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Abstract

Control operators for delimited continuations are useful in various
fields such as partial evaluation, CPS translation, and representation
of monadic effects. While many works in the literature study them
in call-by-value, several recent works have shown call-by-name
delimited control operators are also worth studying.

In this paper, we study semantic foundation of the call-by-name
variant of the delimited-control operators “shift” and “reset”. In
particular, we give a set of direct-style equations as axioms for
them, and prove that it is sound and complete with respect to the
CPS translation by Biernacka and Biernacki. The key observations
in our proof are (1) we need to use the linearity of certain variables
in the CPS terms, and (2) we must distinguish continuation vari-
ables from ordinary variables in the source terms. We also show
that our axiomatization holds for the typed calculus.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

General Terms Languages,Theory,Verification

Keywords Control Operators, Delimited Continuation, Call-by-
Name, Axiomatization, CPS translation

1. Introduction

Delimited continuation (or delimited control) has been proved use-
ful in many applications from partial evaluation and Continuation
Passing Style (CPS) transformation to representation of arbitrary
monads to mobile computation. The traditional, unlimited continu-
ation represents the whole rest of the computation (as the object
captured by Scheme’s call/cc), but the delimited continuation
represents part of the rest of the computation.

While many works in the literature studied delimited control in
call-by-value [6, 8], several recent work studied it in call-by-name.
Herbelin and Ghilezan [11] related the study on classical logic with
the study on delimited continuations, and proposed a call-by-name
calculus for it. Kiselyov [13] proposed a call-by-name calculus
with delimited-control operators and used it in linguistic analysis.
Biernacka and Biernacki [4] introduced a type system for call-by-
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name delimited-control, which is similar to the type system for call-
by-value delimited-control by Danvy and Filinski [5], and proved
its strong normalization property.

In this paper, we investigate the call-by-name calculi with
delimited-control operators. Specifically, we identify the seman-
tics of such a calculus through a CPS translation, and give a set of
simple equations in direct style, which is sound and complete with
respect to this semantics.

We think such an axiomatization is useful and worth studying.
Given a set of reductions, one can compute every program (closed
term), however, one cannot optimize open terms using reductions
only. For instance, in a call-by-value calculus, (λx.x) (y z) is equal
to y z in any contexts, but (λx.x) (y z) cannot be reduced using the
call-by-value reductions. On the contrary, they are equal after CPS
translation. Appel [1] demonstrated a way to compiler construction
through CPS translation, and Flanagan et al. [10] showed that, all
possible optimizations after CPS-translating source terms may be
done before CPS-translating them, if we adopt a sufficiently strong
set of equations as axioms. The axioms must be sound in the sense
that all reductions are respected (if e1 reduces to e2, they must be
equal by the axioms), and must be complete in the sense that all
possible optimizations for CPS terms can be done for direct-style
terms.

In this paper, we choose the control operators “shift” and “reset”
among many delimited-control operators proposed in the literature.
One of the most important merits of them is that they have a simple,
functional CPS translation. Kameyama and Hasegawa [12] axiom-
atized the call-by-value calculus with shift and reset, namely, they
identified the equational theory which coincides the CPS semantics
for shift and reset. The axioms are simple enough to be used as op-
timizations, and can be used to reason about programs with shift
and reset without converting the programs into CPS. In this paper
we will carry out the same program for the call-by-name calculi.

Unlike the call-by-value calculi with delimited-control opera-
tors, there are a few choices about the semantics of the call-by-
name calculi:

• Whether the calculus admits η-equality or not: full η-equality
is usually assumed for call-by-name calculi, but it turns every
term into a function (a value), and, therefore, interferes with the
control operator reset (reset for a value does nothing). Hence,
we need to restrict either of the two (at least), and we decided
to abandon η-equality, since our intended operational semantics
does not admit it.

In Section 8, we will mention yet another calculus which admits
full η-equality but the use of reset is restricted.

• The semantics of the target calculus after the CPS translation:
the standard CPS translation for delimited-control operators
translates source terms into non-CPS terms, namely, arguments



of function applications are not necessarily values, and there-
fore, their meaning depends on the semantics of the target cal-
culus.

We choose the call-by-value semantics for the target calculus,
because it matches the intended operational behavior of control
operators.

To avoid the complicated equality theory having both call-by-
name βη-equality and call-by-value βη-equality, we will trans-
late the target terms once more by a CPS translation, following
Danvy and Filinski [5].

It should be noted that, a naive adaptation of Kameyama and
Hasegawa’s completeness proof for the call-by-value calculus did
not work for the call-by-name calculus. To overcome the difficulty,
we need to refine the source calculus (before CPS translation) as
well as the target calculus (after CPS translation) precisely. The key
observations are that (1) the delimited continuations are linear in
the call-by-name setting, and (2) we need to distinguish shift-bound
variables from the ordinary, lambda-bound variables. As for (1), we
note that the relationship between linearity and CPS translations
was studied by Filinski as “linear continuation” [9], and by Berdine
et al. as “linearly used continuations” [3], and, in this paper we
need both kinds of linearity. As for (2), we adopt the formulation
by Biernacka and Biernacki which has a special construct for the
application of shift-bound variables to terms.

In this paper, we give sound and complete axiomatization for
the type-free and typed call-by-name calculi with delimited-control
operators, and their relationship with axiomatization for the call-
by-value calculus.

The rest of this paper is organized as follows: in Section 2 we
introduce the call-by-name calculus with delimited-control oper-
ators shift and reset. In Section 3 we give a CPS translation by
Biernacka and Biernacki, and then a sound and complete axioma-
tization for the semantics in Section 4. The completeness proof is
given in Section 5, and Section 6 discusses these results in typed
setting. Section 7 discusses the use of linearity in our proofs, and
Section 8 briefly mentions yet another CPS translation which re-
spects η-equality. Section 9 gives concluding remarks.

2. Type-free Calculus

The calculus we study in this paper is λcbn
s/r , a call-by-name lambda

calculus with delimited-control operators “shift” and “reset”. The
call-by-value version of these control operators was proposed by
Danvy and Filinski [6, 7], and has been used to represent back-
tracking and various search, let-insertion in partial evaluation, var-
ious monads, type safe direct-style implementation of “printf”, and
others.

This section gives a type-free formulation of λcbn
s/r . Its type

system will be explained later.

2.1 Syntax

In this subsection we give the syntax of terms and related expres-
sions. First, we assume that there are two disjoint sets of variables,
one for ordinary variables (denoted by x, y, z, · · · ) and the other
for shift-bound variables (denoted by k). x is (eventually) bound
by lambda and a term is substituted for x, while k is (eventually)
bound by shift, and a delimited context (delimited continuation) is
substituted for k.

Fig. 1 gives the syntax of λcbn
s/r . c is a constant. When we

consider a typed calculus, we restrict c be a constant of basic types
such as integer. An ordinary variable x is a term, while a shift-
bound variable itself is not a term. The term λx.e and e1e2 are
abstraction and application as usual. The term Sk.e is a shift-term,
in which k is a bound variable. The term k ←֓ e is a throw-term

e ::= c | x | λx.e | e1 e2 | Sk.e | k ←֓ e | 〈e〉 term

E ::= [ ] | Ee | 〈E〉 | k ←֓ E ev. ctxt.

F ::= [ ] | Fe pure ev. ctxt.

Figure 1. Syntax of the Source Language

(λx.e1) e2  e1{x := e2}

〈F [Sk.e]〉 〈e{k ⇒ F}〉

〈v〉  v for v = c, λx.e

Figure 2. Reduction Rules

that applies the (delimited) continuation k to a term e. The variable
k in k ←֓ e is free. The term 〈e〉 is a reset-term.

Although the distinction between ordinary (lambda-bound)
variables and continuation variables appears in the work of Parigot
[15], it was Biernacka and Biernacki [4] who have made a clear
distinction between lambda-bound variables and shift-bound vari-
ables in the context of call-by-name delimited control. They have
also introduced the notation k ←֓ e.

We identify α-equivalent terms. FV(e) denotes the set of free
(ordinary and shift-bound) variables in e, and e1{x := e2} repre-
sents the result of capture-avoiding substitution of e2 for x in e1.
E represents an arbitrary evaluation context in call-by-name. F is
a pure evaluation context, or a delimited evaluation context, which
does not have reset’s around the hole [ ]. In other words, a pure
evaluation context is delimited by a reset, and is exactly a delim-
ited continuation. A general evaluation context is a continuation
outside of a reset, namely, a metacontinuation. E[e] (or F [e]) de-
notes the term after the hole-filling operation of a term e for a hole
in E (or F ). Hole-filling of another evaluation context E1[E2] is
defined similarly.

Remarks. Let us briefly argue the design of the source calculus
here, namely, if the distinction between shift-bound and lambda-
bound variables is necessary or not.

If we are only concerned with the operational behavior of closed
terms, there is no need to distinguish them. In this case, the expres-
sion k ←֓ e can be represented by (k e).

However, this distinction is necessary for this paper, since we
are concerned with equality theories for open terms: to obtain
complete axiomatization, we need an axiom which is valid for shift-
bound variables but not valid for lambda-bound variables.

We remark that Biernacka and Biernacki introduced this dis-
tinction for a different purpose: to develop a type system for the
calculus, which represents the so called answer-type polymorphism
without making use of polymorphism [2]. The details may be found
in [4].

In summary, two distinct classes of variables are necessary in
the call-by-name calculi for delimited continuations. This is a sharp
contrast with the call-by-value case, for which the above-mentioned
distinction is not necessary [12].

2.2 Reduction Rules

To understand the operational behavior of shift and reset, we give
the reduction rules of λcbn

s/r in Fig. 2.
The reduction rules are essentially the same as those in Bier-

nacka and Biernacki, but we have slightly changed them in the fol-
lowing point: their calculus has an expression F ←֓ e for a pure
evaluation context F and an expression e. It is the result of substi-
tuting F for k in k ←֓ e (here we assume that k does not appear



in e freely). On the other hand, our calculus does not have such an
expression, and such a substitution is realized by a meta-operation
{k ⇒ F}.

The substitution {k ⇒ F} is defined as follows:

c{k ⇒ F}
def
= c

x{k ⇒ F}
def
= x

(λx.e){k⇒ F}
def
= λx.(e{k⇒ F})

where x 6∈ FV(F )

(e1 e2){k ⇒ F}
def
= (e1{k ⇒ F}) (e2{k ⇒ F})

(Sk′.e){k ⇒ F}
def
= Sk′.(e{k ⇒ F})

where k
′ 6∈ {k} ∪ FV(F )

(k ←֓ e){k ⇒ F}
def
= 〈F [e{k ⇒ F}]〉

(k′ ←֓ e){k ⇒ F}
def
= k

′ ←֓ (e{k ⇒ F})

where k
′ 6∈ {k} ∪ FV(F )

〈e〉{k ⇒ F}
def
= 〈e{k ⇒ F}〉

Let us look at the reduction rules in detail. The first reduction in
Fig. 2 is the standard, call-by-name β-reduction.

In the second reduction rule, the evaluation context up to the
nearest delimiter (reset) is F , and it is captured and substituted for
k using the substitution {k⇒ F}. The key case in this substitution
is (k ←֓ e){k ⇒ F}, which is defined to be 〈F [e{k ⇒ F}]〉.
This means that, by the substitution {k ⇒ F}, a functional object
λx.〈F [x]〉 is substituted for k, if we identify k ←֓ e′ with (k e′).
Hence, the second reduction 〈F [Sk.e]〉  〈e{k ⇒ F}〉 may be
understood as

〈F [Sk.e]〉 〈e{k := λx.〈F [x]〉}〉

This is the same reduction rule as the one in the literature [12].
The third rule means: when a value is delimited by reset, then

the delimiter is simply discarded. It may be strange to have the
notion of values in the call-by-name calculus, but this rule naturally
reflects the abstract-machine semantics for shift and reset in call-
by-name1 . Note that, a variable x is not a value in λcbn

s/r , so 〈x〉
does not reduce to x.

In Section 4, we will need to extend the above substitution to the
form {k ⇒ (k′ ←֓ F )}, namely, we need to extend the substituted
context F to the form k′ ←֓ F , which is not a pure evaluation
context. The definition of the extended substitution remains the
same except that F in the above definition may be in the form
k′ ←֓ F ′. For example, the key case is:

(k ←֓ e){k ⇒ (k′ ←֓ F )}
def
= 〈k′ ←֓ (F [e{k⇒ (k′ ←֓ F )}])〉

We remark that reset in the right-hand side of this definition is not
necessary as 〈k′ ←֓ e′〉 = k′ ←֓ e′ can be proved by our axioms
introduced later.

3. Semantics based on CPS Translation

3.1 CPS Semantics

A CPS translation is a syntax-directed translation from a source
calculus (λcbn

s/r in this paper) to a target calculus. It is a useful the-
oretical tool to give a precise semantics to a calculus with control
operators, and may be used as an intermediate language for com-
pilers, since we can perform various kinds of optimizations on the
target terms of a CPS translation. Using the axioms in this paper,
one can perform the optimizations on the source terms.

1 This semantics is attributed to Olivier Danvy in the literature [11].

The following three semantics are often studied for computa-
tional calculi:

• Reduction semantics: e1 = e2 if and only if they are equal up
to the equality induced by the reduction rules.2

• CPS semantics. e1 = e2 if and only if they are translated to the
same term by a CPS translation.

• Observational equivalence. e1 = e2 if and only if, for any
context C such that C[e1] and C[e2] are closed, C[e1] and
C[e2] both terminate, or both do not terminate under (a certain
notion of) the operational semantics.

Under reasonable assumptions, the strength of the three seman-
tics increases in the order above, namely, if two programs are equal
in the reduction semantics (CPS semantics, resp.), they are equal in
the CPS semantics (observational equivalence, resp.). The converse
direction does not, in general, hold. For instance, (λx.xx)(λx.xx)
and (λx.xxx)(λx.xxx) are equal under the observational equiva-
lence, but they are not CPS-translated to equal terms for any stan-
dard CPS translations.

Although CPS semantics is weaker than observational equiva-
lence, it is in many cases sufficient for reasoning about programs, as
shown by literature (for instance, [1]). Indeed we often prefer CPS
semantics than observational equivalence, since the latter is fragile
in language extensions; under observational equivalence, two equal
terms may not be equal after a new construct is added to the calcu-
lus, as we may be able to distinguish these terms using the new con-
struct. On the contrary, CPS semantics is robust in the sense that,
two equal terms remain equal even after a new construct is added,
since their images of a CPS translation do not (usually) change.

3.2 1CPS Translation

Our task is to precisely determine the CPS translation we use, and
we choose a CPS translation based on Plotkin’s one, as we will
argue below.

For call-by-name calculi, there are two choices for CPS trans-
lations: Plotkin’s [16] and Streicher and Reus’ [18]. The latter re-
spects full η-equality (η-equal terms are translated to equal terms),
while the former does not. Using full η-equality, we can infer that
the control operator “reset” becomes totally useless:

〈e〉 =η 〈λx.ex〉 λx.ex =η e

Without the reset operator, our calculus does not make sense. Con-
sequently, we use a CPS translation based on Plotkin’s. We will
revisit this choice in Section 8.

Fig. 3 gives the CPS translation for the calculus λcbn
s/r where we

assume that the variables κ and m are fresh. The CPS translation
is essentially due to Biernacka and Biernacki, which is based on
Plotkin’s call-by-name CPS translation, and is extended to the
calculus with shift and reset. The translation [[ ]]

1
maps a term

in λcbn
s/r to a term in the type-free lambda calculus. We call it

1CPS translation. For terms without control operators, this CPS
translation is identical to Plotkin’s one. Unlike the call-by-value
one, a variable x is translated to λκ.xκ. This reflects the fact that
a variable in the call-by-name calculus λcbn

s/r is not a value, but
represents a computation, so its CPS counterpart should receive a
continuation κ. We will assume that the target calculus of the CPS
translation admits η-equality for the continuation variable κ, hence
[[x]]

1
could be defined as x.

The translation for a reset-term 〈e〉 is identical to that in the
call-by-value setting [6]. It is also not difficult to understand the
translation of a shift-term Sk.e. It captures the current continuation

2 The equality is the reflexive, transitive, and congruent closure of the
reduction rules.



[[c]]
1

def
= λκ.κc

[[x]]
1

def
= λκ.xκ

[[λx.e]]
1

def
= λκ.κ(λx.[[e]]

1
)

[[e1e2]]1
def
= λκ.[[e1]]1(λm.m[[e2]]1κ)

[[Sk.e]]
1

def
= λκ.([[e]]

1
{k := κ})I1

[[k ←֓ e]]
1

def
= λκ.κ([[e]]

1
k)

[[〈e〉]]
1

def
= λκ.κ([[e]]

1
I1)

I1
def
= λm.m

Figure 3. 1CPS Translation

κ, binds it to the shift-bound variable k, and then installs the
identity continuation I1. The translation of a throw-term k ←֓ e
is to install the continuation k, compute e, and then re-activates the
continuation κ by applying κ to the result of e. The translation of
a reset-term is to save the current (delimited) continuation κ, and
install the identity continuation I1 (which corresponds to an empty
evaluation context) as the current continuation.

3.3 Semantics of CPS terms

Our purpose is to axiomatize the CPS semantics, and in order to do
so, we need to precisely define the semantics of the target calculus.
In the presence of delimited-control operators in the source calculus
λcbn

s/r , the image of 1CPS translation is not strictly in CPS. Namely,
the arguments in function applications may not be values. For
instance, the image of a reset-term contains a subterm κ([[e]]

1
I1), in

which κ is applied to a non-value term [[e]]
1
I1, thus the evaluation

of this term is dependent on the evaluation strategy. If we evaluate
it in call-by-value, [[e]]

1
I1 is computed first, and κ is applied to its

result. If we evaluate it in call-by-name, [[e]]
1
I1 is not computed

now, and κ is applied to the unevaluated subterm [[e]]
1
I1.

As for this choice, we again follow Biernacka and Biernacki
who have chosen the call-by-value semantics for the target calculus.
Rather than introducing the call-by-value semantics into the target
calculus directly (such as Moggi’s computational lambda calculus
[14]), we translate the CPS terms once again [6], by the call-by-
value CPS translation.

The successive CPS translations may be represented by a single
CPS translation, which we call a 2CPS translation. The images of
the 2CPS translation are terms in CPS, and we no longer have to be
worried about different semantics.

3.4 2CPS Translation

Fig. 4 defines the 2CPS translation for λcbn
s/r , which introduces two

continuation variables κ and γ. These variables as well as m are
assumed to be fresh. If we decompose the 2CPS translation into
two CPS translations, κ is introduced by the first (call-by-name)
CPS translation, and γ is introduced by the second (call-by-value)
CPS translation.

The definition of the 2CPS translation looks like that of the
1CPS translation. The trick is that we η-reduce the results of
2CPS translation whenever possible. For instance, [[x]]

2
should be

λκ.λγ.xκγ, however, since we will introduce η-equality for the

variable γ, it is equal to λκ.xκ, so we define it as [[x]]
2

def
= λκ.xκ

(which is in turn equal to x by η-reduction for κ). Since the images
of the 1CPS translation of the throw-term k ←֓ e and the reset-term
〈e〉 contain non-CPS forms, their images of the 2CPS translations
must use the second continuation variable γ.

[[x]]
2

def
= x

[[c]]
2

def
= λκ.κc

[[λx.e]]
2

def
= λκ.κ(λx.[[e]]

2
)

[[e1 e2]]2
def
= λκ.[[e1]]2(λm.m[[e2]]2κ)

[[Sk.e]]
2

def
= λκ.([[e]]

2
{k := κ})I2

[[k ←֓ e]]
2

def
= λκ.λγ.[[e]]

2
k(κ⊕ γ)

[[〈e〉]]
2

def
= λκ.λγ.[[e]]

2
I2(κ⊕ γ)

I2
def
= λm.λγ.γm

(κ⊕ γ)
def
= λm.κmγ

Figure 4. 2CPS Translation

We also note that the identity continuation I1 (= λm.m) be-
comes I2 (= λm.λγ.γm), and that (κ ⊕ γ) (which is simply an
abbreviation for λm.κmγ) corresponds to the push-operation for
the stack of meta-continuations in the abstract machine semantics.
(See [4] for details.)

In the following, we simply write [[e]] for [[e]]
2
, since we do not

use the 1CPS translation.

3.5 Analysis of Target Calculus

In order to define the CPS semantics, we shall precisely define the
semantics of the target calculus of the 2CPS translation.

By inspecting the images of the translation, we can easily show
that terms in the target calculus are generated by the following
grammar:

T ::= x | λκ.P | V T V ::= c | m | λx.T

P ::= KV | TK | λγ.A K ::= κ | λm.P

A ::= GV | PG G ::= γ | λm.A

The target calculus has six sorts: T is the image of expressions
in λcbn

s/r . P is a pre-term and A is an answer. V is the image of
values (constant or abstraction). K is the image of pure evaluation
contexts (delimited context). G is the image of (general) evaluation
contexts. Variables belong to some specific sorts: x is a variable for
T , m for V , κ for K, and γ for G.

It is important to note that βη-reductions in the target calculus
preserve the sorts, which is easily proved.

For a term in the target calculus t1 and t2, we write ⊢CPS t1 =
t2 if they are proved equal using the following equations and
the standard equality rules (reflexivity, symmetry, transitivity, and
substitution):

• β-equality for x: (λx.T1) T2 = T1{x := T2}.

• βη-equality for m: (λm.P )V = P{m := V }, λm.Km =
K (where m 6∈ FV(K)), (λm.A)V = A{m := V }, and
λm.Gm = G (where m 6∈ FV(G)).

• βη-equality for κ: (λκ.P )K = P{κ := K} and λκ.Tκ = T
(where κ 6∈ FV(T )).

• βη-equality for γ: (λγ.A)G = A{γ := G} and λγ.Pγ = P
(where γ 6∈ FV(P )).

Note that we have excluded η-equality for x, namely, λx.V x =
V is not allowed in general. This choice reflects the fact that the
source calculus λcbn

s/r does not allow η-equality as we argued before.



3.6 Properties of 2CPS Translation

In this subsection we show several useful properties of the 2CPS
translation.

We first define |F | for a pure evaluation context F . The purpose
of | | is to CPS-translate a pure evaluation context F , and it is
defined as follows:

|[ ]|
def
= λκ.κ

|F e|
def
= λκ.|F | (λm.m[[e]]κ)

Now we can state the following lemma which is useful in the
soundness proof.

LEMMA 1. We have the following properties for the 2CPS transla-
tion.

(1) ⊢CPS [[F [e]]] = λκ.[[e]](|F |κ) where κ 6∈ FV(e).

(2) ⊢CPS [[e{x := e′}]] = [[e]]{x := [[e′]]}.
(3) ⊢CPS [[e{k ⇒ F}]] = [[e]]{k := |F | I2}.
(4) ⊢CPS [[e{k ⇒ (k′ ←֓ F )}]] = [[e]]{k := |F | k′}.

Proof. (1) The equation is proved by induction on F . When F =
[ ], it is trivial. When F = F1 e1, we can prove it as follows:

[[F [e]]] ≡ [[F1[e] e1]]

≡ λκ.[[F1[e]]] (λm.m[[e1]]κ)

= λκ.(λκ′

.[[e]](|F1|κ
′)) (λm.m[[e1]]κ) by I.H.

= λκ.[[e]](|F1|(λm.m[[e1]]κ))

= λκ.[[e]](|F1e1| κ)

From the second line to the third, we used induction hypothesis on
F1.

(2) The equation is easily proved by induction on e.
(3) The equation is proved by induction on e. The only interest-

ing case is e ≡ k ←֓ e1, and we can prove the case as follows:

[[(k ←֓ e1){k⇒ F}]]

≡ [[〈F [e1{k ⇒ F}]〉]]

≡ λκ.λγ.[[F [e1{k ⇒ F}]]]I2(κ⊕ γ)

= λκ.λγ.[[e1{k ⇒ F}]](|F | I2)(κ⊕ γ) by (1)

= λκ.λγ.[[e1]]{k := |F | I2}(|F | I2)(κ⊕ γ) by I.H.

= (λκ.λγ.[[e1]]k(κ⊕ γ)){k := |F | I2}

≡ [[(k ←֓ e1)]]{k := |F | I2}

(4) This case is proved in the same way as (3). Here we show
the case e ≡ k ←֓ e1.

[[(k ←֓ e1){k ⇒ (k′ ←֓ F )}]]

≡ [[k′ ←֓ F [e1{k ⇒ (k′ ←֓ F )}]]]

≡ λκ.λγ.[[F [e1{k ⇒ (k′ ←֓ F )}]]]k′(κ⊕ γ)

= λκ.λγ.[[e1{k ⇒ (k′ ←֓ F )}]](|F | k′)(κ⊕ γ) by (1)

= λκ.λγ.[[e1]]{k := |F | k′}(|F | k′)(κ⊕ γ) by I.H.

= (λκ.λγ.[[e1]]k(κ⊕ γ)){k := |F | k′}

≡ [[k ←֓ e1]]{k := |F | k′}

4. Axiomatizing the Semantics

In this section, we provide a set of axioms for λcbn
s/r , and show that

it is sound with respect to the CPS semantics. Its completeness will
be proved in the next section.

(λx.e1) e2 = e1{x := e2} β

〈F [Sk.e]〉 = 〈e{k ⇒ F}〉 reset-shift

k
′ ←֓ (F [Sk.e]) = 〈e{k ⇒ (k′ ←֓ F )}〉 throw-shift

〈v〉 = v for v = c, λx.e reset-value

Sk.(k ←֓ e) = e where k 6∈ FV(e) shift-elim

Sk.〈e〉 = Sk.e shift-reset

Figure 5. Axioms for λcbn
s/r (call-by-name)

(λx.e1) v = e1{x := v} βv

λx.v x = v where x 6∈ FV(v) ηv

(λx.F [x])e = F [e] where x 6∈ FV(F ) βΩ

〈F [Sk.e]〉 = 〈e{k ⇒ F}〉 reset-shift

k
′ ←֓ (F [Sk.e]) = 〈e{k ⇒ (k′ ←֓ F )}〉 throw-shift

〈v〉 = v reset-value

Sk.(k ←֓ e) = e where k 6∈ FV(e) shift-elim

Sk.〈e〉 = Sk.e shift-reset

〈(λx.e1)〈e2〉〉 = (λx.〈e1〉)〈e2〉 reset-lift

where v and F are defined as follows:

v ::= c | x | λx.e

F ::= [ ] | F e | v F

Figure 6. Axioms for λcbv
s/r (call-by-value)

4.1 Axioms

Fig. 5 gives our axioms for λcbn
s/r . We write ⊢cbn

s/r e1 = e2 if we can
prove the equation using these axioms and the standard inference
rules for equality.

For the purpose of comparison, Fig. 6 gives the axioms for
the call-by-value calculus λcbv

s/r by Kameyama and Hasegawa [12].
Although their calculus does not have the throw expression k ←֓ e,
we introduce it for the purpose of comparison. Their axioms are
slightly modified accordingly. Note that the definitions for a value
v and the pure evaluation context F for the call-by-value calculus
are different from those for λcbn

s/r .
We will explain the axioms in Fig. 5 by comparing them to those

in Fig. 6.

• The call-by-name calculus λcbn
s/r has a single strong axiom for

β, while the call-by-value one λcbv
s/r has three weaker axioms

βv , βΩ, and reset-lift. The former subsumes the latter.

• No axiom for η-equality exists in λcbn
s/r , while λcbv

s/r has the call-
by-value version of η-equality as ηv .

• The axioms shift-elim and shift-reset are contained in both
calculi.

• Two axioms reset-shift and reset-value are contained in both
calculi, but their actual meanings differ between the calculi,
since the definitions of F and v differ.

• The axiom throw-shift is contained in both calculi.

For the call-by-value calculus, this is only because k ←֓ e is a
special form. If we do not distinguish shift-bound and lambda-
bound variables, then k ←֓ e may be represented by (k e),



and the axiom throw-shift is subsumed by reset-shift (note that
(k F ) is an evaluation context in λcbv

s/r if k is a variable).

On the contrary, the axiom throw-shift is necessary for the call-
by-name calculus, and it seems difficult to formulate this ax-
iom without distinguishing shift-bound variables from lambda-
bound variables. Without such a distinction, throw-shift would
become unsound.

We believe that our axioms for the call-by-name calculus are
simple enough to be used for reasoning about open programs, and
that the similarity of the axioms for the two calculi is an evidence
that our axioms are natural and stable.

We emphasize that establishing this kind of axioms is not trivial
even after getting to know the axiomatization for the call-by-value
case, since the CPS translation of the shift term in call-by-name is
not quite the same as that in call-by-value.

It is easy to prove that the reduction semantics is subsumed by
our axioms.

THEOREM 1. Let e1 and e2 be expressions in λcbn
s/r . If e1  e2 by

one of the reduction rules in Fig. 2, then ⊢cbn
s/r e1 = e2 is derivable.

Proof. The three reductions, respectively, are subsumed by the
axioms β, reset-shift, and reset-value, respectively.

The rest of this paper is devoted to establish that the axioms in
Fig. 5 are sound and complete with respect to the CPS semantics
induced by the 2CPS translation.

4.2 Soundness of Axioms

Soundness of the axioms means that equal terms in the source
calculus λcbn

s/r are CPS-translated to equal terms. Soundness may
be thought as a sort of correctness for a CPS translation.

THEOREM 2 (Soundness). Let e1 and e2 be terms in λcbn
s/r . If

⊢cbn
s/r e1 = e2 is derivable, then ⊢CPS [[e1]] = [[e2]] is derivable.

Proof. It suffices to prove the theorem when e1 = e2 is obtained
by one of the axioms. We list the proofs of all the cases, since they
are instructive to know the details of the CPS translation.

(β)

[[(λx.e1) e2]] ≡ λκ.[[λx.e1]] (λm.m [[e2]] κ)

= λκ.(λκ′

.κ
′ (λx.[[e1]])) (λm.m [[e2]] κ)

= λκ.(λx.[[e1]]) [[e2]] κ

= λκ.[[e1]]{x := [[e2]]} κ

= [[e1]]{x := [[e2]]}

= [[e1{x := e2}]] by Lemma 1 (2)

(reset-shift)

[[〈F [Sk.e]〉]]

≡ λκ.λγ.[[F [Sk.e]]] I2 (κ⊕ γ)

= λκ.λγ.[[Sk.e]] (|F | I2) (κ⊕ γ) by Lemma 1 (1)

≡ λκ.λγ.((λκ′

.[[e]]{k := κ
′}) I2)(|F | I2) (κ⊕ γ)

= λκ.λγ.([[e]]{k := |F | I2}) I2 (κ⊕ γ)

= λκ.λγ.[[e{k⇒ F}]] I2 (κ⊕ γ) by Lemma 1 (3)

≡ [[〈e{k ⇒ F}〉]]

(throw-shift, k′ 6= k)

[[k′ ←֓ (F [Sk.e])]]

≡ λκ.λγ.[[F [Sk.e]]] k′ (κ⊕ γ)

= λκ.λγ.[[Sk.e]](|F | k′) (κ⊕ γ) by Lemma 1 (1)

≡ λκ.λγ.(λκ′

.[[e]]{k := κ
′}I2)(|F | k

′) (κ⊕ γ)

= λκ.λγ.([[e]]{k := |F | k′}) I2 (κ⊕ γ)

= λκ.λγ.[[e{k⇒ (k′ ←֓ F )}]] I2 (κ⊕ γ) by Lemma 1 (4)

≡ [[〈e{k ⇒ (k′ ←֓ F )}〉]]

(reset-value) We define v∗ for a value v by:

c
∗ def

= c

(λx.e)∗
def
= λx.[[e]]

Then we can prove:

[[〈v〉]] ≡ λκ.λγ.(λκ′

.κ
′

v
∗) I2 (κ⊕ γ)

= λκ.λγ.I2 v
∗ (κ⊕ γ)

= λκ.λγ.(κ⊕ γ) v∗

= λκ.λγ.κ v
∗

γ

= λκ.κ v
∗

≡ [[v]]

(shift-elim, k 6∈ FV(e))

[[Sk.(k ←֓ e)]] ≡ λκ.([[k ←֓ e]]{k := κ}) I2

= λκ.(λκ′

.λγ.[[e]] k (κ′ ⊕ γ)){k := κ}) I2

= λκ.λγ.[[e]] κ (I2 ⊕ γ)

= λκ.λγ.[[e]] κ γ

= [[e]]

(shift-reset)

[[Sk.〈e〉]] = λκ.([[〈e〉]]{k := κ}) I2

= λκ.(λκ′

.λγ.[[e]] I2 (κ′ ⊕ γ)){k := κ}) I2

= λκ.λγ.([[e]] I2 (I2 ⊕ γ)){k := κ}

= λκ.λγ.([[e]] I2 γ){k := κ}

= [[Sk.e]]

5. Completeness

Completeness is the converse of soundness: if the images of the
CPS translation of two terms are equal in the target calculus, then
they are equal in the source calculus. Completeness ensures that
all equational reasoning for CPS terms can be done in the source
calculus.

THEOREM 3 (Completeness). Let e1 and e2 be (type-free) terms

in λcbn
s/r . If ⊢CPS [[e1]] = [[e2]] is derivable, then ⊢cbn

s/r e1 = e2 is

derivable.

Let us give an overview of the proof of completeness.
We will basically follow the general recipe by Sabry and

Felleisen [17] as follows:

1. Analyze the structure of target terms of CPS translation, and
define a grammar for it, which should be closed under the
reductions in the target calculus.

2. Define a translation from the target to the source calculus, and
prove that it is an inverse of the CPS translation.

3. Prove that equality in the target calculus is preserved by the
inverse translation.



However, we encountered a problem when the grammar in Sec-
tion 3.5 is used for this purpose; we could not define a suitable im-
age of the inverse function for the variable m (the variable for the
V -sort) with the desired property. Let us explain this in more detail.
In the completeness proof, we will need the property 〈v◦〉 = v◦ for
any term v of the V -sort where v◦ is the image of v by the inverse
function. As a special case, we need 〈m◦〉 = m◦. However, if m◦

is a variable in λcbn
s/r , this property does hold in general. (Note that a

variable in λcbn
s/r represents an arbitrary expression, and not neces-

sarily a value, thus 〈x〉 = x does not hold in general.) In addition,
no other choice for m◦ seems to exist as m is a variable.

We can overcome this difficulty by investigating the target cal-
culus more carefully. The variable m in the target calculus is not
used in an arbitrary way, but is used linearly. Linearity of the vari-
able m reflects the fact that a delimited continuation (a pure eval-
uation context) in the call-by-name calculus is linear in its hole:
F ::= [ ] | F e. 3

Sincem is linear, we do not have to keep the name ofm through
the inverse function, and we may discard it. The same technique
was used by Kameyama and Hasegawa’s axiomatization of shift
and reset in call-by-value, where the metacontinuation variable γ is
linear, and thus can be discarded by the inverse function. Here, we
discard not only the name of γ, but also the name of m.

In the following proof, we do not directly formulate linear
lambda calculus as the target calculus. Instead, we refine the gram-
mar to reflect the linearity of the variable m. Therefore we do not
explicitly mention the linearity in the proof, but it is embedded in
the grammar of the target calculus, and the definition of the inverse
translation from the target calculus. The point here is that this sim-
ple trick is sufficient to avoid the problem above.

5.1 Refined Grammar and Inverse Function

We give a refined grammar for the target calculus as:

T ::= x | λκ.P | V T term

P ::= KV | TK | λγ.A preterm

A ::= GV | PG answer

V ::= c | λx.T value

K ::= κ | λm.m T K | λm.λγ.γ m continuation

G ::= γ | λm.K m G metacontinuation

The difference from the previous grammar is that we no longer
regard m as a member of the V -sort. Instead, the K- and G-sorts
contain a few more terms using m, and m is a linear variable.

The equality of the target calculus remains the same, however,
since η-redex for m does not exist in the terms generated by the
new grammar, it is discarded. In summary, the equality of the terms
generated by the new grammar is induced by β-equality for the
variables x and m, and βη-equality for the variables κ and γ.

In the following, we use T, P, A, V,K and G not only for the
names of sorts, but also for meta-variables of the corresponding
sorts, for instance, T is used as a meta-variable for terms of the
T -sort.

We can easily prove the following lemma for the refined gram-
mar.

LEMMA 2.

• If e is a λcbn
s/r -term, then [[e]] belongs to the T -sort.

• Each of the above sorts is closed under β-reduction for x and
m, and βη-reduction for κ and γ.

3 This linearity has been already mentioned in the literature, for instance, in
Herbelin and Ghilezan [11].

x
◦ def

= x (λκ.P )◦
def
= Sκ.P ◦

(V T )◦
def
= V

◦

T
◦

(KV )◦
def
= K

◦[V ◦] (TK)◦
def
= K

◦[T ◦]

(λγ.A)◦
def
= A

◦

(PG)◦
def
= G

◦[〈P ◦〉] (GV )◦
def
= G

◦[V ◦]

c
◦ def

= c (λx.T )◦
def
= λx.T

◦

κ
◦ def

= κ ←֓ [ ] (λm.m T K)◦
def
= K

◦[[ ] T ◦]

(λm.λγ.γ m)◦
def
= [ ]

γ
◦ def

= [ ] (λm.K m G)◦
def
= G

◦[〈K◦[ ]〉]

Figure 7. Inverse Function

We then define an inverse function ( )◦ from the target calculus
to source calculus in Fig. 7. By the inverse function, a term in the
T , P , A, or V -sort is mapped to a term in λcbn

s/r , a term in the K or
G-sort to an evaluation context.

Note that reset is introduced in (PV )◦ and (λm.K m G)◦,
and the names of the variables m and γ are discarded through the
inverse, since these variables are linear.

We prove that the above “inverse” function is actually a (left)
inverse of the 2CPS translation.

LEMMA 3 (Inverse). Let e be an expression in λcbn
s/r . We have

⊢cbn
s/r [[e]]◦ = e.

Proof. This lemma can be proved by a straightforward induction
on e. Let us show a few interesting cases.

For e = 〈e′〉, we have:

[[e]]◦ = (λκ.λγ.[[e′]]I2(κ⊕ γ))
◦

= Sκ.(λm.κ m γ)◦[〈I2
◦[[[e′]]

◦

]〉]

= Sκ.κ ←֓ 〈[[e′]]
◦

〉 = 〈[[e′]]
◦

〉 = 〈e′〉

For e = Sk.e′, we have:

[[e]]◦ = (λκ.([[e′]]{k := κ})I2)
◦

= (λk.[[e′]]I2)
◦

= Sk.I2
◦[[[e′]]

◦

] = Sk.e′

5.2 Properties of Inverse Function

We present several technical properties about substitution and the
inverse.

LEMMA 4. Substitutions for x, κ, and γ commute with the inverse
function in the following sense.

(1) ⊢cbn
s/r (t{x := T1})

◦ = t◦{x := T1
◦} is derivable if t is a T -,

P -, A-, V -, K-, or G-term.

(2) Let φ be {κ := K1} and ψ be {κ⇒ K1
◦}. Then we have:

• ⊢cbn
s/r (tφ)◦ = t◦ψ if t is a T - or V -term.

• ⊢cbn
s/r 〈(tφ)◦〉 = 〈t◦ψ〉 if t is a P - or A-term.

• ⊢cbn
s/r 〈(Kφ)◦[e]〉 = 〈(K◦ψ)[e]〉 for any term e in λcbn

s/r .

• ⊢cbn
s/r (Gφ)◦[〈e〉] = (G◦ψ)[〈e〉] for any term e in λcbn

s/r .

(3) ⊢cbn
s/r 〈(A{γ := G1})

◦〉 = 〈G1
◦[〈A◦〉]〉.

(4) ⊢cbn
s/r (G{γ := G1})

◦[〈e〉] = G1
◦[〈G◦[〈e〉]〉] for any term e

in λcbn
s/r .



Proof. This lemma can be proved by simultaneous induction on
each term. Note that (Pφ)◦ = P ◦ψ does not hold in general, but
it suffices to prove 〈(Pφ)◦〉 = 〈P ◦ψ〉 to make the induction go
through, since P always appears immediately under reset. Simi-
larly for K, we only have to consider the form 〈K◦[e]〉. We also
make use of the fact that γ does not appear free in T , P , V or K.

Here, we prove a few interesting cases.
(Case K ≡ κ for 〈(Kφ)◦[e]〉 = 〈(K◦ψ)[e]〉)

We may assume that κ 6∈ FV(e). The left-hand side is 〈K1
◦[e]〉,

and the right-hand side is 〈(κ◦ψ)[e]〉, which is equal to 〈(κ ←֓
e){κ⇒ K1

◦}〉. Then we have:

⊢cbn
s/r 〈(κ ←֓ e){κ⇒ K1

◦}〉 = 〈〈K1
◦[e]〉〉 = 〈K1

◦[e]〉

(Case G ≡ λm.KmG2 for (4))
The left-hand side of (4) is (G2{γ := G1})

◦[〈K◦[〈e〉]〉],
which is equal to G1

◦[〈G2
◦[〈K◦[〈e〉]〉]〉] by induction hypoth-

esis, which is equal to the right-hand side.

LEMMA 5 (Inverse preserves reduction). Suppose ⊢CPS t1 = t2 is
derivable for target terms t1 and t2, then we have:

• ⊢cbn
s/r t1

◦ = t2
◦ if t1 and t2 are T - or V -terms.

• ⊢cbn
s/r 〈t1

◦〉 = 〈t2
◦〉 if t1 and t2 are P - or A-terms.

• ⊢cbn
s/r 〈t1

◦[e]〉 = 〈t2
◦[e]〉 if t1 and t2 are K-terms and e is a

term in λcbn
s/r .

• ⊢cbn
s/r t1

◦[〈e〉] = t2
◦[〈e〉] if t1 and t2 are G-terms and e is a

term in λcbn
s/r .

Proof. It suffices to prove the lemma when t2 is obtained from t1
by β or η reduction.

There are six β-redexes, and two η-redexes. For each reduction
t1  t2, it is not difficult to prove ⊢cbn

s/r t1
◦ = t2

◦.
The most interesting case is β-reduction for κ, namely, the case

⊢cbn
s/r 〈((λκ.P )K)◦〉 = 〈(P{κ := K})◦〉. We have:

〈((λκ.P )K)◦〉 = 〈K◦[Sκ.P ◦]〉

and

〈(P{κ := K})◦〉 = 〈P ◦{κ⇒ K
◦}〉

by Lemma 4. By inspecting the definition of K◦, it is either a pure
evaluation context, or the form κ′ ←֓ F for some κ′ and F . In the
former case, we use the axiom reset-shift to prove:

⊢cbn
s/r 〈K◦[Sκ.P ◦]〉 = 〈P ◦{κ⇒ K

◦}〉

while in the latter case, we use the axiom throw-shift to prove the
same equation. Hence we are done.

The other cases can be proved easily.
It should be emphasized that the proof of this theorem actually

needs the axiom throw-shift.
Proof. of Theorem 3 Let e and e′ be terms in λcbn

s/r . Suppose

⊢CPS [[e]] = [[e′]] is derivable. Since [[e]] and [[e′]] are T-terms, we
have ⊢cbn

s/r [[e]]◦ = [[e′]]
◦

by Lemma 5, and then ⊢cbn
s/r e = e′ by

Lemma 3.

6. Typed Calculus

We have so far studied the type-free calculus only, and a natural
question is whether our axioms work for typed calculus. In this
section we give a positive answer to it.

6.1 Type System

We define a type system for our call-by-name calculus with delim-
ited control. The type system defined in this section is essentially
the same as the type system by Biernacka and Biernacki modulo
the following modifications.

Γ ∪ {x : (α | σ | β)} | α ⊢ x : σ | β
var

(c is a constant of base type b)

Γ | α ⊢ c : b | α
const

Γ, x : (α | σ | β) | α′ ⊢ e : σ′ | β′

Γ | γ ⊢ λx.e : (α | σ | β)→ (α′ | σ′ | β′) | γ
fun

Γ | β′ ⊢ e0 : (α | σ | β)→ (α′ | σ′ | β′) | γ Γ | α ⊢ e1 : σ | β

Γ | α′ ⊢ e0e1 : σ′ | γ
app

Γ | α ⊢ e : α | β

Γ | γ ⊢ 〈e〉 : β | γ
reset

Γ ∪ {k : σ ⊲ τ} | α ⊢ e : α | β

Γ | τ ⊢ Sk.e : σ | β
shift

Γ | τ ⊢ e : σ | β

Γ ∪ {k : σ ⊲ τ} | α ⊢ k ←֓ e : β | α
throw

Figure 8. Type System

• Our syntax does not have an expression F ←֓ e for a pure
evaluation context F and an expression e, so the corresponding
typing rule is not contained.

• As a consequence, we do not need typing rules for delimited
contexts and metacontexts, so they are omitted.

• We use a slightly different notation for function types. This is
only notational difference: we write (α | σ | β) → (α′ | σ′ |
β′) for their type σα,β

α′ →β′ σ′.

A type (denoted by α, β, σ, τ, · · · ) is either a basic type b (such
as integer and boolean), or a function type (α | τ | β) → (α′ |
τ ′ | β′). The function type may be understood as the type of a
function whose argument has the type τ with an effect of type α
to β, and whose return type is τ ′ with an effect of type α′ to β′.
Here, “an effect of type α to β” is a computational effect invoked
by a shift-expression, which changes the answer type of the current
continuation from α to β. See [2] for the detailed discussion on the
answer-type modification. If there is no effect by a shift-expression,
then α and β are the same type (which can be an arbitrary type
[19].)

We also define a context-type σ ⊲ τ where σ and τ are types. A
context-type is used for typing a delimited continuation, or a pure
evaluation context.

A typing context Γ is a (possibly empty) set consisting of
x : (α | τ | β) and k : σ ⊲ τ . The former intuitively
means that an ordinary variable x has type τ with an effect of
type α to β, while the latter represents the type of a delimited
continuation corresponding to k. Since a delimited continuation is
always a pure function, we do not have to consider its effects, so
the type of k needs only two subtypes. A judgement takes the form
Γ | α ⊢ e : τ | β where Γ is a typing context, α, τ, β are types,
and e is an expression.

Fig. 8 gives the type system.
As Biernacka and Biernacki proved, the reduction rules in Fig. 2

enjoy the subject reduction property under this type system.

6.2 Typed CPS Translation

For the purpose of this paper, namely, axiomatization, we define a
CPS translation for the typed calculus. Not surprisingly, we use the
same CPS translation, the 2CPS translation in Fig. 4 for expressions



in the typed calculus. The remaining task is to define the CPS
translation of types and typing contexts.

For a simple type4 A, we define ¬A as A →⊥ where ⊥ is an
arbitrary fixed type.

The CPS translation of a type is defined by b∗
def
= b and

((α | τ | β)→ (α′ | τ ′ | β′))∗

def
= ((τ∗ → ¬¬α∗)→ ¬¬β∗)→ ((τ ′∗ → ¬¬α′∗)→ ¬¬β′∗)

The definition above needs several occurrences of double negation
¬¬ since we use 2CPS translation.

Finally, we define the CPS translation of a typing context as:

(x : (α | τ | β))∗
def
= x : (τ∗ → ¬¬α∗)→ ¬¬β∗

(k : σ ⊲ τ )∗
def
= k : σ∗ → ¬¬τ∗

THEOREM 4. If Γ | α ⊢ e : τ | β is derivable, then Γ∗ ⊢ [[e]] :
(τ∗ → ¬¬α∗) → ¬¬β∗ is derivable in the simply typed lambda
calculus.

Proof. The theorem can be proved by induction on the derivation
of Γ | α ⊢ e : τ | β.

6.3 Axiomatization

We now axiomatize the CPS semantics for the typed calculus.
Perhaps surprisingly, exactly the same axioms in Fig. 5 work for
the typed calculus.

THEOREM 5 (Soundness and Completeness). Let e1 and e2 be

typed terms in λcbn
s/r , then ⊢cbn

s/r e1 = e2 if and only if ⊢CPS [[e1]] =
[[e2]].

Proof. Since the proof is mostly the same as the type-free case, we
only show an overview of the proof.

• We first establish that, if the term in the left-hand side of each
axiom is typable, then the term in its right-hand side is typable
and has the same typing judgement.

• We must check that all intermediate terms used in the complete-
ness proof preserve the typing judgement.

• We must also check that the inverse translation preserves typ-
ing, and also, if e is typable in the source calculus, [[e]]◦ has the
same typing judgement.

• Finally, we must check that the reductions in the target calculus
are mapped to typable equations in the source calculus.

We must check a lot of things, but each check can be done
straightforwardly.

7. Discussion on the use of linearity

We briefly discuss the use of linearity in the target of a CPS
translation, which plays a significant role in our proof.

A (rough) type structure of the image of the 2CPS translation
can be given as:

Term = Cont→1 MetaCont→2 Answer

Cont = Value→3 MetaCont→4 Answer

MetaCont = Value→5 Answer

where the indices 1, 2, . . . , 5 are for reference, and we have omitted
to write the definition of type Value. As we have seen, some
function types can be refined to linear function types:

4 A simple type means a type in the simply typed lambda calculus.

[[c]]SR
2

= λκ.κc

[[x]]SR
2

= x

[[λx.e]]SR
2

= λ(x, κ).[[e]]SR
2
κ

[[e1 e2]]
SR
2

= λκ.[[e1]]
SR
2

([[e2]]
SR
2
, κ)

[[Sk.e]]SR
2

= λκ.([[e]]SR
2
{k := κ})I2

[[k ←֓ e]]SR
2

= λκ.λγ.[[e]]SR
2
k(κ⊕ γ)

[[〈e〉]]SR
2

= λκ.λγ.[[e]]SR
2
I2(κ⊕ γ)

Figure 9. SR-style 2CPS Translation

• →2 and→4 can be made linear function space⊸, which cor-
responds to the metacontinuation variable γ. In the terminology
of Berdine et al. [3], it is a linearly used continuation.

• →3 and →5 can be made linear function space ⊸, which
corresponds to the variable m. This linearity reflects the fact
that evaluation contexts are linear, and is specific to the call-
by-name calculus. This is related to what Filinski called linear
continuations [9].

In our proof, we have used both linearity, hence →i for i =
2, 3, 4, 5 is linear function space. The remaining (non-linear) func-
tion space→1 corresponds to the non-linear uses of delimited con-
tinuations, which are useful for representing, e.g., backtracking.
Berdine et al. [3] proposed to restrict this function space to be lin-
ear, and claimed that it is a “stylized” use of control.

8. Revisiting η-equality

We have argued the interaction between reset and full η-equality,
and concluded that we should give up full η-equality, because it is
unsound with respect to the intended operational semantics.

However, there can be a typed calculus which admits full η-
equality if the use of reset is limited. More precisely, if we restrict
the type of reset-terms to be basic types (no function types are
allowed as the return type of any delimited continuation captured
by shift), we can formulate a calculus in which η-equality is sound.

To develop the semantics of such a calculus, we extend Streicher
and Reus’ CPS translation [18]. Fig. 9 gives a 2CPS translation for
λcbn

s/r as an extension of Streicher and Reus’ CPS translation.
The target calculus of this CPS translation is the simply typed

lambda calculus augmented with pairing, denoted by (t1, t2). Pairs
are decomposed by an abstraction λ(x, y).t with the additional
equality (λ(x, y).t0) (t1, t2) = t0{x := t1}{y := t2}, and
λ(x, y).e(x, y) = e for x, y 6∈ FV(e). It should be noted the CPS
translation preserves η-equality as:

[[λx.ex]]SR
2

=β λ(x, k).[[e]]SR
2

(x, k) =pair [[e]]SR
2

where =pair means the equality induced by the two equations for
pairs.

Using the CPS translation in Fig. 9, we can develop yet another
type system for λcbn

s/r . The type system obtained through Streicher
and Reus’ CPS translation is different from the one obtained by
Biernacka and Biernacki CPS translation.

We could axiomatize such a calculus in a similar way to this
paper. Unfortunately, the result is not really illuminating; the ob-
tained axioms are the same axioms as those given in this paper
with η-equality (λx.ex = e for x 6∈ FV(e)) being added. Note
that a reset-term 〈e〉 is restricted to be of basic types, and therefore
〈λx.e〉 is not well-typed in this calculus.

We did not develop this calculus in this paper, because we do
not know any practical meaning of such a calculus.



9. Concluding Remarks

In this paper we have investigated the CPS semantics of the call-by-
name calculi with delimited-control operators. We have obtained a
sound and complete axiomatization for the calculus in the sense
that:

⊢cbn
s/r e1 = e2 if and only if ⊢CPS [[e1]] = [[e2]].

Since η-equality interferes with reset, our axioms for the source
calculus do not contain η-equality. We have proved that the same
axioms work for type-free and typed cases, where the type system
is (essentially) given by Biernacka and Biernacki.

Our theoretical tool was the 2CPS translation, which mixes a
call-by-name translation with a call-by-value one. For the com-
pleteness proof, we need to use linearity of evaluation contexts
in a non-trivial way. Also we have formulated the source calculus
carefully so that lambda-bound variables and shift-bound variables
must be treated differently.

We also briefly mentioned yet another typed calculus for the
call-by-name shift and reset. In this calculus, η-equality is admitted
with no restriction, but the type of a reset-term 〈e〉 is restricted to a
basic type.

Although we do not claim that the calculus proposed by Bier-
nacka and Biernacki (or our calculus as its small variant) is the right
one for call-by-name delimited control, we believe our results can
be basis for further study on call-by-name delimited-control.

Relation with Other Works. In this paper, we have concen-
trated on the delimited-control operators “shift” and “reset” in the
style of Danvy and Filinski and of Biernacka and Biernacki, and
have not considered the relationship with others.

Herbelin and Ghilezan proposed a call-by-name calculus with
control operators and connected it with classical logic [11]. They
have obtained the calculus from the call-by-value calculus with
delimited-control operators, but the counterpart of the reset-operator
behaves quite differently from those presented in this paper. In their
call-by-value calculus, 〈M〉 is represented by µt̂p.[t̂p]M where
t̂p is a variable for the top-level continuation. However, in their
call-by-name calculus, this term reduces to M , so its behavior is
quite different from the usual behavior of reset. Consequently, it is
difficult to relate their calculus with other calculi. Their calculus
is also different from the calculus in Section 8, since, in the latter
calculus 〈e〉 = e does not hold if e has a basic type.

As an application of a call-by-name calculus with delimited
control, Kiselyov proposed to use it in linguistic analysis [13]. His
calculus has an explicit representation of evaluation contexts, and
therefore it is similar to Biernacka and Biernacki’s formulation. He
has not given a CPS translation for his calculus, so we do not know
if we can axiomatize his calculus as in this paper.

Future work. There are a number of future works, and let us
list only a few of them. (1) To investigate other delimited-control
operators such as Felleisen’s “control” and “prompt” in call-by-
name, and if possible axiomatizing them. (2) To relate the call-
by-name calculi with the call-by-value one in the sense of duality,
and also with classical logic. (3) To relate our calculus with logic-
based calculi such as Herbelin and Ghilezan’s, and give the logical
account to “reset”.
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