
A programming framework for a group of multiple mobile robots
moving in a real world.

Tomoaki Yoshida1, Akihisa Ohya2, Shin’ichi Yuta1
1 University of Tsukuba

{yos,yuta}@roboken.esys.tsukuba.ac.jp
2 University of Tsukuba/JST

ohya@roboken.esys.tsukuba.ac.jp

Abstract

In this paper, we discuss about a programming frame-
work for multiple mobile robot. The framework is targeted
on a group of real robots operating in proximity, especially
robots in formation. In such case, following major prob-
lems should be considered. First problem is about coor-
dinate system which behaviors are described. Second is
about timings of starting and ending actions.

To handle these problems, some functionalities that the
framework should provides are proposed. Furthermore, an
implementation of the framework is described.

1 Introduction

There has been many researches like in [1], [2], [4] re-
ferring on the field of multiple mobile robot. One of the
typical tasks for multiple mobile robot is navigation task
by formation of multiple mobile robots (Figure 1). To pro-
gram behaviors of a group of real robots, actions of each
robot in the real world need to be defined clearly and easily.
Such definition can be done using position, starting timing,
and ending timing of determined actions. In case of op-
erating in real world, datum reference and timings are not
matched among robots, without any matching system. In
this paper, a programming framework for multiple mobile
robot aiming to work in real world and its implementation
is described.

In order to make this problem simpler, we focus on a
case which a group of real robots operates in proximity,
especially robots in a formation. For example, a group
of robots deploying a train formation without any physical
connection, navigates by tracking a virtual railroad. Even
with this assumption, some mechanism for sharing datum
reference and synchronizing actions timing is mandatory.

Figure 1: An example navigation task by a formation of
mobile robot

Performing Layer

Coordinating Layer

Application Program

Hardware

Figure 2: A layered structure of the framework core.

2 Strategy
In a specific robot, a target task can be split into two

parts(Figure 2). One is a coordinating layer which com-
municates with other robots and coordinates cooperative
behavior. Another is a performing layer which performs a
motion plan given by the coordinating layer.

In the coordinating layer, communicating with robots of
the group, a motion plan for achieving such given cooper-
ative behavior for each robot is generated. A motion plan
is described upon a coordinate system which has common
datum reference among robots. This motion plan should
not be containing any conflicts among robots at this point.

Mobile robot hardware

Communication channelCommunication channelCommunication channelCommunication channel

NTP

 clock based
synchronizer

communication based
 synchronizer

Coordinate system manager Performing layer

Coordinating layer

Application

 A Robot

 Robots

Figure 3: Software modules in the framework.

Given a motion plan, a performing layer executes such
plan, which contains a set of motion commands and time
codes for synchronization among robots. Referring time
codes, allow the performing layer adjusts parameters of ac-
tual low level locomotion commands for motion command
and to synchronize motions with other robots.
2.1 Performing Layer

A performing layer is responsible for motions of a single
robot. Motions are described on a common coordinate sys-
tem and triggerd by a common event source among robots
to achive a cooperative behavior.

The framework provides a common coordinate system
manager to help sharing a datum reference of motion de-
scription among robots. Comparing measuring results of
same environment among multiple robots, it is possible
to detect the coordinate system error. Once a difference
of coordinate system is detected, by using a priority table
given in advance, low priority robot adjust its coordinate
system to match the coordinate system of higher priority
robot. In this matching strategy, the highest priority robot
is considered as a reference robot and all other robots try
to adjust their coordinate system to match to the highest
priority robot.

Meanwhile this approach does not require any informa-
tion about the environment in advance, it can be applied
in an unknown environment. Furthermore, temporarily
placed object which is not on maps usually, such as card-
board containers can be utilized, if robots operate in prox-
imity and measure same object almost at the same moment.

For sharing triggers of motions, the framework pro-
vides two kinds of timing synchronizers. One is a clock
based synchronizer, where assuming that each robot has
a real time clock synchronized with NTP, set of motions
described in advance can be triggered by using clocks. An-
other is a communication based synchronizer which is for
external event source, such as start timing supplied by hu-
man.

In a case when a performing layer detects that motions

can not be realized, it notifies to coordinating layer and
hopefully, it provides re-planned feasible motions.
2.2 Coordinating Layer

The coordinate layer is responsible for behaviors of the
group of robots. It plans a set of motions for each robot in
order to achieve a task goal, and communicates with robots
in a group to resolve any possible conflicts.

The framework provides communication channels and
also a voting system built on top of communication chan-
nels, for communication and negotiation with robots in a
group.

3 Implementation
3.1 Robot system

We use the YAMABICO(see Figure1) mobile robot
platform. Each robot is equipped with a PC runnning Linux
as its main controller and communicates via IEEE802.11b
wireless LAN with other robots. Functions of low level
control layer such as motor servo control, position estima-
tion by odometry, ultrasonic range finding are implemented
on function modules that has a Transputer as processor on
each card[5]. All other functions such as main decision
making, wall detecting are implemented on a notebook PC.
The framework is a set of software libraries implemented
on a notebook PC.

3.2 Coordinate system manager

The coordinate system manager corrects coordinate sys-
tem definition errors among robots. While it is imple-
mented as independent thread working in background, any
other software module is not necessary to treat with it once
it has been activated.

Two robots namedRA andRB , which measure position
and pose of a same landmark, based on a common coordi-
nate system, including position of landmarks(PA, PB) as
well as pose of those given landmarks(θA, θB) (see Figure
4). If both robot’s coordinate systems have same defini-
tion, then resulted measurements(PA andPB , θA andθB)

PA

PB

T

θA
Bθ

Figure 4: Coordinate system matching

are supposed to have a same values. On the other hand, if
two robots have different definitions of the coordinate sys-
tem, then resulted measurements difficulty can be matched.
It means that small differences of measured position and
pose represent a difference of each robot’s coordinate sys-
tem definition. Following an affine transformationT that
transforms a coordinate system fromRB into RA.

T =

cos θ − sin θ PAx cos θ + PAy sin θ + PBx
sin θ cos θ PAy cos θ + PAx sin θ + PBy

0 0 1

(1)
RA = TRB

where
θ = θB − θA

By means of this transformation T, it is possible to re-
define a coordinate system ofRB and make possible two
robots to share a same coordinate system as result.

This method does not assume the existence of an abso-
lute coordinate system tied to an environment. Also, this
method does not require any information of the environ-
ment in advance, robots will temporaly make usage of in-
formation of some objects in the environment, which usu-
ally does not appear on conventional maps.

When sensors on robots don’t have any ability to mea-
sure 3 degrees of freedom, then unique transformationT
could not be determined. In this case, a determined num-
ber of constraints can be established, which will depend
on the number of calculated degree of freedom. Consider-
ing these constraints and redefining a coordinate system in
order to satisfy their differences between both coordinate
systems, ambiguity can be reduced.

Since there is difficulty to judge whether measured ob-
jects are identical or not, this method hardly applied to cor-
rect initial definition error. In our framework, initial defi-
nition should be done manually, and then accumulating er-
rors as well as initial error, which are expected to be small,
are corrected with this coordinate system manager.

R2

R1

x

y

O

P1

P2

r1

2r
Robot

RE P
Wall

Robot’s
Trajectory

Figure 5: Configuration for the calculation of ERP.r1, r2

are ranged data from robot’s positionP1, P2, respectively.
When these ranged data originated from the same flat wall,
ERPR1, R2 are on the intersections of the flat wall and
two perpendicular lines throughP1, P2.

3.2.1 Landmark measurement

To demonstrate that our proposed system can be imple-
mented just by using low cost sensors, we utilized mobile
robots equipped with ultrasonic range sensors. Although
ultrasonic range sensors only have the single ability to mea-
sure distances to closest objects in their sight angle. There-
fore it is possible to determine the distance to the object as
well as its direction when multiple measurements from dif-
ferent positions are matched, assuming that reference ob-
jects are flat walls. As a result, one degree of freedom of
position and pose of a wall are hopefully measured.

As shown in Figure 5, let us consider that a couple of
ranged datar1, r2 are obtained by ultrasonic sensors which
are fitted on the left side of the robot when the robot was
located atP1(x1, y1), P2(x2, y2), respectively. If these
ranged data were originated from the same flat wall, then
the reflection points on the wall should be on the intersec-
tions of the flat wall and two perpendicular lines through
P1, P2. Because ultrasonic waves are reflected specularly
over the flat wall surface. We call these points Estimated
Reflection Point (ERP)[3]. Now, we name two ERP as
R1 andR2. The vectors

−−−→
P1R1 and

−−−→
R1R2 are perpendic-

ularly, then the inner product of these vectors should be 0
as shown by the following equation.

−−−→
P1R1 · −−−→R1R2 = 0 (2)

The angleφ denotes a direction of the ultrasonic reflection
and 0 degree is set on a direction of x-axis of the coordi-
nate system of the robot and anti-clockwise direction is set
to positive value. Using components of vectors

−−−→
P1R1 and

−−−→
R1R2 are expressed as follows:

−−−→
P1R1 =

(
r1 cos φ
r1 sin φ

)
(3)

−−−→
R1R2 =

(
x2 + r2 cosφ
y2 + r2 sinφ

)
−

(
x1 + r1 cosφ
y1 + r2 sin φ

)
(4)

By substituting equations (2) and (3) for equation (1),φ is
calculated as follows.

φ =
π

2
−α±arccos

(
−(r2 − r1)√

(y2 − x2)2 + (x2 − x1)2

)
(5)

Where,α is the angle that satisfies the following relations.

sin α =
x2 − x1√

(y2 − y1)2 + (x2 − x1)2
(6)

cosα =
y2 − y1√

(y2 − y1)2 + (x2 − x1)2
(7)

After the calculation of the valueφ as mentioned above, we
can determine the position of the two ERP corresponding
to a couple of ultrasonic range data.

Therefore, resulted ERPs are calculated with assump-
tion that they are on a same flat wall, it is required to con-
firm that ERPs are really on a same flat wall. Firstly, mak-
ing a group of ERPs that found sequentially and fit a line
segment using least-squares method. If one of ERP in the
group is originated from an object other than a same flat
wall, distance between the ERP and the line will be larger,
and also a vector

−−−→
P1R1 and the line will not meet at right

angles. In such case, the ERP group can not be considered
that were originated from a same flat wall.

An ERP group that already passes the tests, can safely
be considered as a part of a flat wall in the environment.
Resulting ERP group represents one degree of freedom of
position and pose of a flat wall.

3.2.2 Managing landmark information
At each event when a robot finds a flat wall, the robot it-
self notifies information that a wall has been detected to the
rest of the robots. Every robot stores reported information
in its database. If received information is announced by it-
self, then matching wall information is searched from other
robots information and if received information comes from
other robot, then matching wall information is searched
from information announced by itself.

Old information in a database is useless, because the
common coordinate system continuously and gradually ac-
cumulates odometry errors and changes by itself. Thus
such information are purged from a database when they
have aged enough.

baring direction difference

difference of direction

wall

Robot

Figure 6: A pair of wall and matching operations.

3.2.3 Find matching walls
Examining a transformation for coordinate redefinition can
be calculated as described in later sections, a pair of walls
is determined if they are the same wall in the environment.
The following conditions are examined.(see Figure 6.)

1. A baring direction difference of two walls is less than
a threshold.

2. A difference of distances being from robot to each two
walls is less than a threshold.

3. Two walls are intersected if a coordinate system is re-
defined.

3.2.4 Redefining a coordinate system
Redefining a coordinate system to match a found wall and
the reference wall, results a new coordinate system, two
walls could be measured at a same position and pose.

At first, rotating around a robot’s current position to
match a baring direction of two walls. This operation is
equivalent as changing robot’s direction. Then translate to
direction of normal vector of wall for a difference of dis-
tances that are from robot to each two walls.

Therefore the coordinate redefining system works in-
dependenting from robot’s main decision making system,
when a redefinition occurs, position estimation of robot
will jump non-contiguously. This asynchronous event can
be a problem. In order to avoid this problem, a coordinate
system redefinition events are notified to a main decision
making system.

3.2.5 Priority of reference
A pair of matching walls is found on two robots simulta-
neously. For deciding which robot performs a coordinate
system redefinition, priority of reference of each robot is
assigned in advance. A priority of reference is a concept to
avoid reference loop and it is represented by unique integer
value mapped to each robot.

wait()

wait()

signal()signal()signal()

:cBarrier :cBarrier :cBarrier

wait()

Figure 7: Communication based synchronizers for external
event source.

When a matching wall is found, a robot which has lower
priority of reference performs a coordinate redefinition to
match its coordinate system to higher priority robot. A
lower priority robot need to redefine its coordinate system
during more time than the higher priority robot. Accord-
ingly, the robot which has highest priority of reference does
not redefine its coordinate system and becomes as the ref-
erence coordinate system holder.

3.3 Timing synchronizer

Since primary target of the framework is a navigation
in a formation task, tight synchronization is not required.
Therefore we decided to put synchronized points sparsed
in a set of motion commands.

Motions can be synchronized if starting time and ending
time of each motion are clearly defined, but it is difficult
to determine every timing in advance. Also some timings
are decided at runtime. For example start timing of a task
may be indicated by an external event source such as user
command at runtime.

To resolve these timing problem, the framework pro-
vides two kind of timing synchronizers. One is a communi-
cation based synchronizer which provides functionality to
synchronize external event source, and another is a clock
based synchronizer which provides functionality to handle
real time clock. Basically both timing synchronizers are
used in performing layer.

3.3.1 Communication based
The communication based synchronizer is used to synchro-
nize action timing which actual time of occurrence is not
known in advance. When starting up a task, task pro-
grams are launched asynchronously, thus synchronization
is needed to match actual starting time of the task.

Two cases of scenarios that have signaled from external
event source and synchronize with pre-defined condition
are considered. Figure 7 shows an event flow of external
event source synchronizer. Synchronizer objects(‘cBarrier’

wait()

wait()

wait() wait()

:cBarrier :cBarrier :cBarrier

Figure 8: Communication based synchronizers for internal
pre-defined condition.

:cClock :cClock :cClock

updateDeadline updateNotify updateNotify

Figure 9: A chain of clock based synchronizer
(re)configuring their deadline.

shown above in Figure 7) has same ID to communicate
each other. Before signaled, synchronizer objects will be
blocked based onwait() call. Whensignal() method is
called, all synchronizer objects with same ID are notified
and blocked, andwait() calls are released. Await() call on
signaled object will not block. Due to the fact that a start
timing of task programs can be synchronized with a signal
from UI program by using this synchronizer.

Figure 8 shows an event flow of pre-defined condition
synchronizer. Synchronized objects has same ID and same
unblocking condition list which is a list of required mem-
ber names. When await() method is called, a synchronizer
notifies all other objects on the network including itself,
that it entered barrier. If an unblocking condition list of
notified object is satisfied, then blockedwait() call will be
released. In contrast with external event source synchro-
nizer, there is no explicitsignal() call and anywait() call
may release a blockedwait() call depending on the condi-
tion list. If there is no explicit event source and just need
to synchronize a task execution flow, this pre-defined con-
dition synchronizer will be used.

3.3.2 Clock based synchronizer
Once staring timing is synchronized, the next motion com-
mands are synchronized using by real time clock and do
not require communication among robots while a target be-
haviour itself is common among robots.

Clock based synchronizer is one of the utilities object
for performing layer programming. It has one deadline per
object and manages it. Unlike communication based syn-

mess_init();
// invoke coordinate system manager
cWallCollector::

theWallCollector().run();
cCoordinateManager::

theCoordinateManager().run();
// move to start position
lineup(theRobot().name);
//wait for start signal
cBarrier sync("Init");
sync.wait();

Figure 10: An example of initialization code.

cBehavior plan;
int off=thrHostConfig().priority()*30;
cMotion motion(

cClock::relative(30),
cMover(0+off,0,1000+off,0));

plan.push_back(motion);
plan.proceed();
cException e=plan.nextException();

Figure 11: An example of minimal navigation code.

chronizer, clock based synchronizer is not intended to use
separately but linking multiple synchronizer object to re-
solve absolute time of synchronizing point(Figure 9.

The clock based synchronizer has ability to: (1)wait
until deadline is reached, (2)query time for the deadline,
(3)notify other refering object about update of deadline,
(4)(re)set deadline from other objects-deadline and time
offset.

A minimal set of motion description has one clock based
synchronizer object and at least one motion command ob-
ject. With a clock based synchronizer, motion command
object adjust its parameter (such as velocity) to meet dead-
line. If it is not possible to adjust parameter in an accept-
able range, motion command object notifies exception to
higher layer.

4 Programming with framework
Figure 10 shows an example of the initialization code.

First of all, coordinate system manager(cWallCollector and
CoordinateManager) is invoked, and then move to initial
position for current robot. Although this code is exe-
cuted asynchronously on each robot, execution flow will be
synchronized with communication based synchronizer(last

line).
Once initialization has been done, behavior can be de-

scribed. Figure 11 shows a minimal navigation code.the-
HostConfig()is a host specific data storage and off will set
to a geometrical offset for current robot. Amotion is a
minimal motion command which indicate to run 10m in 30
seconds.

5 Summary
In this paper, a programming framework for a group of

multiple mobile robots has been described. The framework
is targeted on tasks which robots operates in proximity such
as a navigation in robots formation, and aims to program
such task in an easily way.

As a future work, we will consider about more flexible
implementation of the performing layer. With current im-
plementation, a detailed motion description is needed and
is tight geometry-based. It should have more flexibility for
easy programming to generate a behavior.

References

[1] Jakob Fredslund and Maja J Mataric. Huey, dewey,
louie, and gui – commanding robot formations. InPro-
ceedings of the 2002 IEEE International Conference
on Robotics & Automation, May 2002.

[2] Aaron Khoo and Ian Douglas Horswill. An efficient
coordination architecture for autonomous robot teams.
In Proceedings of the 2002 IEEE International Confer-
ence on Robotics & Automation, May 2002.

[3] Akihisa Ohya Takashi Yamamoto, Shoichi Maeyama
and Shin’ichi Yuta. An implementation of landmark-
based position estimation function as an autonomous
and distributed system for a mobile robot. InProceed-
ings of the 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1141–1148,
Oct. 1999.

[4] Richard T. Vaughan. Exploiting task regularities to
transform between reference frames in robot teams. In
Proceedings of the 2002 IEEE International Confer-
ence on Robotics & Automation, May 2002.

[5] Shin’ichi Yuta. Autonomous self-contained robot
‘yamabico’ and its controller architecture. InThird
Australia National Conference on Robotics, June 1990.

