∆2|) 6 (|∆,x : t|), and φ1; (|∆1|) `
e1 : {t | φ2} and ` (|∆1|) 6 (|∆2 \ x|).
By T-Sub, we obtain φ1 ∧ φ2; (|∆2|) ` e2 : τ .
By Lemma 6 and ` (|∆1|), x : t 6 (|∆2 \ x|), x : t = (|∆2|), we get φ1 ∧
φ2; (|∆1|), x : t ` e2 : τ .
We have FIV(t) ∩ FIV(τ) = ∅.
By T-Let, we get φ1; (|∆1|) ` let x = e1 in e2 : τ .
We obtain ` (|∆1|) 6 (|∆2 \ x|) 6 (|∆,x : t \ x|) = (|∆|).

B-Let-Pair Similar to the case B-Let
B-If We have e = if e1 then e2 else e3, φ = φ1, and ∆′ = ∆1 where ∆ B e2 :

τ a φ2; ∆2, ∆2 B e3 : τ a φ3; ∆3, ρ : fresh, ∆3 B e1 : {intρ | φ′} a φ1;∆1,
and φ′ = (ρ 6= 0 ∧ φ2) ∨ (ρ = 0 ∧ φ3).
By I.H., we get φ2; (|∆2|) ` e2 : τ and ` (|∆2|) 6 (|∆|), φ3; (|∆3|) ` e3 : τ and
` (|∆3|) 6 (|∆2|), and φ1; (|∆1|) ` e1 : {intρ | φ′} and ` (|∆1|) 6 (|∆3|).
We have |= (φ1 ∧ (∃ρ.(φ′ ∧ ρ 6= 0))) ⇒ φ2, |= (φ1 ∧ (∃ρ.(φ′ ∧ ρ = 0))) ⇒ φ3,
and ` (|∆1|) 6 (|∆2|).
By T-Sub and Lemma 6, we obtain φ1 ∧ (∃ρ.(φ′ ∧ ρ 6= 0)); (|∆1|) ` e2 : τ .
By T-Sub and Lemma 6, we have φ1 ∧ (∃ρ.(φ′ ∧ ρ = 0)); (|∆1|) ` e3 : τ .
By T-If, we get φ1; (|∆1|) ` if e1 then e2 else e3 : τ .

B-Assert We have e = assert e1 in e2, φ = φ1 ∧ φ2, and ∆′ = ∆2 where
ρ : fresh, ∆ B e1 : {intρ | ρ 6= 0} a φ1; ∆1, and ∆1 B e2 : τ a φ2; ∆2.
By I.H., we get φ1; (|∆1|) ` e1 : {intρ | ρ 6= 0} and ` (|∆|) 6 (|∆1|), φ2; (|∆2|) `
e2 : τ and ` (|∆1|) 6 (|∆2|).
We have ` (|∆|) 6 (|∆2|).
By T-Sub and Lemma 6, we obtain φ1 ∧ φ2; (|∆|) ` e1 : {intρ | ρ 6= 0}.
By T-Sub and Lemma 6, we have φ1 ∧ φ2; (|∆|) ` e2 : τ .
By T-Assert, we get φ1 ∧ φ2; (|∆|) ` assert e1 in e2 : τ .
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