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Abstract— In this paper a multi-robot system (MRS) trajectory
control for conducting a group of humans is proposed. Its arbi-
tecture, implementation and the strategy to conduct peopléy a
team of robots is discussed, as well as the robots motion plaimg
methodology is being encompassed. Some experimental resul
on people localization by a vision system are also introduck
which exhibit its usage as sensory information for generatin
of people trajectory control. A social model to simulate hunans
motion is also included in this investigation as means to pre
the mechanism of guidance and crowd dynamics by the team of
robots, where such motion control is based on intelligent cinges
of position and speed. A
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|I. INTRODUCTION

The main focus in this paper is to discuss an architecture
of a motion planner and its elements as means for a team of
mobile robots to steer the trajectory of a group of people.

) . . . . X without performing any kind of explicit communication for
A major endeavor in this research is to investigate a wa P g any P

to fulfill guidance regarding the difficulty it may re resen?\écomplishing conduction. The model could be seen to the
9 9 g y y rep one exhibited by sheepdogs flocking and conducting herds of

non-communication between robots and humans. The analg . )
. ep (the only known work of robotic sheepdog was firstly
of the system may be compared with the process done by a ; .
o ; o roposed by Prof. Vaughan et al., in their work of flock cohtro
human-guide in companies, tours, exhibitions, and so on.

n ) . : -
the proposed context, people trajectory control is per&ﬂmWIth animals [5]). However, animals behavioral patterdieit
by deploying a team of mobile robots surrounding a limite

Hatural environments greatly differs from humans behaaimt
group of persons as depicted in Fig.1. A front-end robotédal

other human factors, as well as the strategy for trajectory

Ra) provides guidance, while the robots at the bak.(Rc) ]E:ontrol and cooperatlon among the robots is fairly difféeren
ion from dogs behavioral conduction.

observe the group as a way to get a global observation 0

the situatior_y and to crowd the group if required._The team II. AIM AND STRATEGY

has the ability to sense the environment dynamically from o ] )

distributed locations (stereo vision), whereby robotsrsha !N this first approach, the paper considers basic aspects of

sensory information in a central host to build a ranged mod&man behavior simulated by the use of a social force model

attractive magnetic effect. The paper only encompasses the
simple assumption of people following the front-end robot,

Successful contributions concerning robotic tour-guideks and it does not include tackling special cases (e.g. robot
have been presented in [1]-[4]. In such works the task @PProaching people leaving the group and dealing with human
accomplished with a single robot, some of them includingehavior, other human factors, ethology aspects, etc).séhe
interaction with people, communication between humans affiProblems found in people conduction was divided in three
robots, and even including all the functions a tour guidedseeMain items, and they involve particular behavioral patern
(providing information, showing interesting routes, degl 1) Conductionlt is the simplest case, and is defined as the
with people behavior, speaking, showing feelings and jgkin conduction of the group of people guided by the,
as well). which is easily followed by the group.

The present system further than having the above men-22) Crowding (Group size Contral)lt is the process of
tioned aims, it attempts to steer the trajectory of a group  grouping the people while moving along. In this context

Fig. 1. Guiding a group of people by a team of mobile robots.



an undesirable situation might be if the size of the group « The direction for navigation is determined Ba.

enlarges becoming bigger than a desired size. Besides, for representing the scope of a group, we estab-
3) Interception It is when a person attempts leaving thgished a circular model that would encompass all the members
group moving away from its scope, so that any rob@gether as previously depicted in Fig.1). So far, we have
approximates to he/she, making the person to go bagstricted it by the number of people between 1 and 5 persons

into the group. This situation is considered an specigy hallways of the University of Tsukuba.
case, which implies to deal with other challenging

problems such as pattern behaviors and human factors, I1l. PEOPLESOCIAL MODEL
ethology aspects, people identification/tracking, human-

robot interaction and so forth. described as if they would be subject to social forces. The

The boundary of the paper considers an strategy of trajeG;rasnonding Social Force Model (SFM) can be applied
tory control only for thg case _1) and in g:ertam extent for thﬁ) several behaviors. It describes the acceleration tawvard
case 2). However, the item 3) is an special case that for NOWyiSsired velocity of motion; it also terms reflecting that a

out of the scope of this context, being discussed in the 8utut o yerian keeps a certain distance from other pedestiiahs
From a technical point of view the requirements for peoplg, jers: and a term modeling attractive effects. In refezen

conduction in the present context draw attention to a gdane[fg]' an attempt to simulate crowd dynamics (using the SFM)

strategy _|tem|zed as follows: o by pedestrians affected by the presence and introduction of
1) Vision system for people localization. mobile robots was presented. Such context considers a large
2) MRS architecture framework. _ number of pedestrians and few robots in order to study and
3) People trajectory control and a motion planner. understand its impact and effect in wide areas people behavi
Items 1) and 2) were introduced and discussed by thgthe present work, the SFM has a different application as we

authors in references [9], [10] and [11], while the item 3}dapted it to simulate a reduced number of pedestrian befpavi

is the present matter of discussion. The importance of thig a group following the leader rob& and affected by the

work relies on the proposal of this type of guidance, thugresence of robot&a and Re.

to understand and have a clear idea of the steering trajector The equations of the SFM involves:

process the Fig.2) roughly describes the task.

It is suggested that the motion of pedestrians can be

1) A model for the desired direction of each pedestrian.
5 2) They model repulsive effects (avoid obstacles and/or
Robot

a A % ety other member of th.e group). _ .
3) They model attractive effects (pursuitty:, a chatting
WO X ) Peore with other members).
o O 4) They model some random variations of the behavior.
From the original social force model only direction velgcit
forces, repulsive and attractive effects were implemerigd
Desired pathway T o

enough forces to produce realistically the required beirali
effects of people by the presence of the team of robots during
the conduction navigational task. The direction, veloeitd
Fig. 2. The team of robots in formation conducting the grofipeople. ~ acceleration vectorial forces are determined for each neemb
towards theRa. The repulsive effects against each pedestrian
In addition, the social force model was used to simulata the group are performed according to the rules estaldishe
scenarios with people behaving as a group. The original mody the SFM, where there exist a particular territorial effec
presented by Helbing and Molnar in [18] established a sum siinilar to an ellipse-shape that avoids to collapse against
forces involving direction velocity of each people, a temial  the other pedestrians. Similarly, part of the adaptatiothef
effect which exhibits a repulsive effect to other pedessja model was by deploying the same rules of repulsion to affect
repulsive effects against obstacles, and attractive tsffer the crowd dynamics by the back-end robots. Members yield
other pedestrians (e.g. when conversing) or objects. Thiemorepulsive effects againskb and Rc, but no opposite way.
was adapted according to some considerations yieldedglurfFinally some small random fluctuations of the people belravio

conduction by the robots as showed in Fig.3. were added. Such fluctuations slightly affected the veatori
« People assumptions (they folloRa, and/or just follow members’ velocity.
the crowd). Indeed, many social groups of people are a need to realisti-
« The philosophy is leader-based robots formation. cally evaluate the reactiveness of the MRS, as each group of
« The robots motion plan depends on the group’s center péople yields different behaviors. People behaves aaugrdi
gravity (cog). to they feel more comfortable being in the scope of the
« Three robots surround the group of people. robots surrounding while conducted. Other members in the

« People walking feel the approach of the back robots. group walk conversing instead of only paying attention ® th
« Robots crowd depending on positions and speeds.  following of Ra, they may be attracted by other people to have



A . .
robot is unable to observe all the scenario. Moreover, tesul

\Ra’s heading from previous process were shared into a common coordinate
jangle system in the central host. Segmentation, human deteation a

i localization were then carried out as critical steps forgbeo

! localization. The MRS communication architecture is deguc

N | ... Orthogonal in Fig.4.
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I I - - I.I Fig. 4. MRS architecture and communication flow.
The central host and the team of robots carry out the
following process for people localization:
Fig. 3. Considerations taken for adapting the SFM to ouriggicontext. 1) The robots receive a synchronization signal from the
central host.

2) Sensing and data filtering is performed by each robot.
3) Robots cooperatively self-localize by using an internal

social interaction, which despite of such situations catidn
must be accomplished. As a preamble in this investigation ) ; .
to analyze how a team of robots could affect and/or control relative Cartesian coordinate system (CCCS) [11] and
crowd dynamics while conduction, the authors have proposed [14]. . .

a simulation model that could provide: (a) A good approach 4) The robots transmit sensor info and pdag 2, 6) to

to prove the effectiveness of the proposed trajectory obntr central host. :

model; (b) verification of the method and the strategy; (c) 5) The_ .central host compute the algorithms for people
conformation of the control; (d) the MRS motion planninggdan positions.

(e) many simulated experiments of human-motion modeling. 6) Based on people positions, the central host generates a
new motion plan for the robots.

IV. ARCHITECTURE AND PREVIOUS RESULTS 7) Again from step 1).

The MRS was developed within a framework that included Moreover, the average time spent for data transmission
only the requirements to conduct people reliably. Someltesusensors data and robots position) was algaimns for 100Kb,
localizing people were accomplished from distributed tebobut less than 10Kb are transfered among the robots and tentra
locations [9], [10] and [11]. The Fig.9 is the configuratiorost. In fact, the approach in this development is a centdli
of one of the experiments, with 4 persons and 3 robo#RS architecture, in which decisions are taken by a central
(indoors). The purpose was to localize trustworthy eachdrumhost that remains during the entire mission duration aslaimi
in the group, distinguishing humans from other objects @rchitecture presented in [13], and described in [6], [&], I
the world. Furthermore, localization accuracy was obwinghis development, inter-robot communication, centraiag
by matching the real environment configuration against tlsgnchronization and coordination are critical for the MRS t
computed results by the MRS, thus error in people locabpati control humans course. Likewise, robots pose determimégio
reached and average of 10cm (each persanj$, depicted in a key-issue to overcome some of those problems, as well as
Fig.9-(d),(q). to calibrate distributed moving sensors, to let the MRS eshar

The circles in Fig.9-(g), represent members’ occupansgnsor data (sensor fusion). The architecture is compande
area. Circles have different radius because were repezberst team of 3 self-contained mobile robots depicted in Figif, a
with the standard deviationo] of points in each cluster a central host. A Pentium-Ill Laptop on-board with wireless
(Fig.9-(f)). Multiple human localization was accomplishe technology via IEEE802.11b was fitted on each robot.
by sharing sensory information from each robot, as a singleThe communication system is based on functions for spread-



the central-host’s functions is to compute the; expressed

by cog(zx, z,0,v,w), located at(x,z) and heading anglé,

with lineal displacement in XZ-space,, and angular velocity

wy, at discrete time:. As sensory information is not a perfect
noiseless model, we implemented a Kalman Filter to estimate
(filter) the observations of theog’s trajectory. For Kalman
filtering [15], [16], [17], the parameters considered are th
state n-vector of the process = (z,z,6,v,w) at discrete
time k, including group’s pose, lineal and angular velocity
respectively. Besides, the observation of the system which
relates the sensory information is expressedjin= (z, z)
(cog) and it can be modeled by equation (1),
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Zy = HT + iy (1)
Fig. 5. The team of Yamabico self-contained robotic platferand their
configuration. Being H2x5 the stationary over time matrix noiseless

connection between the vectofs and z;, and thed,, is a

. L . Gaussian white sequence. Furthermore, the Kalman gain then
ing messages and a group-communication philosophy, as S@éxpressed by

ilar communication system used in [13]. The network data
transaction management is under Linux in a TCP/IP network. K, =P.H'(HP.H" + Rk)fl @)

In addition, for localization each robot performs au-
tonomously a routine in a background called CCCS, whereby!n equation (2) the Kalman gain is updated at every time
robots pose is obtained cooperatively. For the guiding-taghereby the error dispersion covariance matf.5; (non-
performance, robots localization is a critical issue ane tt$tationary) in (3) and the noise covariance in the measureme
CCCS facilitates the problem by using a relative coordinaf@2x2] are_also involved. Noise covariance values arise from
system. Only the leadeRu) makes use of an extra element’r, andzy in Ry.
called Pose Estimator Module that merges sonar ranging

data and odometry estimations, allowing to have an accurate < 0 0 0 0

positioning system. These measurements are used to correct 0 ¢cc 0 0 0

the CCCS calculations in the central host, as a way to improve P = 8 8 ‘89 0 8 3)
Co

a future motion plan.
0 0 0 0 ¢y

V. TRAJECTORYCONTROL OF CENTER OFGRAVITY (cog) . » . . .
The first part of a traditional Kalman filter was defined in

The_fram_ework for coqtrolling the trajectory of the groulo,Sprevious equations, thus the processcof estimation can
cog Is itemized as following: be established. With an update equation for the new estimate

1) Observation oftog overtime. &1, combining the old estimaté; with the measurement
2) Estimation of noisyrog measurements (Kalman filter). dataz; in (4)

3) People trajectory control model.

4) tl\ifljt:]tlon model for prediction of next desiretbg posi- Z = 1 + Kn(Ze — Hin) 4)
The figure 6 depicts a block diagram of the vision-based The innovation equation is derived from expression (1),
feed back control. which is also related in previous equation (4). Additiopadl

subsequent part of estimation process suggests also tlageupd
covarianceP,. defined as,

People

oo m " Center

localization leasuremen! trajectory

) & center ) flitering control&
measuring prediction

Vislon-based
feedback

Range
data
filtering

P, =P, — KLHP, (5)

The previous equations (2), (4) and (5) yield an estimate
of the state vectorf, and the error covariance matrik.
Basically, the projection of estimate,,.; and the vector
Fig. 6. MRS trajectory control. state error covariance matri,, ;. Equation (6) expresses the
projection intok + 1 of previous estimaté;, and it relates the
state transition matrix of the proceés(also non-stationary),

A. Estimation ofcog .
) o ) . and some n-vector noise sequenge
Due to thecog is one of the major important issues which

is part of the mechanism to provide human guidance, one of Trt1 = 9Tk + qx (6)

r




The transition matrix of the process expressed in (7) Now, the result from previous equation (10) allows us to
correlate a measuring of the current angjeto calculate the

0 0 cosfpAt 0 one at next discrete tim@,; by the equation,

1
0 1 0 sinfgAt 0
o= 0 0 1 0 At 7
00 0 1 0 (7) Or1 = Ok + w1 At (12)
0 0 O 0 1 Basically, the previous result of the angle becomes funda-

ental to get a value of th@g lineal velocity, which expresses
by (8 representative situation of theg motion behavior. Thus,
y (8), the lineal velocity vectorial value in aX'Y space, with its

Byt = P + (A+AT)]5kAt+ (ApkAT L Y)AR (8) components decomposition are

Likewise, projection intd:+1 of the covariance is expressecJ:

Where A5, 5) is a Jacobian matrix of partial derivatives (9)
of the state transition matrik respect tag;, consequently non-
stationary matrix, and\t represents the time interval between
each measurement. Besid&s, 55 is @ matrix involving the ~ Being 7, and . the gains of XZ-velocities respectively,

i1 = Uk || cosOr1 + va vy, — || VR || cosOpi1)

o . = . 13
Vi gy = Uk || sinOkr1 + 72 (V7 — || 0% || sinOi1) (13)

covariance arising from sensor measurement error. and the establishment of a desired velocity called referenc
velocity denoted by,.r. Eventually, our model for position
0 0 —sinfy cosfp 0 calculation is given by the equation (14), which determimes
0 0 costp sinbp 0 advance the next possible position value relaying on thelin
A=100 0 0o 1 (9)  velocity (see Fig.8-(b)).
0 0 0 0 0
00 0 0 0 Pi1 = Pk + Vi At (14)

Dis1 = Pk T V1 AL
The Fig.7 shows the simulation results of they motion
behavior from100cm heading to60° (displacement, angle
behavior and XZ-velocities performance). Subsequeniiy, t
B. Trajectory Control Model results are fed into the Kalman filter, which is integratechas
L . prediction module of the feedback system control perfogmin
A basic principle in our methqd, is that the team O.f robotgog estimation in real-time during conduction task.
must steer theog towards a desired path. The equation (10)
expresses a model of theg angular acceleratiom{), and
yields a trajectory from the currembg location towards the
desired pathway, having a distance to reach callad Nev- e _
ertheless, the team of mobile robots cannot explicitly mint bt
ay, but can in some extent affect the reactionco§ heading V1L R S S
angle# as a way of heading control while navigating. The N S
equation also requires as input the group’s angular velocit O | | ;
wy. In our case the equation (10) is a lineal feedback control % 0 e ® 30 "% I P
system.

A general representation of the Kalman filter implemen-
tation is integrated within the trajectory control moddkca
depicted in figure 8-(a).

CG Trajectory Control,1m, 60.0deg Angle behavior
1.2 T T

0.6~

(m)
Angle (Deg)

X-Velocity performance Z-Velocity performance

Qp = 71171A£Ck - kgok - kg’wk (10)

Vx (m/s)

The gain is established by the constahts k; and k3 and

were determined by trial and error for the robots. Thus, the
steps to calculate a desiredg’s location at timek + 1 is by ‘ : ‘ ‘ : ;
substituting the calculated values by the equation for robnt e e 40 e e o @ o & 8

time (s) time (s)
that calculates they, for usage of equations (11), (12), (13)
and (14). The effects of the control must be as depicted in Fig. 7. cog motion behavior (Gaussian error included)
Fig.8-(a).

C. Motion Model

A projection of the group’s angular velocityy.; is given VI. ROBOTSMOTION PLANNING
by the equation (11), involving a measurementqfand the

A. i ily followi
previous computeds. Conduction (easily following)

Real path conduction between multiple people and multiple
W1 = Wi + apAt (11) mobile robots can represent in some extent an intractable



communication. Certainly, it is a difficult problem to overne
since the only communication between robots and humans
is based on motion reactions. The MRS reacts expecting &
favorable human motion-behavior tracking the, or acting ,
according to the motion reactions given by the robots thinoug ,d
a special robots keeping-formation that has been utilized a ’
shown in Fig.8-(c). The basic principle relays on the fact
that only a robot Ra) provides no control but guidance. ©
Meanwhile the rest of the robots at the back are purposedim
to observe and control the motion and size of the people
dispersion.

task to accomplish when dealing with the problem of implicit -\ )

B. Crowding

The Fig.8-(d) depicts a group circular model, and its main §
element to crowd relays on affecting the actual radiusintil
reaching a desired radius.; by means of the robots position
and speedr(.s established a priori). If the condition for,
is 1, > e, the process of crowding is performed. The
crowding process is expressed by equation (15) with a gain
3. Here the core of this method arise from the viewpoint that Methodology
the smaller the, the more the crowding. Since there is not Until this stage we have obtained experimental results in
explicit communication, the strategy is that the team ofoteb laboratory with the team of robots and sensory info, as well
must get closer or farther from theg, forcing them to modify as results from our simulation model, which gave us: (a) A
more their inter-space. good approach to prove the effectiveness of the proposed
trajectory control model; (b) verification of the method and
the strategy; (c) Confirmation of the control; (d) the MRS
motion planning; and (e) many samples of human-motion
modeling. Actually, some of the most important parameters f
C. Robots Motion people motion simulation were the sampling time= 0.5s, a

The Ri poses are determined based on the location mean of desired people speedts= 1.34m-s~!, the maximal
as depicted in Fig.8-(c). Once theg was predicted by the acceptable people speéd™** = 1.3v°, the repulsive effects
motion model of section V-CRa pose is then establishedamong pedestrians and 3 were V7, = 2.1m-s~", also the
according to the predicted heading angle foy. Likewise, Vvariance for exponential decreasing repulsive effects 0.3,

Rb and Re are also planned with the anglés= 0° for Ra, @and the pedestrians step spage= 0.9m. In addition, the
& = 150° for Rb andd = 210° for Re substituted in equation methodology for simulation is explained in the followingss:
(16). 1) Original randomly location of the members among the
team of robots.
Rigt1 = cogry1 + Assin(gq1 + 0) (16) 2) Thecog is measured.
. . . _ . 3) Thecoy is filtered by the Kalman filter.
T_hg As is the distance required for the field of view of the ) Nextcog's pose is predicted with the next robots motion.
vision sensors, se_t as a_constant. Furthermore, whether_th The members pursuit towardza.
crowding process is required or not, the model always verify 6) Members’ position and velocity include fluctuations.

the value ofr;,; overtime. Lllkevx_/lse, the tgam of robots WI||. 7) The group’s size is determined (radius=farthest mem-
always head towards the direction established by the motion ber)

plan, pursuing the desired pathway. 8) Robots move towards next desired position based on the
motion equations.

Again from step 2).

h this general methodology, the figure 10 depicts the

simulation results with the merging of all the models alsead
péoposed.

Fig. 8. Configuration for the team of robots formation.

VIl. SIMULATION RESULTS

NP B B(rref —Th), Tk > Tref (15)
Rt Tref, Tk <= Tref

Thus, robots increase/decrease their speed in order th reac\(‘j\)/it
certain locations Ri;) affecting people positions in next
update time. Robots speed( ) is an important factor to
regard in order to affect the crowd of the group, so peop
must stop if being too close t®a or smoothly accelerate if VIIl. CONCLUSION

the leader speeds. It is expressed by the equation (17), We have introduced a MRS architecture purposed to guide

|Rigss—Rigl a group of people through a desired pathway. Nevertheless,
Virr = — 5 (7) our endeavor in this article has been to discuss a trajectory
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conducting herds of animals by farm-robots; and so forth. Academic Press, Inc. LTD. 1979.

Hereafter, a next attempt is the implementation of thes] D., Helbing and P., MolnaSocial force model for pedestrian dynamics
social force model as an alternative to improve the humagé]PJhyzcall(Rﬁwe;v E,chAI. il, I\I\/IIO- 5, pp-k4i8§j42?6{_ Manllft?S- <
. . . . . . A., KIrkland an . A., Maclejewski Imulation o empts to
mOt!on .behaVIor. L'keW'.Se’ Cur_rently we "?‘re gnder?aklng tH Influence Crowd Dynamic$EEE Int. Conference on Systems, Man, and
realization of real experiments in simple situation witlogps Cybernetics, pp. 4328-4333, Washington, DC, Oct. 5-6, 2003
of people and the MRS, which has been very challenging and

has implied many technical issues to regard.
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25
L ! R il t i | ! ] 3 = Observatian
2 #* - '. : g : | - Estimation
15 ";' * s N '* b : b3 = P L : SO +  Tracking-line
1= B k] Tl # & . s ...a.* P T =
a5} # : Lo % £ e R e B o
| O TR s - \+“*+>‘+ e I—v- 4 "'& PR RN R U LR TR -
4 w e
05 - il P _ti* & e ) b :‘_: o
48tk . e B g ® -
2= ] ; : 3 ’
25 i | I I I 1 I 1 I I
2 0 2 4 8 g 1B 10 12 14 16

Fig. 10. Trajectory control simulation results.



