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Abstract

This paper describes a vision-based navigation method
in an indoor environment for an autonomous mobile
robot which can avoid obstacles. In this method, the
self-localization of the robot is done with a model-based
vision system, and a non-stop navigation is realized
by a retroactive position correction system. Station-
ary obstacles are avoided with single-camera vision and
moving obstacles are detected with ultrasonic sensors.
We will report on experiments in a hallway using the
YAMABICO robot.

1 Introduction

In what has become a fairly well-researched ap-
proach to vision based navigation for mobile robots,
a robot is provided with an environmental map and
a path to follow[1][2][3][4]. The important function of
vision-based processing in this case consists of ‘self-
localization.’ In a different approach, a robot is
provided with a sequences of images of the interior
space[5][6]. By comparing these prerecorded images
with the camera images taken during navigation, the
robot is able to determine its location.

An important adjunct to the problem of navigation
is the problem of obstacle avoidance. In the vision-
based navigation work reported in the past, such as in
[3], obstacle avoidance is carried out using ultrasonic
sensors. These sensors take over the control of the
robot as long as obstacles are detected in the vicin-
ity. The control is then handed back to vision-based
processing once the obstacles are no longer a factor.
While it is expedient to use ultrasonic sensors in such
a manner, we believe it is empirically more interesting
to use vision-based processing for obstacle avoidance
also. Since a primary focus of machine intelligence
and advanced robotics is to capture human faculties in
a computer and since humans use vision for obstacle
avoidance while navigating, we are evidently interested

in doing the same in a robot.
In this paper, we will present an integrated vision-

based process for mobile robots that is capable of si-
multaneously navigating and avoiding stationary ob-
stacles using monocular camera images. While the
self-localization part of the process is the same as the
FINALE system of [3], what distinguishes the work
reported in this paper is that we are now able to give
to the robot a vision-based obstacle avoidance capabil-
ity at the same time. In the current implementation,
this obstacle-avoidance capability is limited to the de-
tection and avoidance of stationary obstacles. This is
owing to the limitations of the computing hardware
available to the robot. Therefore, moving obstacles
must still be detected with ultrasonic sensors.

What is particularly noteworthy about our approach
is that the self-localization and the obstacle avoidance
are both carried out by processing the same image,
thus eliminating what would otherwise be a redun-
dancy in sensor data collection. While a model-based
approach is used for self-localization, obstacles are de-
tected by computing the difference between the edges
estimated from the 3D environment model and the
edges detected from the actual camera image. We
should mention that is not the only approach to vision-
based detection of obstacles. As reported by [7], an al-
ternative approach consists of computing optical-flows
from the images.

2 Vision-Based Navigation

2.1 Self-Localization

As mentioned earlier, the self-localization part of the
overall navigation scheme is the same as the FINALE
(Fast Indoor Navigation Allowing for Locational Er-
rors) system of [3]. However, the manner in which
self-localization is used in the current system is dif-
ferent from that in [3]. Self-localization in FINALE
kicks in whenever the variances associated with the
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Figure 1: Flow of self-localization procedure.

positional parameters exceed a certain predetermined
threshold. In our current system, self-localization is
carried out on a continuous basis.

We’d like to review briefly the computations that go
into self-localization. Figure 1 shows the flow of the
self-localization procedure. First, the robot renders
an expectation image using its current best estimate
of where its present location is. Next, the model edges
extracted from the expectation image are compared
and matched with the edges extracted from the cam-
era image through an extended Kalman filter. The
Kalman filter automatically then yields updates val-
ues for the location and the orientation of the robot.

To illustrate the process of self-localization, Figure
2(a) shows a typical camera image. Shown in (b) is an
expectation image rendered from the wire-frame model
of the environment; this expectation map is overlaid on
the camera image. As the reader can see, the discrep-
ancy between the various edges in the underlying cam-
era image and the highlighted edges in the expectation
map is caused by the error between where the robot
actually is and where the robot thinks it is. Shown
in (c) are the edges extracted from the camera image.
Note in particular that not all gray level variations in
the camera image translate into edges. As explained
in [3], this is due to the fact that the system only looks
for those edges in the camera image that are in prox-
imity – both spatially and in the Hough space – to the
edges in the expectation map. Shown in (d) is a re-
projection into the camera frame of those model edges
that were successfully used for self-localization. The
fact that these re-projected edges fall exactly where
they should is a testimony to the accuracy of the re-
sult produced by the Kalman filter. Although not dis-
cernible, shown in (e) are two small icons, in close
proximity to each other, the bright one corresponding
to the updated position and orientation of the robot
and the somewhat darkened corresponding to the old

(a) (b)

(c) (d)

(e) (f)

Figure 2: Sample images of self-localization. (a) Cam-
era image. (b) Expectation map overlaid on the cam-
era image. (c) Edges extracted from the camera image.
(d) Matched model edges reprojected into the camera
frame. (e) Two small icons showing the robot’s old
and the updated position in the hallway. (f) Enlarged
version of (e). The gray icon is for the old position
and the white icon is for the updated position.

position and orientation. To help the reader discern
these two icons, shown in (f) is an enlarged version of
the image in (e).

2.2 Non-Stop Navigation by Retroac-
tive Position Correction

We now need to explain how the self-localization pro-
cess described above fits into the overall framework for
navigation. What we really want to do – and this has
actually been implemented – is to navigate with dead-
reckoning, meaning that we want the robot to update
its position continuously on the basis of the informa-
tion supplied by the wheel encoders. Unfortunately,
there is always some differential slippage in the wheels
that causes a purely dead-reckoning based approach to
go awry if navigation is attempted over significant dis-
tances. So we want the robot to use vision-based self-
localization to eliminate the errors accumulated dur-
ing dead-reckoning. Due to the time delays associated
with vision-based processing, this turns out to be a for-
tuitous combination dead-reckoning and vision-based
position updating. Since we do not want the robot to
come to a halt as the camera image is being processed,
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what is really needed is a retroactive approach to po-
sition correction, along the lines originally proposed
in [8]. As explained below, in the current system we
have implemented a slight variation on the retroactive
updating idea reported in [9].

Figure 3 shows the timing diagram used for retroac-
tive position correction. At time t0, an image is taken
and the self-localization process started. The com-
putations for self-localization come to an end at time
t0 + n∆t where ∆t is the sampling interval for dead
reckoning, meaning that at the end of each ∆t inter-
val the position of the robot is recalculated based on
the wheel encoder readings. Since the self-localization
results correspond to the image taken at time t0, the
dead-reckoning based estimate of robot’s position at
the current time (the time instant t0 + n∆t) must be
recalculated. Since this recalculation is done within a
sampling interval for dead reckoning, the robot is able
to proceed in a non-stop manner without having to
stop for processing the camera image.

3 Obstacle Avoidance
Obstacle avoidance is carried out using both vision and
ultrasonic sensing. While our ultimate goal is to use
only vision for obstacle avoidance, due to the limita-
tions of the computing hardware available to the mo-
bile robot, at this time vision can only be used for the
detection of stationary obstacles. So, in the current
implementation, the detection of moving obstacles is
left to ultrasonic sensors.

3.1 Stationary Obstacle Avoidance

The detection of stationary obstacles is based on the
premise that the camera image and the expectation
map must be in near-perfect registration immediately

after self-localization. So, any discrepancy between
these two images can only be caused by the presence of
obstacles in the environment, assuming of course that
the edge-detection process does not result in any ar-
tifact edges in the camera image. Fortunately, as will
be shown presently, the artifact edges, caused mostly
by glare and other illumination dependent phenomena,
can be eliminated by using adaptive thresholding.

Adaptive Thresholding. We will now explain how
the adaptive thresholds are found for the edge de-
tection operator. Recall, the edge-detection thresh-
olds at the different locations of the robot must be
such that when an edge detector is applied to a cam-
era image immediately after self-localization, it should
not yield any artifact edges. For a particular hallway
with given illumination conditions, these thresholds
are found through a learning procedure prior to any
navigation in that hallway. The learning procedure
consists of

1. clear the hallways of all obstacles
2. manually drive the robot through the different

sections of the hallway
3. render expectation maps from the hallway model

at regular intervals during these manual traversals
by the robot

4. record the camera images at the same locations
where the expectation maps are rendered

5. apply an edge detection operator to the camera
images using a threshold T for the edge detection
operator

6. construct a difference image between the model
edge map from Step 3 and the edge map from the
previous step

7. divide the difference image of Step 6 into five ver-
tical regions and count the numbers of pixels N1

through N5 in each region
8. compute max Nm of these five numbers N1

through N5

9. go back to step 5 and by iterating Steps 5 through
8, construct a graph of the number of pixels Nm

in Step 8 versus the threshold T

10. choose the threshold T0 for which the number of
difference pixels Nm is a minimum. Designate this
value of Nm by N0.

The reason why the index Nm is not just a total num-
ber of pixels in the whole difference image and is cal-
culated in the manner mentioned above, is that it will
also be used as another adaptive threshold value for
determining the direction of safe passage. Figure 4 is
a pictorial depiction of these steps for the determina-
tion of the optimum threshold T0 at each location of
the robot.

To appreciate why there would be a threshold T0

that would minimize the number of difference pixels,
note that for high values of T both the real hallway
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Figure 4: Flow of the learning process for determining
optimum edge detection thresholds.

edges and the artifact edges will be suppressed. As the
threshold is increased, there will come a point where
no edges will be extracted from a camera image. So
large values of T will yield a high count for the number
of pixels in the difference image. At the other extreme,
when T is too small, the camera image will yield an
excessively large number of edges, most corresponding
to random gray level fluctuations in the camera image.
So the number of difference pixels will again be large.
In between these two extremes, there will be a value for
T , designated T0, for which the number of difference
pixels Nm will be a minimum denoted by N0. Shown
in Figure 5(a) is a camera image taken from a position
where the rendered expectation map looks like what
is shown by the overlaid white lines in Figure 5(b).1

Shown in Figure 5(c) is a plot of the difference pixels
Nm obtained in Step 8 above for different values of the
threshold T . Also marked in this figure are the thresh-
old T0 and the number N0 of pixels that corresponds
to the threshold T0.

To illustrate a result of the 10-step procedure for de-
termining the adaptive thresholds for an entire section
of a hallway, shown in Figure 6 is a section of the hall-
way immediately outside our laboratory. The robot
was manually driven along the trajectory marked by
x’s. Along this trajectory, expectation maps were ren-

1Only the vertical edges of the rendered expectation map
are displayed as overlaid white lines. That’s because we have
found it sufficient to use just the vertical lines for the detection
of stationary obstacles. However, the entire procedure can be
readily extended to edges of arbitrary orientation, albeit at a
higher computational cost.
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Figure 5: (a) Camera image. (b) Vertical lines in the
rendered expectation map overlaid on the camera im-
age. (c) Plot showing the number of difference pixels
Nm vs. the threshold T .

dered at regular intervals and the corresponding cam-
era images recorded. (In order not to jumble up the
display in Fig. 6, only every fourth position where im-
ages were rendered and recorded is shown in the fig-
ure.) The edge detection thresholds T0 and the num-
bers of pixels N0 corresponding to T0 are shown in
Figure 7. This graph constitutes the table used in
the adaptive thresholding process during autonomous
navigation.

Obstacle Detection. Figure 8 shows the flow of
computations for the obstacle detection procedure by
vision. During autonomous navigation, in accord with
the statements made at the beginning of Section 3.1,
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Figure 6: The robot’s trajectory for the learning of
adaptive thresholds.
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Figure 8: The obstacle detection procedure using vi-
sion during autonomous navigation.

obstacles are found from the difference of vertical edges
in the camera image and the expectation map im-
mediately after each exercise in self-localization. As
shown in Fig. 8, model vertical edges in the scene
are estimated from the 3D edge model of the environ-
ment using the robot’s position corrected by the self-
localization first. Next, vertical edges are extracted
from the camera image using for the detection thresh-
old a value that corresponds to the nearest position in
the table lookup. The vertical edges thus found are
compared with the model vertical edges. Any extra-
neous vertical edges must come from any obstacles in
the environment.

Figure 9 shows sample images for a typical exercise
in obstacle detection by vision. Displayed by overlaid
white lines in (a) are the model vertical edges as ob-
tained from the expectation map rendered from the
environment model. The tall dark object on the left
is a wooden box that serves as an obstacle. Shown
in (b) are the vertical edges extracted from the cam-
era image using the nearest optimum edge-detection
threshold T0 from the table of such thresholds for the
hallway in question. Shown in (c) is a difference edge
image for the vertical edges extracted from the cam-
era image and the model vertical edges. Shown in (d)

(a) (b)

(c) (d)

Figure 9: Sample images for obstacle detection by vi-
sion. (a) Model vertical edges overlaid on the camera
image. (b) Detected vertical edges from the camera
image. (c) The difference edge image. (d) Robot’s po-
sition, obstacle information and passage space in the
hallway.

are robot’s position, obstacle information and passage
space in the hallway. The robot is shown as an inverted
‘T’ icon, the obstacle by a small white rectangle, and
the safe-passage direction by two closely spaced paral-
lel lines.

Determining the Direction of Safe Passage. To
find a direction for safe passage in the presence of ob-
stacles, as pointed out in the ten-step procedure out-
lined in the previous subsection, the difference edge
image (an example of which is Figure 9(c)) is divided
into five vertical regions, as shown in Figure 10(a)
where a tall dark obstacle is present on the left. Num-
ber of pixels in each of the five regions is summed. If
this sum exceeds the threshold N0 for this location of
the robot, the directions corresponding to that verti-
cal region in the camera image are considered to be
unsafe.2 Recall from our previous discussion, N0 is
the smallest number of Nm which is the maximum of
the pixel numbers N1 through N5 counted in the five
vertical regions of the difference edge image, and N0

results from the application of the optimum thresh-
old T0. Of course, as with the application of the edge
detection thresholds T0, the location for which N0 is
available will often not coincide exactly with the cur-
rent location of the robot. So, as was the case for edge
detection, N0 for the nearest entry in the table is used.

2The threshold that is actually used for detecting obstacles
is (1 + ε) × N0 where a non-negative ε accounts for the nearly
always-present discrepancy between the nearest location of the
robot where N0 is available and the location of the robot where
it is needed during navigation. A value of ε = 0.5 has worked
for us in almost all our experiments. In most cases, N0 is less
than 100, hence the threshold is less than 150. This margin of
50 pixels wouldn’t be a large value considering various noises on
the image.



Shown in Figure 10(b) are the summed values for each
of the five regions marked in (a) of Figure 10.

The view-space in front of the robot is given one of
three labels: 1) obstacles, 2) unknown, and 3) open
space. Initially, the directions corresponding to ‘ob-
stacles’ are made to correspond to those of the five
vertical regions in the camera image whose difference
pixel sum exceeds N0, as explained above. By the
same token, initially the directions corresponding to
‘unknown’ are all those that are outside the view cone
corresponding to the camera image. Both the ‘obsta-
cles’ and the ‘unknown’ are expanded by half the width
of the robot to ensure safe clearance. The rest of the
directions then yield us the directions of the safe pas-
sage for the robot. Since the width of the YAMABICO
robot is assumed to be twice as large as one of the ver-
tical regions in Figure 10 at a distance of one meter
in front of the camera, free passage space is narrowed
to the size of one vertical region on the right of the
obstacle in Figure 10(c). Distance to obstacles cannot
be computed from the visual information, since only
a single camera is used in this method. It is for this
reason we make the conservative assumption that all
obstacles and unknown regions are situated 1 meter in
front of the robot. After obstacle avoidance, the robot
seeks to approach its originally planned path to the
destination.

3.2 Moving Obstacle Detection

As mentioned before, the currently implemented vision
system is effective only for detecting stationary obsta-
cles because of limitations on the computing power
available to the robot. The ultrasonic sensors, which
can measure the distance to the object in almost real
time by the pulse-echo technique, are therefore used
for detecting moving obstacles. Of course, since the
ultrasonic sensors have no intrinsic way of distinguish-
ing between moving and stationary obstacles, the in-
teraction between the two sensor systems – the vision
sensor and the ultrasonic sensors – becomes important.
How the robot is controlled by the two sensor systems
is predicated on the following attributes of the sensors:

1. The view angles of the two sensor systems are
nearly identical (60 degrees).

2. By using appropriate time gating of the received
echos, the ultrasonic sensors do not detect an ob-
stacle if it is farther than 50cm from the robot.

3. The vision sensor is capable of detecting station-
ary obstacles at ranges far exceeding 50cm.

Shown in Figure 11 are the view angles for the two
sensor systems. In the next section, we will explain
how the two sensor systems interact in light of the
attributes listed above.
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area of the ultrasonic sensor.



Figure 12: Autonomous mobile robot YAMABICO .

4 System Architecture

The navigational system described in this paper was
implemented on the YAMABICO robot[10] shown in
Figure 12. Because this robot doesn’t have a pow-
erful image processing module, a workstation is used
as an off-board image processing unit at this time.
The robot communicates with the workstation over
two links, a video link for the transmission of images
and a two-way RF link for data. An image is taken by
the camera mounted on the robot and it’s sent to the
workstation over the video link. The received image
is processed on the workstation and the resulting data
sent to the robot over the RF link. The camera used
here is XC-999 (SONY) and its iris was fixed. As was
shown previously in Figure 11, the horizontal angle of
viewing field is 60 degrees approximately. The image
is digitized into 256 × 240 pixels. YAMABICO has
ultrasonic sensors and three pairs of ultrasonic trans-
mitters and receivers can monitor about 60 degrees
of the view-space in front of the robot, in accordance
with Figure 11. Since we wanted to predominantly
use vision for collision avoidance, time gating was used
to limit the range of ultrasonic collision avoidance to
50cm.

We will now explain how the two sensor systems in-
teract for collision avoidance. When the robot faces
a stationary obstacle, the obstacle is first detected by
vision since the range of ultrasonic sensors is limited
to 50cm. In the manner explained previously, the vi-
sion data is used for the calculation of the direction
of safe passage and the robot turns toward this direc-
tion. For those obstacles that are avoided on the basis
of vision data, the ultrasonic sensors will usually not
record any echos for the simple reason that the robot
has already steered away from them. If per chance one
or more of the ultrasonic sensors do receive echos from
such an obstacle, the robot comes to a halt and uses
its vision again for calculating afresh the direction of
safe passage. In case of a moving obstacle, of course,
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Figure 13: Map of hallway. The black line denotes
planned path.

it could be detected by vision if the obstacle makes
its appearance just at the moment the camera image
is recorded. Such an obstacle would be treated in the
same manner as a stationary obstacle. Of course, the
obstacle such as this would have moved to a different
location by the time the robot arrives in its vicinity.
In such cases, the robot would seem to be avoiding
phantom obstacles, but not to any great detriment of
the overall navigational performance. Note that after
each exercise in collision avoidance, the robot seeks
to go back to its planned path to the destination. If
the moving obstacle gets too close to the robot, the
ultrasonic sensors take over and bring the robot to a
momentary halt. Subsequently, the vision based pro-
cessing is re-initiated for further navigation.

5 Experimental Results in Au-
tonomous Navigation

Using the system presented in the previous section,
several experiments were performed in the hallway
shown in Figure 13. The size of the grid shown by
the dotted lines is 1 meter on each side.

An example of autonomous navigation on the
planned path, as displayed by the black line in Figure
13, is shown in Figure 14. In this figure, the robot’s po-
sitions corrected by each self-localization exercise are
shown as x’s. The total length of the path is approxi-
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Figure 14: An example of autonomous navigation.
The robot’s actual trajectory is shown as x’s. A mov-
ing obstacle ‘A’ crossed the path and there was a sta-
tionary obstacle ‘B’.

mately 12.5 meters. During this experiment, a moving
obstacle ‘A’ (a human) suddenly crossed the path just
in front of the robot. The ultrasonic sensors brought
the robot to a halt, followed by the invocation of vision
sensors for determining the direction of safe passage.
The robot also successfully avoided a stationary ob-
stacle ‘B’ (a wooden box) by using vision.

The speed of the robot was set at 10cm/s for this
experiment. The processing time for one image was
approximately 10 seconds on the workstation (a SUN
SPARCstation 20).

6 Discussions and Conclusions
We presented in this paper a vision-based naviga-
tional system for mobile robots that is also capable of
avoiding at least the stationary obstacles using vision
data. By using a combination of model-based vision
for self-localization; retroactive position updating to
cope with the time delays associated with image pro-
cessing; using vision data for not only self-localization
but also for the calculation of directions of safe passage
in the presence of obstacles; and ultrasonic sensors for
the detection of close-range moving obstacles; we have
created a navigational system that makes optimum use
of all the sensors for smooth and continuous navigation
in indoor environments.

As with all such systems dealing with higher-level
robotic intelligence, the performance can never be ex-
pected to be completely foolproof. The best that one
can do is to devise appropriate automatic error cor-
rection and detection strategies. To briefly discuss the
various failure modes of our system, the vision-based
collision avoidance capability depends obviously on the
visual contrast between the obstacle and the interior of
the hallway. The size of the obstacle will also play an
important role in its detectability by vision. To gain
an understanding of these limitations, we performed
experiments using two small cardboard boxes of two

different colors, brown and white, each of height 35cm
and width 24cm, as test obstacles. As for the results,
the robot was able to detect the white box in all cases,
but in 50% of the cases failed to detect the brown
box. It is entirely possible that superior image pro-
cessing strategies would enhance the performance of
vision-based collision avoidance. Our future research
will address this issue.

Acknowledgments

The authors would like to thank very much Dr. T. Tsub-
ouchi, Mr. S. Maeyama and Prof. S. Yuta of the Intelligent
Robot Laboratory of the University of Tsukuba for their
useful suggestions and support of this research.

References
[1] T. Tsubouchi and S. Yuta: “Map Assisted Vision Sys-

tem of Mobile Robots for Reckoning in a Building En-
vironment,” Proc. 1987 IEEE Intl. Conf. on Robotics
and Automation, pp. 1978-1984, 1987.

[2] K. Sugihara: “Some Location Problems for Robot
Navigation Using a Single Camera,” Compt. Vision
Graphics Image Process., 42, pp. 112-129, 1988.

[3] A. Kosaka and A. C. Kak, “Fast Vision-Guided Mo-
bile Robot Navigation Using Model-Based Reasoning
and Prediction of Uncertainties,” CVGIP–Image Un-
derstanding , 56(3), pp. 271-329, 1992.
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