
On-Demand Refinement of Dependent Types

Hiroshi Unno1 and Naoki Kobayashi2

1 University of Tokyo, uhiro@yl.is.s.u-tokyo.ac.jp
2 Tohoku University, koba@ecei.tohoku.ac.jp

Abstract. Dependent types are useful for statically checking detailed
specifications of programs and detecting pattern match or array bounds
errors. We propose a novel approach to applications of dependent types
to practical programming languages: Instead of requiring programmers’
declaration of dependent function types (as in Dependent ML) or trying
to infer them from function definitions only (as in size inference), we mine
the output specification of a dependent function from the function’s call
sites, and then propagate that specification backward to infer the input
specification. We have implemented a prototype type inference system
which supports higher-order functions, parametric polymorphism, and
algebraic data types based on our approach, and obtained promising
experimental results.

1 Introduction

Dependent types are useful for statically verifying that programs satisfy detailed
specifications and for detecting data-dependent errors such as pattern match
or array bounds errors. For example, the function λx.x + 1 is given a type
int → int in the simple type system, but with dependent types, it is given a
type Πx : int.{y : int | y = x + 1}, so that we can conclude that the array
access a[(λx.x + 1) 0] is safe (if the size of array a is more than 1).

There are several approaches to introducing dependent types into program-
ming languages. Size inference [1–3] fixes the shape of dependent types a priori
(e.g., a list type is of the form τ listn where n is the length of a list), and
tries to infer a dependent type of a function automatically from the function’s
definition. Shortcomings of that approach are inflexibility and inefficiency; for
example, it would be hard to infer that a sorting function indeed returns a sorted
list. Dependent ML (DML) [4, 5] lets users declare the dependent type of each
function manually, and checks whether the declaration is correct. A shortcoming
of that approach is that it is often cumbersome for users to declare types for all
functions. For example, consider the following function isort for insertion sort,
and suppose that one wants to verify that isort returns a sorted list.

fun insert (x, xs) = match xs with

Nil _ -> Cons(x, Nil ())

| Cons(y, ys) -> if x <= y then Cons(x, xs) else Cons(y, insert (x, ys))

fun isort xs = match xs with

Nil _ -> Nil ()

| Cons(x, xs’) -> insert (x, isort xs’)

Copyright(C) 2008 by Springer-Verlag. The original version is available at www.springerlink.com.

It would be fine to declare that isort returns a sorted list (because that is indeed
the property to be verified). It is, however, cumbersome to declare a dependent
type of the auxiliary function insert as well. Knowles and Flanagan [6] proposed
a complete type reconstruction algorithm for a certain dependent type system,
but the inferred types include fixed-point operators on predicates, so that the
inferred types alone cannot be used for actual verification or bug finding (without
a reasonable algorithm for computing fixed-points).

We propose an alternative, complementary approach to the previous ap-
proaches discussed above. Instead of requiring programmers’ declaration of de-
pendent function types or trying to infer them from function definitions only, we
infer a function’s type using information about not only the function’s definition
but also the function’s call sites. Another related, distinguishing feature of our
approach is that types are refined on-demand ; we start with the simplest type
for each function, and refine the type gradually, when it turns out that more
precise type information is required by a call site of the function. For example,
the function f

4
= λx.x+1 is first given a type int→ int, but if a calling context

a[f y] is encountered, the type is refined to Πx : int.{y : int | y = x + 1} (since
from the calling context, we know that the actual return value of f is important
for the whole program to be typed). For another example, consider the sort-
ing function isort above. The auxiliary function insert is first given a type
int list→ int list. If the type of isort is declared as int list→ ordlist
(where ordlist denotes the type of sorted lists), however, we can find from the
call site insert (x, isort xs′) that the type of the output of insert should be
ordlist. We can then propagate that information backward to infer the type
of an argument of insert (see Section 5 for a more detailed description of this
refinement step). In this manner, we expect that our approach can deal with
more flexible dependent types (without losing efficiency) than the size infer-
ence. Indeed, we have already implemented the prototype inference system and
succeeded in verifying the sorting function above.

The idea of on-demand type refinement mentioned above, so called type-error-
guided type refinement, has been inspired from that of counter-example-guided
abstraction refinement (CEGAR) in abstract model checking [7]. In CEGAR,
the coarsest abstraction is first used for model checking; the predicates used for
abstraction are gradually refined when a false counter-example is encountered. In
our approach, simple types are first used for type-checking. If the type-checking
fails, types are gradually refined by inspecting a fragment of the program which
causes the failure (until no further refinement is possible, when a type error is
reported).

To formalize the idea mentioned above, Section 2 introduces a simple first-
order functional language with assert expressions and a dependent type system
for it. The assert expressions are used to model array bound checks and user-
supplied specifications. Section 3 formalizes our type inference algorithm, and
proves its soundness. In Section 4, we briefly discuss extension of the type infer-
ence algorithm to deal with higher-order functions, parametric polymorphism,
and algebraic data types. Section 5 reports on a prototype implementation of

our algorithm (for the full language, including higher-order functions, parametric
polymorphism, and algebraic data types) and experiments. Section 6 discusses
related work and Section 7 concludes.

2 Language and Dependent Type System

We use a call-by-value, first-order functional language to present our type infer-
ence algorithm. We extend the language with higher-order functions in Section 4.
The language is essentially an “implicitly-typed” version of a subset of DML [4, 5]
extended with assert expressions.

The syntax of the language is defined as follows:

(expressions) e ::= x | n | (e1, e2) | fun f x = e1 in e2 | f e

| let x = e1 in e2 | let (x1, x2) = e1 in e2

| if e1 then e2 else e3 | assert e1 in e2

(values) v ::= n | (v1, v2) | fun f x = e

Here, x, n, and f are meta-variables ranging over a set of variables, integer
constants, and function names respectively. We write FV(e) for the set of free
variables in e. We assume given primitive operators such as +, ×, = and ≤ on
integers, and ¬, ∧, and ⇒ on booleans. Actually, booleans are represented by
integers (the truth > by a non-zero integer, and the false ⊥ by zero). Thus,
e1 ≤ e2 returns 1 if the value of e1 is less than or equal to that of e2, and returns
0 otherwise. In the function definition fun f x = e1 in e2, f may appear in e1

for recursive calls. However, we do not allow mutually recursive functions in the
language for the sake of simplicity. Our framework can be easily extended to deal
with mutually recursive functions. An assertion assert e1 in e2 evaluates to e2

only if the conditional e1 holds. Otherwise, it gets stuck. Assertions are used for
modeling array bounds errors and user-supplied specifications. For example, the
array access a[x] is modeled as assert 0 ≤ x < h in · · ·, where h is the size of
a. See the full paper [8] for the operational semantics.

We introduce a dependent type system, which ensures that well-typed pro-
grams never get stuck. In particular, an assertion assert e1 in e2 is accepted
only if e1 is statically guaranteed to be non-zero. The type system is used to
state properties of our type inference algorithm in Section 3. The type system
is undecidable, since the constraint language includes integer addition and mul-
tiplication.

The syntax of types is defined as follows:

(base types) t ::= intρ | t1 × t2

(expression types) τ ::= {t | φ}
(function types) σ ::= ∀ρ̃.〈φ | t → τ〉
(constraints) φ ::= ρ | n | op(φ̃) | ∀ρ.φ | ∃ρ.φ

(type environments) Γ ::= ∅ | Γ, x : t | Γ, f : σ

A constraint, denoted by φ, is an index variable ρ, a constant n, an operator
expression op(φ̃), or a quantifier expression. õ signifies a list of objects o1, . . . , om

for some m ≥ 0. We often write > for 1 and ⊥ for 0. Note that the set of operators
contains standard logical operators like ∧ and ¬.

The base type intρ is the type of an integer whose value is denoted by ρ.
The base type t1 × t2 is the type of pairs consisting of values with the types t1
and t2. The expression type {t | φ} is a subtype of t whose index variables are
constrained by φ. For example, {intρ1 × intρ2 | ρ1 > ρ2} is the type of integer
pairs whose first element is greater than the second element. The index variables
in t are bound in {t | φ}. The function type ∀ρ̃.〈φ | t → τ〉 is the type of functions
that take an argument of the type {t | φ} and return a value of the type τ . For
example, 〈ρ1 > 0 ∧ ρ2 > 0 | intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉 is the type
of functions that take a pair of positive integers as an argument, and return the
sum of the integers. The index variables in t and ρ̃ are bound in ∀ρ̃.〈φ | t → τ〉.
We often abbreviate ∀ρ̃.〈φ | t → τ〉 as ∀ρ̃.{t | φ} → τ if the index variables in
t do not occur in τ and as ∀ρ̃.t → τ if φ ≡ >. We assume that α-conversion is
implicitly performed so that bound variables are different from each other and
free variables.

A typing judgment is of the form φ;Γ ` e : τ . It reads that on the assumption
that index variables satisfy φ, the expression has the type τ under the type
environment Γ . For example, ρ > 0; x : intρ ` x + 1 : {intρ′ | ρ′ > 1}.

x : t ∈ Γ eρ′ = FIV(t)
eρ ∩ FIV(φ, Γ) = ∅

φ; Γ ` x : {[eρ/eρ′]t | eρ = eρ′} (T-Var)

φ; Γ ` n : {intρ | ρ = n} (T-Int)

φ; Γ ` e1 : {t1 | φ1}
φ; Γ ` e2 : {t2 | φ2}

φ; Γ ` (e1, e2) : {t1 × t2 | φ1 ∧ φ2}
(T-Pair)

φ ∧ φ1; Γ, f : σ, x : t1 ` e1 : τ1

eρ ∩ FIV(Γ, φ) = ∅
σ = ∀eρ.〈φ1 | t1 → τ1〉
φ; Γ, f : σ ` e2 : τ2

φ; Γ ` fun f x = e1 in e2 : τ2

(T-Let-Fun)

f : σ ∈ Γ φ ` σ 6 τ1 → τ2

φ; Γ ` e : τ1

φ; Γ ` f e : τ2

(T-App)

φ; Γ ` e1 : {t | φ′}
φ ∧ φ′; Γ, x : t ` e2 : τ
FIV(t) ∩ FIV(τ) = ∅

φ; Γ ` let x = e1 in e2 : τ
(T-Let)

φ; Γ ` e1 : {t1 × t2 | φ′}
φ ∧ φ′; Γ, x1 : t1, x2 : t2 ` e2 : τ

FIV(t1, t2) ∩ FIV(τ) = ∅
φ; Γ ` let (x1, x2) = e1 in e2 : τ

(T-Let-Pair)

φ; Γ ` e1 : {intρ | φ′}
φ ∧ ∃ρ.(φ′ ∧ ρ 6= 0); Γ ` e2 : τ
φ ∧ ∃ρ.(φ′ ∧ ρ = 0); Γ ` e3 : τ

φ; Γ ` if e1 then e2 else e3 : τ
(T-If)

φ; Γ ` e1 : {intρ | ρ 6= 0}
φ; Γ ` e2 : τ

φ; Γ ` assert e1 in e2 : τ
(T-Assert)

φ′1; Γ ` e : {t | φ′2}
|= φ1 ⇒ (φ′1 ∧ (φ′2 ⇒ φ2))

φ1; Γ ` e : {t | φ2}
(T-Sub)

Fig. 1. Typing Rules

The typing rules are given in Figure 1. In the figure, FIV(o) is the set of
free index variables in some object o. The relation η |= φ means that an index
environment η (a function from index variables to integers) satisfies a constraint
φ. We write |= φ if ∅ |= ∀ρ̃.φ, where {ρ̃} = FIV(φ).

The subtyping relation φ ` σ 6 σ′ on function types is defined by:

|= φ ⇒ ∀ρ̃′, FIV(t1).(φ′1 ⇒ ∃ρ̃.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′2)))

φ ` ∀ρ̃.〈φ1 | t1 → {t2 | φ2}〉 6 ∀ρ̃′.〈φ′1 | t1 → {t2 | φ′2}〉

The type system ensures that evaluation of a well-typed, closed expression
(i.e., an expression e such that >;Γ0 ` e : τ , where Γ0 is the type environment
for primitive operators) never gets stuck: See [8] for a formal discussion.

3 Type Inference Algorithm

This section formalizes our type inference algorithm and proves its soundness.
First, we extend the syntax of constraints with predicate variables to denote
unknown predicates. We also introduce extended type environments to model an
intermediate state for on-demand type refinement.

(constraints) φ ::= · · · | P (φ̃)
(constraint substitutions) S ::= ∅ | S, P 7→ λρ̃.φ

(extended function types) T ::= (σ;φ; S̃)
(extended type environments) ∆ ::= ∅ | ∆, x : t | ∆, f : T

Here, P is a meta-variable ranging over the set of predicate variables, which are
used to express unknown specifications of functions. We write FPV(o) for the set
of free predicate variables in some object o. Constraint substitutions map pred-
icate variables to predicates (i.e., functions from index variables to constraints).
An extended type environment ∆ maps a function name f to an extended func-
tion type which is a triple of the form (σ; φ; S̃). Here, σ is a template for the type
of f , which may contain predicate variables. For example, a template for a func-
tion from integers to integers is ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉,
where ρ̃ denotes a sequence of index variables (whose length is unknown). The
second element φ is a constraint that records a sufficient condition on predicate
variables for the definition of f to be well-typed; this is used to avoid re-checking
the function’s definition when the function’s type needs to be refined. The third
element S̃ records solutions for φ (which are substitutions for predicate variables)
found so far.

The type inference algorithm is specified as inference rules for the 5-tuple
relation ∆ B e : τ a φ; ∆′. Here, ∆, e, and τ should be regarded as inputs
of the algorithm, and φ and ∆′ as outputs of the algorithm. Intuitively, φ is a
sufficient condition for e to have type τ , and ∆′ describes types refined during the
inference. For example, let e, τ , and ∆ be f(z), {intρ | ρ > 1}, and z : intρz , f :

(σ; φ1; {S}), where σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉, φ1 =
∀ρ̃, ρx.P (ρ̃, ρx) ⇒ ∀ρy.(ρy = ρx + 1 ⇒ Q(ρ̃, ρx, ρy)), and S = {P 7→ λρx.>, Q 7→
λ(ρx, ρy).>}. Then, φ and ∆′ would be ρz > 0 and z : intρz , f : (σ; φ1; {S, S′}),
where S′ is {P 7→ λρx.ρx > 0, Q 7→ λ(ρx, ρy).ρy > 1}.

The inference rules for the relation ∆B e : τ a φ; ∆′ (which are a declarative
description of our type inference algorithm) are given in Figures 2 and 3. Figure 3
shows the rules for function definitions and applications, and Figure 2 shows
the rules for other expressions. The sub-algorithm σ 6 σ′ a φ for computing a
sufficient condition φ for σ to be a subtype of σ′ is also defined in Figure 3. In the
figures, TypeOf(∆, o) is a template for the type of some object o, obtained from
the simple type of o by decorating it with fresh index variables and predicate
variables. For example, if the simple type of o is int, then TypeOf(∆, o) returns
intρ; if the simple type of o is int→ int, TypeOf(∆, o) returns ∀ρ̃.〈P (ρ̃, ρx) |
intρx → {intρy | Q(ρ̃, ρx, ρy)}〉.

In the rules in Figure 2, type inference proceeds in a backward manner:
For example, in B-Var, given the required type {t | φ} of the variable x, if
x : t′ ∈ ∆, we check whether |t| = |t′| (where |t| is the simple type obtained from
t by removing index variables). If the check succeeds, we produce the constraint
[t′/t]φ, which is the constraint obtained from φ by replacing each occurrence of
an index variable of t with the corresponding index variable of t′.

In B-Pair, given the required type {t1 × t2 | φ} of the pair (e1, e2), we
compute the constraint φ2 which is sufficient for e2 to have {t2 | φ}. Then,
we compute the constraint φ1 which is sufficient for e1 to have {t1 | φ2}. The
remaining rules in Figure 2 can be read in a similar manner.

We now explain the rules for functions in Figure 3. In B-Let-Fun, a template
for the function’s type is first prepared (see the first line). We then check the
function’s definition, and compute a sufficient condition ψ on predicate variables
for the definition to be well-typed (see the second line). Then, we find a solution
S for ψ (i.e., a substitution such that |= S(ψ)) by using an auxiliary algorithm
Solve(FPV(σ); ψ), which is explained later. As a result, we obtain the input
specification of f which is sufficient for no assertion violation to occur in f . At
this stage, there is no requirement for the output of f , so that the inferred return
type of f is of the form {t | >}. Finally, we check e2 and produce φ2 and ∆′.
Note that f ’s type may be refined during the type inference for e2.

B-App is the rule for applications. From the type τ of f e and the simple
type of e, we prepare a template of f ’s type: {t | P (ρ̃)} → τ . The value of the
predicate variable P is computed by a sub-algorithm, expressed by using the
relation ∆ B f : σ a{P} S; ∆′ (which is defined using B-Reuse and B-Refine:
see below). Finally, we check that the function’s argument e has the required
type {t | S(P (ρ̃))}.

We have two rules B-Reuse and B-Refine for the auxiliary judgment ∆Bf :
σ a eP S; ∆′. The rule B-Reuse supports the case where the type of f in ∆ is
precise enough to be a subtype of σ, while B-Refine supports the case where
the type of f needs to be refined. The rules are non-deterministic, in the sense
that both rules may be applied. In the actual implementation, B-Reuse is given

a higher priority, so that B-Refine is used only when applications of B-Reuse
fail. For recursive calls and primitive operators, B-Refine is not used.

In B-Reuse, we pick up an already inferred type Sk(σ′), and match it with
the required type σ. (Since the argument type of σ is a predicate variable, we
actually match the return types of σ and σ′ here.) The constraint ψ, computed
by using B-Sub, is a sufficient condition for Sk(σ′) to be a subtype of σ. We
then solve ψ by using Solve.

In B-Refine, we match the template σ′ of the function’s type with the
required type σ, and compute a sufficient condition ψ for σ′ to be a subtype of
σ. We then compute a solution for ψ ∧ φ by using Solve. The key point here is
that both information about the function’s definition (expressed by φ) and that
about the call site (expressed by ψ) are used to compute the function’s type.
Solve can use predicates occurring in ψ as hints for computing a solution of ψ∧φ.

x : t′ ∈ ∆ |t| = |t′|
∆B x : {t | φ} a [t′/t]φ; ∆

(B-Var)

∆B n : {intρ | φ} a [n/ρ]φ; ∆
(B-Int)

∆B e2 : {t2 | φ} a φ2; ∆2

∆2 B e1 : {t1 | φ2} a φ1; ∆1

∆B (e1, e2) : {t1 × t2 | φ} a φ1; ∆1

(B-Pair)

t = TypeOf(∆, e1)
∆, x : tB e2 : τ a φ2; ∆2

∆2 \ xB e1 : {t | φ2} a φ1; ∆1

∆B let x = e1 in e2 : τ a φ1; ∆1

(B-Let)

t1 × t2 = TypeOf(∆, e1)
∆, x1 : t1, x2 : t2 B e2 : τ a φ2; ∆2

∆2 \ {x1, x2}B e1 : {t1 × t2 | φ2} a φ1; ∆1

∆B let (x1, x2) = e1 in e2 : τ a φ1; ∆1

(B-Let-Pair)

∆B e2 : τ a φ2; ∆2 ∆2 B e3 : τ a φ3; ∆3

ρ : fresh φ = (ρ 6= 0 ∧ φ2) ∨ (ρ = 0 ∧ φ3)
∆3 B e1 : {intρ | φ} a φ1; ∆1

∆B if e1 then e2 else e3 : τ a φ1; ∆1

(B-If)

ρ : fresh ∆B e1 : {intρ | ρ 6= 0} a φ1; ∆1

∆1 B e2 : τ a φ2; ∆2

∆B assert e1 in e2 : τ a φ1 ∧ φ2; ∆2

(B-Assert)

Fig. 2. Type inference rules (for basic expressions)

Constraint Solving We now describe a heuristic algorithm Solve(P̃ ; ϕ) to obtain
a solution for ϕ (i.e., a substitution for the predicate variables P̃ that satisfy ϕ).

If ϕ contains a subformula of the form ∀ρ̃.(P (ρ̃) ⇒ ψ(ρ̃, P)), and ψ(ρ̃, P)
does not contain negative occurrences of P , then the algorithm tries to compute
the greatest fixed-point of F = λP.λρ̃.ψ(ρ̃, P) by iterations from λρ̃.> (i.e.,
by computing Fn(λρ̃.>) for n = 1, 2, . . .). (As a special case, if ψ(ρ̃, P) does
not contain P , then the iteration immediately converges with the solution P =
λρ̃.ψ(ρ̃, P).) The algorithm also uses widening [9] to accelerate convergence.

If the above iteration does not converge, the algorithm chooses a new starting
point of iterations by extracting a sub-formula of ψ(ρ̃, P) which does not contain
P and generalizing its constants. This phase roughly corresponds to predicate

σ = ∀eρ.〈φ | t → τ1〉 = TypeOf(∆, fun f x = e1)
∆, f : σ, x : tB e1 : τ1 a φ1; ∆1, f : σ, x : t ψ = ∀eρ, FIV(t).(φ ⇒ φ1)

S = Solve(FPV(σ); ψ) ∆1, f : (σ; ψ; {S})B e2 : τ a φ2; ∆2

∆B fun f x = e1 in e2 : τ a φ2; ∆2 \ f
(B-Let-Fun)

t = TypeOf(∆, e) eρ = FIV(t) P : fresh
∆B f : {t | P (eρ)} → τ a{P} S; ∆1 ∆1 B e : {t | S(P (eρ))} a φ2; ∆2

∆B f e : τ a φ2; ∆2

(B-App)

f : (σ′; φ; {Sj}m
j=1) ∈ ∆ 1 ≤ k ≤ m Sk(σ′) 6 σ a ψ S = Solve(eP ; ψ)

∆B f : σ a eP S; ∆
(B-Reuse)

∆ = ∆b, f : (σ′; φ; {Sj}m
j=1), ∆a σ′ 6 σ a ψ

dom(S) = eP dom(Sm+1) = FPV(σ′) S, Sm+1 = Solve(eP ∪ FPV(σ′); ψ ∧ φ)

∆B f : σ a eP S; ∆b, f : (σ′; φ; {Sj}m+1
j=1), ∆a

(B-Refine)

φ = ∀eρ′, FIV(t1).(φ
′
1 ⇒ ∃eρ.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′2)))

∀eρ.〈φ1 | t1 → {t2 | φ2}〉 6 ∀eρ′.〈φ′1 | t1 → {t2 | φ′2}〉 a φ
(B-Sub)

Fig. 3. Type inference rules (for functions)

discovery in abstract model checking. Unlike model checking, however, we do not
repeat the whole verification process; we just redo the fixed-point computation.

We use the following examples to illustrate how type inference works.

Example 1. fun pred x = assert x > 0 in x− 1 in assert e1 = pred e2 in ()
By B-Let-Fun, we first check the definition of pred. We prepare the tem-

plate σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of pred.
Then we check ∆Bassert x > 0 in x−1 : {intρy | Q(ρ̃, ρx, ρy)} a φ′; ∆′ for ∆ =
∆0, pred:σ, x:intρx , and obtain φ′ = ρx > 0∧Q(ρ̃, ρx, ρx−1). Here, ∆0 = +:〈> |
intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉, . . . ,≤ :〈> | intρ1 × intρ2 → {intρ3 |
ρ3 = ρ1 ≤ ρ2}〉, . . . is the extended type environment for primitive operators.
Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and Q. We then
check assert e1 = pred e2 in () under ∆1 = ∆0, pred : (σ; φ; {P 7→ λρx.ρx >
0, Q 7→ λ(ρx, ρy).>}). To check pred e2 against the type {intρy | ρ = ρy}, the
rule B-Refine is used. From σ 6 {intρx | R(ρx)} → {intρy | ρ = ρy} a ψ, we
get ψ = ∀ρx.R(ρx) ⇒ ∃ρ̃.(P (ρ̃, ρx)∧∀ρy.(Q(ρ̃, ρx, ρy) ⇒ ρ = ρy)). Then, ψ∧φ is
passed to Solve as an input. From the subformula Q(ρ̃, ρx, ρy) ⇒ ρ = ρy, Solve
infers that Q(ρ, ρx, ρy) ≡ ρ = ρy. From the subformula φ, P (ρ, ρx) is inferred
to be ρx > 0 ∧ ρ = ρx − 1. Thus, we obtain the refined type ∀ρ.〈ρx > 0 ∧ ρ =
ρx − 1 | intρx → {intρy | ρ = ρy}〉 of pred.

Example 2.

fun fact x = if x ≤ 0 then 1 else x ∗ fact (x− 1) in assert fact e > 0 in ()

By B-Let-Fun, we first check the definition of fact. We prepare the tem-
plate σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of fact.
Then we check ∆Bif x ≤ 0 then 1 else x∗fact (x−1) : {intρy | Q(ρ̃, ρx, ρy)} a
φ′;∆′ for ∆ = ∆0, fact:σ, x:intρx , and obtain φ′ = (ρx ≤ 0∧φ1)∨(ρx > 0∧φ2).
Here, φ1 = Q(ρ̃, ρx, 1) and φ2 = ∃ρ̃′.(P (ρ̃′, ρx − 1) ∧ ∀ρy.(Q(ρ̃′, ρx − 1, ρy) ⇒
Q(ρ̃, ρx, ρx ∗ ρy))) are respectively obtained from the then- and else- branches.
Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and Q. We then
check assert fact e > 0 in () under ∆1 = ∆0, fact : (σ;φ; {P 7→ λρx.>, Q 7→
λ(ρx, ρy).>}). To check fact e against the type {intρy | ρy > 0}, the rule
B-Refine is used. From σ 6 {intρx | R(ρx)} → {intρy | ρy > 0} a ψ, we
get ψ = ∀ρx.R(ρx) ⇒ ∃ρ̃.(P (ρ̃, ρx) ∧ ∀ρy.(Q(ρ̃, ρx, ρy) ⇒ ρy > 0)). Then, ψ ∧ φ
is passed to Solve as an input. From the subformula Q(ρ̃, ρx, ρy) ⇒ ρy > 0,
Solve infers that Q(ρx, ρy) ≡ ρy > 0. From the subformula φ, P (ρx) is inferred
to be > as the result of the greatest fixed-point computation of the function
F = λP.λρx.(ρx ≤ 0 ∧ 1 > 0) ∨ (ρx > 0 ∧ P (ρx − 1) ∧ ∀ρy.(ρy > 0 ⇒ ρx ∗ ρy >
0)) ≡ λP.λρx.ρx ≤ 0 ∨ (ρx > 0 ∧ P (ρx − 1)) by iterations from λρx.>, which
converge immediately since F (λρx.>) ≡ λρx.ρx ≤ 0∨ρx > 0 ≡ λρx.>. Thus, we
obtain the refined type 〈> | intρx → {intρy | ρy > 0}〉 of fact.

3.1 Soundness

We say that ∆ is valid if and only if for any f : (σ;φ; {Sj}m
j=1) ∈ ∆, |= Sk(φ)

holds for any k ∈ {1, . . . , m}.
Let us define the function (|∆|), which maps an extended type environment

∆ to an ordinary type environment, as follows:

(|∅|) = ∅ (|∆,x : t|) = (|∆|), x : t

(|∆, f : (σ;φ; {Sj}m
j=1)|) = (|∆|), f : merge({Sj(σ)}m

j=1).

Here, merge({σj}m
j=1) = 〈φ1∨· · ·∨φm | t → {t′ | (φ1 ⇒ φ′1)∧· · ·∧ (φm ⇒ φ′m)}〉

if σj = 〈φj | t → {t′ | φ′j}〉 for any j ∈ {1, . . . , m}. The following theorem states
that the type inference algorithm is sound with respect to the dependent type
system presented in Section 2. (We assume the soundness of Solve here; see the
full paper [8] for the proof).

Theorem 1 (Soundness). If ∆Be : τ a φ; ∆′ is derivable and ∆ is valid then,
∆′ is valid, ` (|∆′|) 6 (|∆|), and φ; (|∆′|) ` e : τ is derivable.

Note that the type inference algorithm is not complete with respect to the
type system because of the incompleteness of Solve.

4 Extensions

In this section, we briefly discuss how to extend our type inference algorithm
formalized in Section 3 with higher-order functions, parametric polymorphism,
and algebraic data types. Interested readers are referred to the full paper [8] for
the formalization of the extended algorithm.

Higher-Order Functions A main new issue in handling higher-order functions is
what kind of template is prepared for higher-order functions. For example, for a
function of type (int→ int) → int, one may be tempted to consider a template
of the form: 〈R1(P1, Q1) | 〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 |
R2(P1, Q1, ρ3)}〉, which is the type of a function that takes a function whose
precondition P1 and postcondition Q1 satisfy R1(P1, Q1), and returns an integer
that satisfies R2(P1, Q1, ρ3). This allows us to express a higher-order function
that is polymorphic on the property of a function argument, but requires a
significant extension of the constraint solving algorithm due to the presence of
higher-order predicates.

Instead, we consider only first-order predicate variables, and use a template
〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 | Q2(ρ3)} for (int→ int) →
int. This allows us to extend the algorithm in Section 3 in a fairly straightfor-
ward manner. A shortcoming of the approach is that a higher-order function is
monomorphic on the property of function arguments; we use parametric poly-
morphism to overcome that disadvantage to some extent.

Parametric Polymorphism The above treatment of higher-order functions some-
times results in too specific types. For example, the following type of map would
be inferred from the calling context (map (λx.x + 1) l) : {intw list | w ≥ 0}:
({intx | x≥−1}→{inty | y≥0})→{intz list | z≥−1}→{intw list | w≥0}.
This is too specific to be used in other calling contexts of map. To remedy the
problem, we use parametric polymorphism. In the case of map function, the
polymorphic type ∀α, β.(α → β) → α list → β list is assigned to map,
which can be instantiated to ({intx | P (x)} → {inty | Q(y)}) → {intz list |
P (z)} → {intw list | Q(w)} for any P and Q.

Algebraic Data Types We require users to declare data type invariants and depen-
dent types for constructors of each user-defined algebraic data type as in DML.
Then, our algorithm infers dependent types of functions automatically unlike in
DML. We allow users to declare multiple types for each data constructor; for
example, for lists, users may declare Nil as ∀α.unit → {α listρ | ρ = 0} and
∀ρ.unit → {ordlistρ1 | ρ1 = ρ} (see Section 5.1). This allows users to specify
multiple properties like the list length and sortedness.

The main new difficulty in type inference is how to handle multiple types de-
clared for each constructor as mentioned above. An extended type environment∆
now maps each function name to a set of extended function types, instead of
a single extended function type. For example, a list function may have the fol-
lowing four templates: { 〈P1(ρx) | int listρx → {int listρy | Q1(ρx, ρy)}〉,
〈P2(ρx) | int listρx → {ordlistρy | Q2(ρx, ρy)}〉, 〈P3(ρx) | ordlistρx →
{int listρy | Q3(ρx, ρy)}〉, 〈P4(ρx) | ordlistρx → {ordlistρy | Q4(ρx, ρy)}〉},
which are generated on-demand (based on calling contexts), in order to avoid a
combinatorial explosion of the number of templates. Once an appropriate tem-
plate is chosen, the rest of the algorithm is basically the same as the one described
in Section 3: constraints on predicate variables are generated and solved.

5 Implementation and Experiments

We have implemented a prototype type inference system (available from http:
//web.yl.is.s.u-tokyo.ac.jp/∼uhiro/depinf/) according to the formaliza-
tion in Section 3. It supports higher-order functions, parametric polymorphism,
and algebraic data types as described in Section 4. We adopted Cooper’s algo-
rithm for checking satisfiability of integer constraints. We report two kinds of
experiments to show the effectiveness of our approach. All the experiments were
performed on Intel Xeon CPU 3GHz with 3GB RAM.

5.1 Verification of sorting algorithms

This experiment shows an application of our system to infer the specifications for
auxiliary functions from the specification of the top-level function. The programs
used in the experiment are the insertion sort defined in Section 1, and a merge
sort. We discuss below the experiment for the insertion sort. The experiment for
the merge sort is similar: The merge sort program consists of a main function
msort and two auxiliary functions merge and msplit. The types of merge and
msplit have been automatically inferred from the type specification that msort
should return a sorted list only.

In the experiment, Nil is defined as a constructor having two types: ∀α.unit→
{α listρ | ρ = 0} and ∀ρ.unit → {ordlistρ1 | ρ1 = ρ}. Cons is defined as a
constructor having two types: ∀α.α× α listρ1 → {α listρ2 | ρ2 = ρ1 + 1} and
〈ρ1 ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ3 = ρ1}〉. Here, α listρ is the
type of lists of length ρ, whose elements have the type α. ordlistρ is the type
of ordered lists, whose elements are integers greater than or equal to ρ. As in
this example, multiple types can be declared for each constructor in our system,
and an appropriate type is chosen depending on each context. We also added a
type declaration that isort should return a value of type {ordlistρ | >}. The
full paper [8] shows the whole code used in the experiment.

Our system succeeded in verifying the program, and inferred the following
types in 0.912 seconds:

insert : ∀ρ.〈ρ ≤ ρ1 ∧ ρ ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ ≤ ρ3}〉,
isort : int list→ ordlist.

The type of insert means that insert returns a sorted list whose head is greater
than or equal to the first argument or the head of the second argument if a sorted
list is given as the second argument.

We describe below how the type of the auxiliary function insert is refined.
From the definition of insert, the initial type assigned to insert is int ×
int list → int list. When the call site insert (x, isort xs′) (on the last
line of the definition of isort) is checked (with the required output specification
{ordlistρ | >}), the following new template for the type of insert is prepared:

∀ρ̃.〈P (ρ̃, ρ1, ρ2) | intρ1 × ordlistρ2 → {ordlistρ3 | Q(ρ̃, ρ1, ρ2, ρ3)}〉,

Since the required type for insert (x, isort xs′) is {ordlistρ | >}, the sys-
tem first infers that Q(ρ1, ρ2, ρ3) ≡ >, and checks the constraint extracted from
the definition of isort. That type is, however, not precise enough to check the
recursive call insert(x, ys) (on the last line of the definition of insert), which
requires that ∀ρret.Q(ρ̃′, ρx, ρys, ρret) ⇒ ρy ≤ ρret holds. Thus, Q(ρ, ρ1, ρ2, ρ3)
is strengthened to ρ ≤ ρ3. Then, the system successfully infers the input speci-
fication P (ρ, ρ1, ρ2) ≡ ρ ≤ ρ1 ∧ ρ ≤ ρ2 by propagating the output specification.

5.2 Experiment with functions from the OCaml list module

In this experiment, we demonstrate an application of our system to learn specifi-
cations of library functions. We use the list module of the OCaml programming
language (http://caml.inria.fr/) as the target of the experiment.

The experiment proceeded as follows.

1. We manually translated the source code of the list module into our language.
We have also added the definition of list constructors Nil : ∀α.unit →
{α listρ | ρ = 0} and Cons : ∀α.α× α listρ1 → {α listρ2 | ρ2 = ρ1 + 1}.

2. We executed our system for the translated code above. No call site informa-
tion was used in this phase (except for the calls inside libraries).

3. Let f be a function whose argument type constraint inferred in the previous
step is not >. (For example, the argument type of combine was inferred to
be {α listρ1 × β listρ2 | ρ1 = ρ2} in Step 2.) Let g be another library
function. Then, we searched for code fragments of the form f (. . . g (. . .) . . .)
from various application programs. (Here, we have used Google Code Search,
http://code.google.com/.)

4. We executed our system on the code fragments collected in the above step,
to refine the types of library functions.

The first and third steps of the experiment have been conducted manually, but
automation of those steps would not be difficult.

The result of the experiment is summarized in Table 1. Table 2 shows some
of the call sites used in the final step. The filed “time” indicates the time spent
in the second and fourth steps.

For most of the library functions, the inferred types are the same as the
expected types (modulo simplification of some constraints). For some functions,
the inferred types were less precise than expected: For example, the type of
rev map2 in Table 1 does not capture the property that the length of the returned
list is the same as that of the second argument. We expect that those types can
be refined by using more appropriate call sites.

As for the efficiency, our system was slow for length, map2, and combine.
We think that this is due to the present naive implementation of the fixed-point
computation algorithm, and that we can remedy the problem by using convex-
hull or selective hull operator [10] to keep the size of the constraints small.

As already mentioned, we have collected the call sites manually in step 3.
To confirm that our choice of call sites did not much affect the quality of the
inferred types, we have tested our system also with call sites other than those
shown in Table 2, and confirmed that similar types are inferred from them.

function inferred specification time
name (sec.)

length ∀α.∀ρ, ρ′.{α listρ1 | ρ ≥ ρ1 ≥ ρ′} → {intρ2 | ρ ≥ ρ2 ≥ ρ′} 27.773
hd ∀α.{α listρ | ρ > 0} → α 0.004
tl ∀α.∀ρ.{α listρ1 | ρ1 > 0 ∧ ρ1 = ρ + 1} → {α listρ2 | ρ2 = ρ} 0.064

nth ∀α.{α listρ1 × intρ2 | ρ1 > ρ2 ≥ 0} → α 0.268
rev ∀α.∀ρ.{α listρ1 | ρ1 = ρ} → {α listρ2 | ρ2 = ρ} 0.540

append ∀α.∀ρ.{α listρ1 × α listρ2 | ρ1 + ρ2 = ρ} → 2.892
{α listρ3 | ρ3 = ρ}

map ∀α, β.(α → β) → ∀ρ.{α listρ1 | ρ1 = ρ} → {β listρ2 | ρ2 = ρ} 0.292
iter2 ∀α, β.(α× β → unit) → 0.276

{α listρ1 × β listρ2 | ρ1 = ρ2} → unit

map2 ∀α, β, γ.(α× β → γ) → 14.236
∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → {γ listρ3 | ρ3 = ρ}

rev map2 ∀α, β, γ.(α× β → γ) → 0.448
{α listρ1 × β listρ2 | ρ1 = ρ2} → γ list

fold left2 ∀α, β, γ.(α× β × γ → α) → 0.276
{α× (β listρ1 × γ listρ2) | ρ1 = ρ2} → α

fold right2 ∀α, β, γ.(α× β × γ → γ) → 0.276
{(α listρ1 × β listρ2)× γ | ρ1 = ρ2} → γ

for all2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

exists2 ∀α, β.(α× β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

split ∀α, β.∀ρ.{(α× β) listρ1 | ρ1 = ρ} → 0.340
{α listρ2 × β listρ3 | ρ2 = ρ3 = ρ}

combine ∀α, β.∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → 15.576
{(α× β) listρ3 | ρ3 = ρ}

Table 1. The specifications of the library functions from the OCaml list module. Our
system automatically inferred them from the call sites of the functions in Table 2.

6 Related Work

As already mentioned in Section 1, closely related to ours is the work on DML [4,
5] and size inference [1–3].

DML [4, 5] is an extension of ML with a restricted form of dependent types.
DML requires users to declare function types, and then automatically performs
implicit argument inference and type checking. An advantage of our approach
is that users need not always declare function types, as demonstrated in the
verification of sorting functions.

Size inference can automatically infer size relations between arguments and
return values of functions [1–3]. A main difference is that the size inference tries
to infer as precise specification as possible from the definition of a function, while
our algorithm starts with simple types, and gradually refines the types based on
information about functions’ call sites. A main advantage of our approach is
that we can allow more flexible dependent types based on the user’s demand

file name call site refined
functions

predabst.ml combine (a1, (tl a2)) tl

completion.ml nth (a3, (length a3 - 1)) length

xdr.ml let (a4, a5) = split a6 in split,

combine (a4, map f1 a5) map

pmlize.ml combine (rev a7, a8) rev

ass.ml combine (append (fst (split a9), fst (split a10)), append,

append (snd (split a9), snd (split a10))) split

printtyp.ml map2 f2 (a11, map2 f3 (a12, a13)) map2

ctype.ml fold_left2 f4 (a14, a15, combine (a16, a17)) combine

Table 2. The call sites used to infer the specifications of the functions in Table 1. We
collected them from existing programs written in OCaml.

(as demonstrated in the verification of sorting functions, where two kinds of
list types were declared). Another possible advantage of our approach (that has
yet to be confirmed by more experiments) is that the on-demand inference can
be more efficient, especially when precise specification is not required for most
functions. On the other hand, an advantage of size inference is that it can find
more precise specification than ours, and that it needs to infer the specification
of a function just once.

Rich type systems which include dependent types with datasort and index
refinements [11, 12], and generalized algebraic data types [13–15] have been intro-
duced to practical programming languages so that non-trivial program invariants
can be expressed as types [16, 17]. Partial type inference in the spirit of local
type inference [18] is employed in those type systems, to reduce type annota-
tions. Type information can, however, be propagated locally, so that the types
of recursive functions cannot be inferred automatically.

Flanagan proposed hybrid type checking which allows users to refine data
types with arbitrary program terms [19]. A type reconstruction algorithm for
that type system has been proposed by Knowles and Flanagan [6]. The result of
their type inference algorithm, however contains fixed-point operators on predi-
cates, so that their algorithm alone can neither statically detect errors, nor pro-
duce useful documentations for the program. Their algorithm does not support
compound data structures and parametric polymorphism.

Theorem provers such as Coq [20] can also be used for writing dependently
typed programs [21, 22]. Epigram [23] and Cayenne [24] support interactive de-
velopment of dependently typed programs: a program template and sub-goals
are automatically generated from a type. These systems greatly reduce users’
burden of writing programs and types. However, these systems currently seem
to be difficult to master for ordinary programmers without a knowledge of formal
logic.

As mentioned in Section 1, the idea of our approach has been inspired by
automatic predicate discovery and loop invariant inference in other verifica-
tion techniques, such as predicate abstraction [7, 25–27], the induction-iteration

method [28], on-demand loop invariant refinement by Leino [29], and constraint-
based invariant generation which solves unknown parameters in invariant tem-
plates [30, 31]. Our main contribution in this respect is to bring those techniques
into the context of dependently-typed functional languages; The advantage of
using the type-based setting is that the verification technique can be smoothly
extended to support algebraic data types, higher-order functions, etc.

7 Conclusion

We have proposed a novel approach to applying dependent types to practical
programming languages: Our type inference system first assigns simple types
to functions, and refines them on demand, using information about both the
functions’ definitions and call sites. A prototype type inference system has been
already implemented and tested for non-trivial programs.

Future work includes an extension of our system for producing better error
messages. With the current system, when type inference fails, it is difficult for
the user to judge whether the failure is due to a bug of the program, or the
incompleteness of our type inference algorithm. Finding minimal unsatisfiable
constraints as in [16] would be useful for producing better error messages.

Our type inference algorithm presented in this paper assumes that all the
function definitions are available. To support separate type inference for each
module, we have to let users declare module interface (i.e., dependent types of
the exported functions). Some module interface may be, however, automatically
generated as shown in the experiments in Section 5.2.

Acknowledgments

We thank anonymous reviewers for their comments.

References

1. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL ’96, ACM Press (1996) 410–423

2. Chin, W.N., Khoo, S.C.: Calculating sized types. In: PEPM ’00, ACM Press (1999)
62–72

3. Chin, W.N., Khoo, S.C., Xu, D.N.: Extending sized type with collection analysis.
In: PEPM ’03, ACM Press (2003) 75–84

4. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: PLDI ’98, ACM Press (1998) 249–257

5. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL ’99,
ACM Press (1999) 214–227

6. Knowles, K., Flanagan, C.: Type reconstruction for general refinement types. In:
ESOP ’07. (2007)

7. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: PLDI ’01, ACM Press (2001) 203–213

8. Unno, H., Kobayashi, N.: On-demand refinement of dependent types (Full version)
(January 2008) Available from http://web.yl.is.s.u-tokyo.ac.jp/∼uhiro/.

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL ’78, ACM Press (1978) 84–96

10. Popeea, C., Chin, W.N.: Inferring disjunctive postconditions. In: ASIAN ’06.
LNCS, Springer-Verlag (December 2006)

11. Dunfield, J.: Combining two forms of type refinements. Technical Report CMU-
CS-02-182, Carnegie Mellon University (September 2002)

12. Dunfield, J., Pfenning, F.: Tridirectional typechecking. In: POPL ’04, ACM Press
(2004) 281–292

13. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL
’03, ACM Press (2003) 224–235

14. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. In: POPL ’06, ACM Press (2006) 232–244

15. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: ICFP ’06, ACM Press (2006) 50–61

16. Sulzmann, M., Voicu, R.: Language-based program verification via expressive
types. Electronic Notes in Theoretical Computer Science 174(7) (2007) 129–147

17. Kiselyov, O., chieh Shan, C.: Lightweight static capabilities. Electronic Notes in
Theoretical Computer Science 174(7) (2007) 79–104

18. Pierce, B.C., Turner, D.N.: Local type inference. In: POPL ’98, ACM Press (1998)
252–265

19. Flanagan, C.: Hybrid type checking. In: POPL ’06, ACM Press (2006) 245–256
20. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.

Springer-Verlag (2004)
21. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler

with a proof assistant. In: POPL ’06, ACM Press (2006) 42–54
22. Chlipala, A.: Modular development of certified program verifiers with a proof

assistant. In: ICFP ’06, ACM Press (2006) 160–171
23. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter.

Manuscript, available online (April 2005)
24. Augustsson, L.: Cayenne – a language with dependent types. In: ICFP ’98: Pro-

ceedings of the third ACM SIGPLAN international conference on Functional pro-
gramming, ACM Press (1998) 239–250

25. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV ’97,
Springer-Verlag (1997) 72–83

26. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
’02, ACM Press (2002) 191–202

27. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
’02, ACM Press (2002) 58–70

28. Suzuki, N., Ishihata, K.: Implementation of an array bound checker. In: POPL
’77, ACM Press (1977) 132–143

29. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: APLAS ’05. Volume
3780 of LNCS., Springer-Verlag (November 2005) 119–134

30. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: SAS ’04. Volume 3148 of LNCS., Springer-Verlag (August 2004) 53–68

31. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI ’07, ACM Press (2007) 300–309

