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Abstract—In this paper, we present the current progress of
our approach to identify and follow a target person for a service
robot application. The robot is equipped with LRF and Omni
directional camera. Our approach is based on multi-sensor
fusion in which a person is identified using the panoramic
image and tracked using the LRF. The selection of the target
person is implemented to improve the identification when
multiple candidates are detected. Our approach is successfully
implemented on a mobile robot. A simplified target person
following behavior is implemented to focus on the proposed
method’s efficiency. Several experiments are conducted and
showed the effectiveness of our approach to identify and follow
human in indoor environments.

I. INTRODUCTION

A luggage cart is the most used tool in airports. It is handy

and useful to carry luggage for long distances. However,

in many cases this tool can be problematic to handle and

difficult to use. A robot having as function to carry luggage

and to follow the customer can be of a great help. This kind

of robot rises many challenges. Such a robot, called service

robot, should be able to interact with people and coexist with

them in the same space. The robot also needs to fulfill its

functions in a crowded environment designed basically for

humans.

The tour-guide robot of Burgard et al. [1] adopts only laser

sensor to implement people tracking both for interacting with

users and for mapping the environment, discarding human

occlusions. Other research consider the usage of camera. In

the work of Jianpeng Zhou et al. [2], they present a real

time robust human detection and tracking system for video

surveillance which can be used in varying environments. To

ensure more accuracy, it is common to use sensor fusion and

especially a combination of camera and LRF. For instance, in

the work of Luo et al. [3] and Bellotto et al. [4], the method

uses a laser to extract body features, which are fused then

with the face detected by a camera. The solution is useful for

pursuing a person in front of the robot. However, the usage

of face detection to identify target person limits the expected

natural behavior. In the work of Wilhelm et al. [5], a skin

color based identification with LRF data fusion is used to

detect and follow a human in a path-way. The usage of skin

color is useful to detect a human, however it is not enough

discriminative to identify a human among others.

In our work presented in [6], we implemented a tentative

method for human identification and tracking from a mobile

robot in a fixed situation. We used a registered set of person

clothes patterns to identify the target person in the image and

locate its positions in the laser scans clusters. The resulting

identified clusters are the potential target person positions.

Our early proposed method relied on the target person clothes

pattern registration step which required a full spin of a person

in front of the robot. In the work presented in this paper, the

patch registration was redesigned to get patches while the

target person cluster, initially identified, is not yet lost. Using

the calibration of the patch size and location in the image and

the cluster size and distance, we improved the extraction of

patches from the chest level of the target person while he is

moving. In this work, we try to keep the individual modules’

complexity low and focus on modules’ data fusion to reach

better performance. Also, We use sensor fusion approach to

solve the target person identification and tracking.

Also, to improve the patch detection processing speed, we

are limiting the search area to the clusters view angles. We

improved the cluster tracking stage by including, in addition

to the position and size, the speed and direction’s information

to each cluster data. We introduce in this paper a multi

hypothesis target cluster selection to choose the target among

the potential target person positions. Once the target person

position is detected, the target person following step will

allow the robot to keep a constant distance and a facing

direction to the target.

II. SENSORS CONFIGURATION

Our system describes a luggage cart robot which is able

to identify its temporary target person and follow him in a

relatively crowded environment. To implement these tasks,

we propose the following configuration of sensors.

The robot in Fig.1 is a mobile wheeled robot equipped of

two sensors: Omni directional camera and LRF. The camera

is mounted on the same height of the human head to allow

the face recognition. The LRF is mounted under the camera

and shares the same vertical axis with it. The scan field of the

LRF is limited to 270deg centered to the front of the robot.

We use the left blind field to pass the cabling and the fixing

frame to the robot. The two sensors are rigidly attached to the

robot. Using the mirror transformation derived in the work

of Baker et al. [7], we transform the circular image into a

panoramic image.

The resulting panoramic image is a 360deg image. The

origin of the image coordinate system is the top left corner.

The horizontal axis represents the angular dimension. Its



Fig. 1. Sensors configuration. The camera and the LRF are sharing the
same vertical axis and their measured angular position is calibrated. The
green dotted line represents the camera field of view and the yellow line
represent the LRF detection level.

Fig. 2. Plotting the face detection result and the LRF clustering result in
the same polar coordinate allows a direct transformation of the calculated
angle α from one sensor to another.

angular resolution is 0.309 degree/pixel. The vertical axis

represents the field of view. The image width is 1161 pixels
and its height is 186 pixels. The camera and LRF are sharing

the same Z axis. As shown in Fig.2, using the position of

the detected face in the image and the degree/pixel ratio,

we convert its position into an angle. After calibration, we

convert the face angle from the image coordinate into LRF

coordinate system. The cluster located at the same angle as

the face is associated to it.

III. HUMAN TRACKING STAGE

Our human tracking algorithm adopts multi-sensor data

fusion techniques to integrate the following two different

sources of information: the panoramic image adapted from

an omni directional camera and laser scans of the LRF.

A. People tracking

Using the LRF data, we propose to keep track of all

clusters having a shape and a size likely to belong to a

person. For each cluster, we need to know its position, speed

and direction. First, we consider the points received from the

LRF as chain of data. We compute the Euclidean distance

between two successive points, if the distance is more than

a pre-defined constant, we break the chain into two and we

continue to the last point. The result will be a set of clusters

of data corresponding to the visible unconnected objects.

Then, we apply a series of rejectors on the set of clusters

to have in the end clusters which may belong to the target

person. These rejectors include a linearity filter to eliminate

clusters having straight line shape (like walls and flat sur-

faces) and a maximum human width to keep only clusters

having likely a human shape and width.

Fig. 3. The cluster history output screen-shot.

For each LRF scan, we need to label each cluster so that

a cluster belonging to the same object should have the same

label. Two clusters of successive LRF scans and correspond-

ing to same object represent two instances of the object’s

observation. The ordered list of these instances is the track

of that object. The top of the list is the latest instance and

the bottom is the oldest. Each instance’s speed and direction

are calculated from the average of the last instances’ time

and space differences to have stable readings. When a new

cluster is detected, we forecast the position of each top

instance of each track. Then we associate that cluster with

its corresponding track if it satisfies the minimum Euclidean

distance to its forecasted instance’s position. Finally its speed

and direction are updated accordingly. If track does not get

a new instance for a fixed duration, its state is affected

to "lost" and removed. The structure holding all tracks is

called the positions history. The positions history structure,

shown in fig.4, can be defined as 2D table where each row

corresponds to a track and each column correspond to a time

instance when the corresponding cluster is detected. So rows

are candidates and columns are instances.

Fig. 3 shows an example of this step’s output where

currently detected clusters are represented as circles and the

speed and direction are shown as a segment. The circle’s size

presents the cluster width and the length of the segment is

proportional to the cluster’s speed.



Fig. 4. Positions history structure where rows are candidates, columns
are instances and cells are candidates’ position and state. Measurements are
affected to the corresponding candidate’s row depending on the shortest
Euclidean distance between the last position of the candidate and the
measurement.

B. Target person identification

The identification of the target person relies on the color

pattern matching of patches extracted from all sides of the

target person on the level of the target chest in the current

frame of the omni-directional camera. In the previously

proposed method [6], we order the target to have a full spin

in front of the robot. This scenario was criticized for its non

applicability in real applications. In this paper to propose to

extract the needed color patches without imposing a special

behavior to the target person.

Initially, the robot is waiting, in a parking lot, for a human

interaction. When a person is present in front of the robot,

a face detection’s algorithm[8] gives his face position and

size in the image. If the person confirms the operation, the

identification of the target person starts. This step collects

samples of the clothes of the target person, we call them

patches. The frame origin is the upper left corner and its

y-axis is the vertical axis. We want to have a patch from

the chest level so we use the position and dimension of

the face detection to calculate the region of the patch. The

dimension of the patch and its horizontal position are equal

to the face’s dimension and position. The vertical position

of the patch yPatch , expressed in pixels, is relative to the

vertical position of the face yFace and its height heightFace
where yPatch = yFace+1.25heightFace. yFace is the top
edge of the face detection region. That region corresponds to

the chest level of the detected human. Using the relationship

deducted from the calibration of a cluster distance with the

match’s size and vertical position shown in Fig. 5, we collect

as much different patches as possible while the human is in

a range distance of 2 meters starting from the start of the

system. When exceeding this distance, the patch size gets too

small to be used. Fig. 6 shows a sample of patches and there

location in the image. Fig. 7 shows a typical system start with

patch extraction. After detecting the face and calibrating the

patch extraction region, the system starts extracting patches

while the target person is in the 2 meters distance range

from the robot. The green square depicts the patch extraction

region and the red one shows the patch detection results.

Fig. 5. The calibration of a cluster distance and its relationship with the
match’s size and vertical position

In current method, identifying the temporary target per-

son in the panoramic image relies on the color histogram

matching algorithm coupled with a down-sampling algorithm

implemented in OpenCV[9] to accelerate the searching time.

The output of this algorithm is a correlation map calculated

using the panoramic image and each collected patch. The

maximum intensity value corresponds to the best match. The

searching area is limited to the area where currently detected

clusters of the position history structure are seen. We convert

each matched region’s position from the image coordinate

to an angle expressed in the LRF coordinate system. The

result is a list of the highest matched regions with their

respective angular positions. We use a threshold on minimum

coefficient value to limit the number of selected matches. The

upper row of Fig. 9 shows a screen-shot of the output of this

stage where red squares are the matched area and the number

beside them are their respective matching coefficients.

C. Target person’s selection

Each of the previously presented steps gives an informa-

tion about the target person seen from different sensors.

The the target person’s selection step has to use all this

information to select the cluster which belongs to the target

person and gives his position to the target person’s following

step.

Using the outputs of the last two steps: the angular position

of the matches in the panoramic image and the positions

history from the LRF. This step matches cluster tracking

results with vision to identify visually matched tracks.



Fig. 6. Upper row: target person from three different angles. The red square
is the face detection output. The green square is the extraction reference
position and the first patch. The blue squares are the next extracted patches
positions. Bottom row: the extracted patches.

Fig. 7. A sequence of images in a typical system stating with patch
extraction. Green squares depict the patch extraction region. The red squares
depict the patch detection results.

Using the calibration results in Fig. 5, we determined the

relationship between the match’s width of the person chest

in the image and the real distance of the person from the

robot. We associate bigger matches with nearer clusters and

vice versa. Thus we associate to each match a validity range

(represented in bottom of Fig. 9 as vertical red segment).

A track having instances located at the same angle as the

detected match and in its validity range is labeled as "visually

matched track". The latest instance of the visually matched

track is the target to follow and its position will be sent to

following step.

Knowing that the image processing is relatively time

consuming, we needed to treat the synchronization problem

between the two steps. We apply the matching between the

received matches and its corresponding instance whenever

they are near in the time space. If one instance of a track is

matched, the track is considered as visually matched. Fig. 8

shows a screen-shot where an instance initially unidentified

(Blue color) gets identified when it overlaps with matches

(vertical red segments). The data fusion is done in the past,

so the overlapping is not to be seen in the current instance

but the track gets identified (violet color).

Fig. 8. Two successive screen-shots of the target person selection step.

The matches and tracks fusion can result in many visually

identified tracks, so we need to select the target of the current

time among them.

Having as a base the enriched positions history (the

position history with all its tracks states) and the last selected

target, the robot has to decide the current selected target to

follow. To cover all cases, we use a truth table of all possible

situations. We consider:

• NO: No visually matched track in the current time.

• OO: Only one visually matched track in the current

time.

• MO: Many visually matched tracks in the current time.

• EA: Last identified target is found in all track of the

current time.

• EO: Last identified target is found in the visually

matched tracks.

TABLE I

THE TRUTH TABLE OF THE TARGET SELECTION STEP.

¬EA EA ∧ ¬EO EO

NO lost update position Not applicable

OO Select wait next update position

MO no decision wait next update position

Considering all cases in Table I, the perfect case is ex-

pressed when the last identified target appears in the current

scan ((EO ∧ OO) ∨ (EO ∧MO) ∨ (EA ∧ ¬EO ∧ NO)).
In that case, his position is updated and the following stage

will take care of approaching him. When the tracked target

is lost (¬EA ∧ NO), the robot stops the following and

waits for other possible case. When no decision can be

made (¬EA ∧ MO), the robot waits for the next scan to

confirm the situation. The difficult situation is faced when

the last identified target exists in the track list but not in

visually matched and a new visually matched track appears

((EA ∧ ¬EO) ∧ (OO ∨MO)). In this case, a probabilistic

method can be applied. For our current system, we select the

new visually matched track to be the following stage target.

IV. TARGET PERSON FOLLOWING STAGE

The result of the human tracking stage is the identified

track of target person. This track has the spacial position,



the average speed and the average direction. The main

purpose of this stage is to allow the robot to keep a fixed

distance to the target person. This fix distance is called the

target’s proximity distance. To evaluate the proposed fusion

technique while the robot is moving, we keep the following

stage’s implementation simple.

We designed this step to follow the target person by

driving the robot directly towards the person’s location.

Basically, we try to keep a constant distance separating the

robot from the target person. We control the robot velocity

and angular speed by keeping them proportional to the person

distance and angle.

V. EXPERIMENTAL RESULTS

To test the performance of the proposed approach, the

system has been implemented on a mobile robot, shown in

Fig. 1, provided with a LRF sensor (UTM-30LX, Hokuyo

Automatic Co., Ltd. [10]) as a LRF and an omni-directional

camera (a parabolic mirror mounted on a Sony’s CCD

camera). The two sensors are mounted on a rigid frame

at approximately 1.65m from the floor to allow the face

detection. The resolution of the laser device is ±1% of the

distance, with a scan every 0.36deg at 40 Hz, whereas the

camera provide images with a resolution of 640 x 480 pixels

at 30fps. The on-board PC is a Core 2 Duo 2.5 GHz with 4

GB of RAM. The whole software has been written in C++.

To understand the system internal state better, we imple-

mented a set of screen outputs. Fig. 9 shows the sensors

configuration and their respective scan fields. We use the

polar coordinate system because it makes easy to identify

objects appearing in the image and their corresponding

tracks.

Fig. 9. Screen-shot of our system. The upper image is the 360deg image.
The lower figure is the position history building result where circles are latest
instances and vertical lines are the validity range of the detected patch. The
circle diameter is relative to the cluster width.

To check the system behavior in case of target person’s

occlusion, we conducted the experiment in a hall in presence

of two persons. The target person stands in front of the robot

and starts the process. Then, the target walks around while

the other person tries to cross between him and the robot.

During the experiment, the maximum robot’s speed is set to

1 m/s and the target’s proximity distance to 0.5 meter for the

safety reasons.

Fig. 10 shows a segment of a typical run during which the

robot covers an area of 6x6 meters developing maximum

speed of 1 m/s. This particular run was chosen because it

demonstrates several interesting situations that could hap-

pen during the robot service time. In a relatively crowded

environment, it is common that robot cannot keep distance

which does not allow people to cross between it and the

target person. Fig. 10 shows such a case. When the robot is

tracking correctly the target person’s cluster, a temporary loss

of the target person does not influence the overall following

behavior because the robot continues to approach the last

location where he was seen. If the locked target is lost,

the first visually identified track is selected to be a locked

target for following. Fig. 11 shows three successive target

identification result’s frames where in frame 24 a target

is successfully identified. In frame 26 the target person is

occluded by another person and his position reading is lost.

When no target is found, the robot stops waiting for the

target to reappear. After an occlusion, the target person is

identified again and the robot continues its following. Fig. 12

shows the described scenario from the target selection screen

output. The instances associated to the target person (violet)

gets occluded by another instance (blue). After the occlusion,

a new track appears and gets visually identified.

Fig. 10. A segment of a typical run: The red points represent the robot
positions, the blue points represent the estimated positions of the target
person. The errors show the correspondence of some critical robot positions
to the target positions. Circles represent the associated frame number.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented the current progress of a

multi-sensor based human identification and following sys-

tem for autonomous luggage cart robot. Many improvements

and missing step were added to the proposed method pre-

sented in earlier work [6]. The initialization step was replaced

integrated in the target person’s identification. Samples of

the target clothes were extracted while he moves away from

the robot. The target person’s selection was added to choose

the target among possible candidates which results from

the fusion. The target following stage was added to check

the performance of the proposed method while the robot

is moving. The experimental results show the validity of



Fig. 11. Three successive target person identification frames corresponding
to the typical run 10. The red squares represent the patch detection result
and the number shows the matching coefficient.

Fig. 12. Three successive target person selection frames corresponding to
the typical run 10. The pink circle represent the visually identified track
corresponding to the estimated position of the target person. Blue circles
are unidentified tracks.

the method. A future work is to increase the environment

complexity to check the method limits. Also, it is necessary

to implement a moving obstacles’ avoidance method to allow

the robot to navigate smoothly in a crowded environment.
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