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Abstract: This paper introduces Mayuzin, a new multi-stage programming (MSP) language designed to inte-
grate both generative and analytical capabilities for run-time metaprogramming while preserving type safety.
While code generation and code analysis play complementary roles in metaprogramming practice, theoretical
foundation for code analysis has been largely overlooked in the literature, with a notable exception by Stucki et
al., who studied code analysis in compile-time metaprogramming. In this study, we fill this gap by presenting
a metaprogramming language that supports both runtime code generation and analysis, ensuring type safety
throughout.
Mayuzin introduces three key features: (1) a code analysis framework that leverages pattern matching to
enable dynamic code inspection and transformation, (2) integration of ML-style let polymorphism within the
multi-stage setting using the Hindley-Milner type system as a foundation, and (3) support for manipulation
of open codes, which is crucial for generating efficient code. Our design extends traditional MSP by providing
robust facilities for runtime code analysis while aiming to maintain type guarantees across stages. We will
illustrate Mayuzin’s capabilities through examples of runtime code optimization in domain-specific applica-
tions, such as eliminating redundant computations in generated numerical code. These examples demonstrate
how Mayuzin’s unified approach to metaprogramming facilitates efficient domain-specific optimizations, with
rigorous proof of type safety, ensuring safe runtime code transformations.

Keywords: Runtime metaprogramming, Code generation, Code analysis, Type safety, Open-code manipula-
tion, Environment classifier

1. Introduction

Multi-stage programming (MSP) has emerged as a power-

ful paradigm for program generation and manipulation, en-

abling programmers to write code that generates, analyzes,

and executes code at different stages [4], [16]. Originating

from partial evaluation and runtime code generation systems

[8], MSP empowers developers with explicit control over the

timing of code generation and execution through staging an-

notations. This explicit control is key to improving perfor-

mance and reducing runtime overhead, making MSP a signif-
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icant advancement in modern programming methodologies.

Studies on MSP languages have focused on the static guar-

antee for type safety, as it subsumes that generated code

is well-formed, well-scoped, and well-typed regardless of dy-

namic parameters. While fruitful theories and systems such

as MetaOCaml have emerged as the results, most of them

stayed in the purely generative approach to metapro-

gramming,*1 where only the construction and composition of

code fragments are allowed [13]. When introspection and op-

timization of generated code are required, one needs to design

another layer to transform the code, limiting the applicability

of MSP languages.

For example, an MSP version of the power function spower

can be written as:

*1 There are exceptions that studied non-purely generative ap-
proaches [7], [14]. We will discuss them later in this paper.
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let rec spower n x =
if n = 0 then <1>
else <~x * ~(spower (n−1) x)>

where we use quotation (written as ⟨e⟩) which constructs a

code), and anti-quotation (written as ∼ e) which splices

a code into another code. Executing an expression <fun x

→ ~(spower 5 <x>)> yields the code <fun x → x * x

* x * x * x * 1>. This generated code can be executed

within the language by run (written as run e). For instance,

run <fun x → ~(spower 5 <x>)> would produce an or-

dinary function equivalent to fun x → x * x * x * x *

x * 1. While the computation above demonstrates how

MSP can eliminate the run-time overhead, the result is not

fully optimal, as there remains a redundant ... * 1 opera-

tion. Although modern compilers can eliminate such simple

redundancies, it is often not feasible to remove all redundant

operations without domain-specific knowledge, which under-

scores why we use MSP languages.

While code generation enables the creation of optimized,

specialized program variants, code analysis allows for the

inspection and transformation of code structures to enhance

adaptability and enable runtime optimizations. Combining

these capabilities, however, has remained a significant chal-

lenge due to the complexities involved in maintaining type

safety and hygiene during runtime transformations.

In this paper, we present Mayuzin, a novel MSP language

that aims to integrate generative and analytical capabilities

for runtime metaprogramming within a type-safe framework.

Mayuzin extends the traditional MSP paradigm by incorpo-

rating advanced features such as let polymorphism, envi-

ronment classifiers, and the run primitive, facilitating

sophisticated runtime transformations while maintaining rig-

orous type safety. Our work seeks to address the existing

gap in supporting both runtime code generation and analy-

sis, thereby enhancing code efficiency and adaptability across

diverse computational environments.

Analytical metaprogramming in Mayuzin is realized by

pattern matching for code. To illustrate its usage, we

show a simple optimizer*2 in Mayuzin as follows:

let rec opt expr1 =
match expr1 with
| < $x * 0 > → < 0 >
| < 0 * $x > → < 0 >
| < $x * 1 > → opt x
| < 1 * $x > → opt x

*2 The function opt is not an ideal optimizer, as it cannot fully
reduce ⟨(0 ∗ 2) ∗ 3⟩, but we can improve it easily.

| < $x * $y > → < ~(opt x) * ~(opt y) >
| _ → expr1

The code is strikingly simple and intuitive: it matches the

expression expr1 (which is supposed to be a nested multi-

plication) against code patterns such as <$x * 0>, and then

returns a simplified result if one of the arguments of the multi-

plication is 0 or 1. (Later, we will explain the code in detail.)

For instance, opt <2 * ((3 * 1) * (4 * 1))> evaluates

to <2 * (3 * 4)>, which shows that deeply nested occur-

rences of 1 may be eliminated. Furthermore, we can com-

bine opt with spower to obtain an optimized code. For in-

stance, <fun x → ~(opt (spower 5 <x>))> evaluates to

code <fun x → x * x * x * x * x>, showing that opt

effectively handles an open code (a code with free variables).

While optimizing generated code can yield significant im-

provements, using pattern matching for code has a potential

risk of the scope extrusion problem. Suppose we can extract

the body of a lambda abstraction in the code as follows:

let match_wrong expr1 =
match expr1 with
| <fun z → $x> → x
| _ → expr1

Then match_wrong <fun a → a + 7> would evaluate to

<a + 7>, which has a free variable a and does not compile

safely. Obviously, we should not be able to extract a value

with free variables. Stucki, Brachthäuser, and Odersky [14]

proposed to use a higher-order pattern variable to extract a

code under binders safely. The above erroneous code may be

rewritten using a higher-order pattern variable x as follows:

let match_ok expr1 =
match expr1 with
| <fun z → $x(z)> → x <3>
| _ → expr1

Here, x is a function that takes a code as an argument and

returns the function body after substituting its argument for

z. For instance, evaluating match_ok <fun a → a + 7>

yields <3 + 7>, which has no free variables.

We have designed the surface-language syntax based on the

statically typed language by Stucki et al., which has gener-

ative and analytical features for compile-time metaprogram-

ming. A fundamental difference between their language and

ours lies in the type systems. Since Mayuzin is a language

for run-time metaprogramming which has the run primitive,

a more involved type-theoretic tool is needed to ensure static

type safety for Mayuzin, and we make essential use of envi-

ronment classifiers by Taha and Nielsen [15].
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Another important feature of Mayuzin is let polymorphism,

which is used in ML-family languages. Let polymorphism also

plays an important role in MSP languages, for instance, the

function eta is a general combinator that turns a code-to-

code function into a code of a function, defined as follows:

let eta f = < fun x → ~(f <x>) >

The expression eta (spower 3) evaluates to < fun x →
x * x * x * 1 >. Polymorphism is essential for eta as

a library function, since it should be applied to a variety of

code-to-code functions of different types. We have added *3

analytical metaprogramming to the ML-like let-polymorphic

variant [4] of Taha and Nielsen’s language, to obtain our lan-

guage Mayuzin, and prove its type safety rigidly. That would

open up a new paradigm of MSP languages, such as MetaO-

Caml, where we can freely manipulate generated code with-

out losing type safety.

We are not the first to introduce pattern matching for code

to a polymorphic multi-stage calculus for run-time metapro-

gramming. The language Mœbius [7] has these features with

System-F style impredicative polymorphism. It is based on

Contextual Modal Type Theory (CMTT) [12], in which a

code type contains a typing context, leading to a very ex-

pressive type system. However, its expressiveness cannot be

obtained without a price; CMTT needs an involved definition

for dedicated substitutions, and its type system is way more

complicated than other approaches, such as environment clas-

sifiers. Calcagno et al.’s type system [4], that underlies our

type system, enjoys the principal-type property and has a

complete type inference algorithm, that allowed Taha to de-

sign the first version of MetaOCaml.

Mayuzin is intended to be lightweight and practical, and,

hence, we took the approach based on environment classifiers.

While the authors of Mœbius [7] stated that “it [environ-

ment classifier] seems difficult to extend to support pattern

on code.”, the present paper shows that it is indeed possible in

the framework of a let-polymorphic, run-time metaprogram-

ming language without significantly complicating the type

system.

Our contribution can be summarized as follows:

• We present a novel MSP language Mayuzin that com-

bines generative and analytical metaprogramming, open-

code manipulation, run-time code generation, and ML-

*3 Strictly speaking, our language is not an extension of theirs,
since we do not have classifier polymorphism and more than
two stages. However, we believe that extending our language to
cover these features is not difficult.

style let polymorphism.

• We design a type system for Mayuzin and prove its type

safety.

• We provide a proof-of-concept implementation for

Mayuzin.

The rest of this paper is organized as follows. Sect. 2

presents the syntax of Mayuzin, and describes the operational

semantics of pattern matching for code patterns. Sect. 3 in-

troduces a type system of Mayuzin and an example of a type

derivation. Its key properties and proof sketch are given in

Sect. 4. Sect. 5 overviews our implementation of Mayuzin,

and Sect. 6 compares our work with closely related work.

Sect. 7 concludes the paper.

2. The Language Mayuzin

We introduce Mayuzin, a statically typed language for run-

time code generation and code analysis.

2.1 Syntax

We assume that Var (ranged over by a), PatVar (ranged

over by x and f), and Const (ranged over by c), resp. are

mutually disjoint sets of variables, pattern variables, and con-

stants, resp.

Fig. 1 defines the syntax of Mayuzin where e denotes an

expression, vi denotes a level-i value for a natural number i.

We write v for vi for some i. To avoid clutter, we have chosen

a minimal language for our development: we only have two

levels (two stages), hence the level i is either 0 or 1. Also, we

consider pattern matching at the level 0 only.

An expression is either a variable a, a constant c, lambda

abstraction λa.e, application e@e, a let expression, a match

expression, a quoted expression ⟨e⟩, an anti-quoted expression

∼ e, or a run expression run e. The symbols used for quoted

(and anti-quoted, resp.) expressions are called brackets (and

escapes, resp.). In a match expression, p → e denotes a case

where p is a pattern to be matched, and if it succeeds, its

body e is executed. We assume that all match expressions

has the last case → e as the default case, which always

succeeds in pattern matching.

A level-0 value v0 is an ordinary value in lambda calcu-

lus with a code value ⟨v1⟩, while a level-1 value v1 can be

arbitrary expression except the anti-quoted expression ∼ e.

Our language has standard patterns such as a pattern vari-

able x, a constant pattern c, and a pair pattern (p, p) as well

as a code pattern ⟨p⟩. For the pattern p in ⟨p⟩, not only

standard patterns are allowed, but also other patterns such

© 2010 Information Processing Society of Japan 3
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e ::= a | c | λa.e | e@e | (e, e) | let a = e in e | match e with (p → e | · · · | p → e | → e) | ⟨e⟩ |∼ e | run e

v0 ::= c | λa.e | (v0, v0) | ⟨v1⟩

v1 ::= a | c | λa.v1 | v1@v1 | (v1, v1) | let a = v1 in v1

p ::= x | c | (p, p) | ⟨p⟩ | λx.p | p@p | let x = p in p | $f(x, · · · , x)

Fig. 1 Syntax of Terms, Values, and Patterns

as λx.p, p@p, let x = p in p, and $f(x, · · · , x) may be

used. Of particular interest is the pattern $f(x1, · · · , xn)

where x is an ordinary (first-order) pattern variable, and f is

a higher-order pattern variable. This pattern matches with

any value provided its free variables are x1, · · · , xn at most.

For instance, ⟨λx.$f(x)⟩ is a code pattern in which a higher-

order pattern variable f is used with a parameter x. This

pattern matches any values in the form ⟨λa.e⟩ even if e con-

tains the variable a freely. On the other hand, the pattern

⟨λx.$f()⟩ does not match with the value ⟨λa.a+ 3⟩, since

the value matched against f is a+3, which contains a freely,

while the corresponding pattern variable x is not specified as

a parameter of f . When a higher-order pattern variable has

no parameters, we omit the parentheses, namely, $f denotes

$f().

Variables are bound by lambda abstractions and pattern

matching. The set of free variables in an expression, denoted

as FV(X), is defined as usual. We consider alpha-equivalent

terms as identical, and follow Barendregt convention in that

all bound variables are mutually distinct and differ from free

variables [2]. We write x⃗ for a sequence x1, · · · , xn where the

length n is left implicit.

2.2 Pattern Matching

Pattern matching plays an essential role in Mayuzin, as it

serves as the primary mechanism that can decompose (ana-

lyze) code values. Since the semantics of pattern matching is

not as straightforward as one may think, we will investigate

its semantics deeply in this section.

Fig. 2 presents an operational semantics of pattern match-

ing. Given a level-i value vi and a pattern p, Mi
ρ(v

i, p) de-

notes the result of pattern matching v against p, which is

either a substitution θ (when the pattern matching succeeds)

or fail (when the pattern matching fails). The term includes

a renaming map ρ as an additional parameter, which will be

explained later.

The result of successful pattern matching is a substitution

θ, which is a finite map from pattern variables to values,

and is denoted by [x1 7→ v1, · · · , xk 7→ vk]. The expression

X ∪ Y in the third and fifth clauses denotes the union map

of X and Y if both are substitutions (X ̸= fail and Y ̸= fail)

and the domain of X and the domain of Y are disjoint. If

these conditions do not hold, X ∪ Y is fail.

Internal to the semantics, we use a renaming ρ, which maps

term variables (such as a) to pattern variables (such as x).

Note that the directions of the maps θ and ρ are opposite.

We write the application of a substitution θ (and a renaming

ρ, resp.) to X by X θ (and X ρ, resp.).

The first three clauses in Fig. 2 correspond to a pattern

variable x, a constant pattern c, a pair pattern (p1, p2) and

these clauses are the same as the standard semantics of pat-

tern matching.

The fourth clause performs pattern matching against a

code pattern ⟨p⟩ which is applicable only when i = 0: it first

verifies whether the value v is a code-value, then performs

pattern matching for its contents at the level 1.

The remaining clauses make sense only when i = 1, indi-

cating that pattern matching is performed inside quasiquo-

tation. For an application pattern p1@p2, it verifies whether

the value has the same structure and performs pattern match-

ing for each component. For an abstraction pattern λx.p, it

verifies whether the value matches the structure and proceeds

with pattern matching on the abstraction body. We need to

record that the bound variable x in the pattern corresponds

to the bound variable a in the value, and therefore, this corre-

spondence is added to ρ. The last clause is the most interest-

ing case, where the pattern $f(x1, · · · , xn) has a higher-order

pattern variable f . This pattern intuitively represents a more

involved pattern ∼ (f@⟨x1⟩ · · ·@⟨xn⟩), which indicates: the

variable f is a level-0 variable denoting a function that takes

n arguments, and returns a code that may contain the level-

1 variables x1, · · · , xn freely. In other words, this pattern

matches with a code value v, which must not contain level-1

bound variables other than x1, · · · , xn. This consideration

leads to the condition (FV(v)) ρ ⊆ {x1, · · · , xn} where we

apply the renaming ρ to all members in FV(v), the set of free
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Mi
ρ(v, x) :=

 [x 7→ v] if i = 0
[ ] if i > 0 ∧ v = a ∧ (x/a) ∈ ρ
fail otherwise

Mi
ρ(v, c) :=

{
[ ] if v = c
fail otherwise

Mi
ρ(v, (p1, p2)) :=

{
Mi

ρ(v1, p1) ∪Mi
ρ(v2, p2) if v = (v1, v2)

fail otherwise

M0
ρ(v, ⟨p⟩) :=

{
M1

ρ(v1, p) if v = ⟨v1⟩
fail otherwise

M1
ρ(v, p1@p2) :=

{
M1

ρ(v1, p1) ∪M1
ρ(v2, p2) if v = v1@v2

fail otherwise

M1
ρ(v, λx.p) :=

{
M1

ρ∪[(x/a)]
(v1, p) if v = λa.v1

fail otherwise

M1
ρ(v, $f(x⃗)) :=

{
[f 7→ λx⃗.⟨v ↓ ρ⟩] if (FV(v) ∩Dom(ρ)) ρ ⊆ {x⃗}
fail otherwise

Fig. 2 Semantics of Pattern Matching

variables in v, to obtain a set of pattern variables, and the

condition constrains that the resulting set must be a subset

of {x1, · · · , xn}. The side condition for the last clause in

Fig. 2 is slightly more general than this in that we take an

intersection with Dom(ρ), the domain of ρ, since we want to

allow a level-1 variable may appear in v if it is bound outside

of the current pattern matching. This is necessary for the

function opt in Sect. 1, which needs pattern matching for an

open code, or pattern matching under a level-1 binder.

To compute the result of this pattern matching, we define

v ↓ ρ as follows:

a ↓ ρ :=

{
∼ x if (x/a) ∈ ρ

a otherwise

c ↓ ρ := c

(λa.v1) ↓ ρ := λa.(v1 ↓ ρ) if (x/a) ̸∈ ρ

v1@v2 ↓ ρ := (v1 ↓ ρ)@(v2 ↓ ρ)

(v1, v2) ↓ ρ := (v1 ↓ ρ, v2 ↓ ρ)

(let a = v1 in v2) ↓ ρ := let a = (v1 ↓ ρ) in

(v2 ↓ ρ) if (x/a) ̸∈ ρ

The only interesting case for v ↓ ρ is the clause when v is

a variable a. If a ∈ Dom(ρ), namely, a is bound within the

current pattern matching, then we should replace it by ∼ x

where x = a ρ, since a code value ⟨xi⟩ will be substituted for

this x. Otherwise, a is bound outside of the current pattern

matching (which means that we are manipulating an open

code), and we keep a intact. Other cases are homomorphic

and their explanations are omitted.

To clarify the operational semantics of pattern matching

presented in Fig. 2, we present examples where a code ex-

pression is matched against a pattern involving a higher-

order pattern variable. These examples demonstrate how the

pattern-matching function operates according to the rules,

particularly focusing on the side condition for higher-order

pattern matching, which ensures type safety and prevents

scope extrusion.

Consider the following value and pattern to match:

Value: ⟨λa1.λa2.(a1, a3)⟩

Pattern: ⟨λx1.λx2.$f(x1)⟩

To perform pattern matching, we apply the matching func-

tion at the level 0 with ρ = [ ]:

M0
[ ](⟨λa1.λa2.(a1, a3)⟩, ⟨λx1.λx2.$f(x1)⟩)

= M1
[ ](λa1.λa2.(a1, a3), λx1.λx2.$f(x1))

= M1
[(x1/a1)](λa2.(a1, a3), λx2.$f(x1))

= M1
[(x1/a1),(x2/a2)]((a1, a3), $f(x1))

To continue the process, we need to check the side condition

for higher-order patterns (FV(v) ∩Dom(ρ)) ρ ⊆ {x⃗} where

v = (a1, a3), ρ = [(x1/a1), (x2/a2)], and x⃗ = x1. Since

FV(v) = {a1, a3} and Dom(ρ) = {a1, a2} hold, we can con-

clude that the side condition is satisfied, and pattern match

succeeds. While the value contains an irrelevant variable a3,

we do not have to worry about it.

To get the result of pattern matching, we compute as fol-

lows:
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(a1, a3) ↓ ρ = (a1 ↓ ρ, a3 ↓ ρ) = (∼ x1, a3)

Hence, the final result of this pattern matching is:

[f 7→ λx1.⟨(∼ x1, a3)⟩]

The result shows that the higher-order pattern variable f gets

bound to a level-0 function which receives a code and returns

a code, thus higher-order.

Let us consider another example by taking

⟨λa1.λa2.(a1, a2)⟩ as a value and the same pattern as

before. We perform pattern matching as:

M0
[ ](⟨λa1.λa2.(a1, a2)⟩, ⟨λx1.λx2.$f(x1)⟩)

= M1
ρ((a1, a2), $f(x1))

where ρ = [(x1/a1), (x2/a2)]. Then, we have

(FV((a1, a2)) ∩Dom(ρ)) ρ = {x1, x2} while {x⃗} = {x1},
and this pattern matching fails.

These examples demonstrate the importance of the side

condition for higher-order pattern matching in maintaining

type safety and ensuring that no bound variables escape their

intended scope. If the side condition were incorrectly mod-

ified, it could lead to improperly scoped variables, resulting

in unsafe or ill-formed generated code.

Operational semantics of Mayuzin is given by Fig.A.1 in

the appendix.

3. Type System

This section presents a type system for Mayuzin, which is

based on the type system for implicit classifiers by Calcagno,

Moggi, and Taha [4].

The calculus for implicit classifiers was derived by restrict-

ing the one for environment classifiers by Taha and Nielsen

[15]. Whereas both systems allow open-code manipulation

and run-time metaprogramming, and enjoy type soundness,

the latter is too expressive to enjoy the principal type prop-

erty, leading to the lack of type inference. The former was

designed to recover the property and type inference.

3.1 Environment Classifiers

An environment classifier (a classifier for short) γ is an ab-

straction of a typing environment x1 : t1, x2 : t2, · · · . It is

used to control the set of free variables in a code. A code

⟨3 + x⟩ has the type ⟨int⟩γ where we assume that γ corre-

sponds to the typing environment x : int. If a code has type

⟨t⟩γ for any γ, the code may be executed by the run primi-

tive, as this indicates that the typing environment does not

contain any free variables, implying that the code is closed.

In multi-stage programming languages, a stage is asso-

ciated with a sequence of classifiers such as γ1γ2γ3. The

present stage is associated with an empty sequence, denoted

as • in this paper. The length of the sequence indicates

the level of the stage; for example, the stage γ1γ2γ3 is at

level 3. We use the notation |S| to represent the level of the

stage S, for instance, | • | = 0 and |γ1γ2γ3| = 3. The code

⟨if x then ⟨y + 3⟩ else ⟨z⟩⟩ can have the type ⟨⟨int⟩γ2⟩γ1

where γ1 is associated with x : bool, and γ2 is associated

with y : int, z : int.

Based on these ideas, Taha and Nielsen designed λα, a

type-safe calculus that allows open-code manipulation and

runtime metaprogramming. Meanwhile, Calcagno et al. de-

signed λi, a type-safe calculus that allows let-polymorphism

and type inference. A variant of the latter has become the

foundational type system for the earlier version of MetaO-

Caml.

3.2 Type System of Mayuzin

This section presents a type system for Mayuzin. In this

paper, we restrict ourselves to two levels, namely, a stage is

either the present stage •, or a level-1 stage γ.

The syntax of a stage (ranged over by S), a monotype

(ranged over by t), and a polytype (ranged over by τ) are

defined as follows:

S ::= • | γ

t ::= int | t → t | t× t | ⟨t⟩γ | α

τ ::= t | ∀α.τ

Following ML-family languages, we distinguish monotypes

(monomorphic types) from polytypes (polymorphic types).

Monotypes are those in simply typed lambda calculus, the

code type with a classifier ⟨t⟩τ , or a type variable α. Poly-

types may have universal quantifiers for type variables at the

outermost position. Most of the types are standard, except

for the code type ⟨t⟩γ , which is the type of code fragments

whose content is of type t.

The set of free type variables (and free classifiers, resp.) in

X is denoted by FTV(X) (and FC(X), resp.) where ∀ binds

a type variable, and there are no binders for classifiers.

Fig. 3 presents the typing rules for terms. A judgment for

terms takes the form Γ ⊢S e : t, where Γ is a finite sequence

of variable-type pairs in the form (a : τ)S
′
, which means that

the variable a has the polytype τ at the stage S′. The judg-

ment Γ ⊢S e : t means that, the term e is of type t under Γ
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(T-Const)

Γ ⊢S c : type(c)

(T-Var)

(a : τ)S ∈ Γ t ≺ τ

Γ ⊢S a : t

(T-Fun)

Γ, (a : t1)S ⊢S e : t2

Γ ⊢S λa.e : t1 → t2

(T-App)

Γ ⊢S e1 : t2 → t1 Γ ⊢S e2 : t2

Γ ⊢S e1@e2 : t1

(T-Pair)
Γ ⊢S e1 : t1 Γ ⊢S e2 : t2

Γ ⊢S (e1, e2) : t1 × t2

(T-Let)

Γ ⊢S e1 : t1 Γ, (a : ∀α⃗.t1)S ⊢S e2 : t2 {α⃗} ⊆ FTV(t1)− FTV(Γ)

Γ ⊢S let a = e1 in e2 : t2

(T-Code)

Γ ⊢γ e : t

Γ ⊢• ⟨e⟩ : ⟨t⟩γ

(T-Splice)

Γ ⊢• e : ⟨t⟩γ

Γ ⊢γ ∼ e : t

(T-Run)

Γ ⊢• e : ⟨t⟩γ γ ̸∈ FC(Γ, t)

Γ ⊢• run e : t

(T-Match)

Γ ⊢• e : t1 ∀j ∈ [1, n] (Γ; ∅ ⊢• pj : t1 ⊣ Γj ∧ Γ,Γj ⊢• ej : t2 ) Γ ⊢• en+1 : t2

Γ ⊢• match e with (p1 → e1 | · · · | pn → en | → en+1) : t2

Fig. 3 Typing Rules for Expressions

(T-Pat-Var-0)

Γ1; Γ2 ⊢• x : t ⊣ (x : t)•

(T-Pat-Const)

Γ1; Γ2 ⊢S c : type(c) ⊣ ∅

(T-Pat-Pair)

Γ1; Γ2 ⊢S p1 : t1 ⊣ Γ3 Γ1; Γ2 ⊢S p2 : t2 ⊣ Γ4

Γ1; Γ2 ⊢S (p1, p2) : t1 × t2 ⊣ Γ3,Γ4

(T-Pat-Var-1)

(x : t)γ ∈ Γ1 ∪ Γ2

Γ1; Γ2 ⊢γ x : t ⊣ ∅

(T-Pat-Fun)

Γ1; Γ2, (x : t1)γ ⊢γ p : t2 ⊣ Γ3

Γ1; Γ2 ⊢γ λx.p : t1 → t2 ⊣ Γ3

(T-Pat-App)

Γ1; Γ2 ⊢γ p1 : t2 → t1 ⊣ Γ3 Γ1; Γ2 ⊢γ p2 : t2 ⊣ Γ4

Γ1; Γ2 ⊢γ p1@p2 : t1 ⊣ Γ3,Γ4

(T-Pat-Code)

Γ1; Γ2 ⊢γ p : t ⊣ Γ3

Γ1; Γ2 ⊢• ⟨p⟩ : ⟨t⟩γ ⊣ Γ3

(T-Pat-Hop)

(xj : tj)γ ∈ Γ2 for all j ∈ [1, n]

Γ1; Γ2 ⊢γ $f(x1, · · · , xn) : t ⊣ (f : ⟨t1⟩γ → ... → ⟨tn⟩γ → ⟨t⟩γ)•

Fig. 4 Typing Rules for Patterns

at the stage S.

The first six rules in Fig. 3 are standard except that each

judgment as well as the variable-type pair in typing contexts

is annotated with a stage. The rules T-Var and T-let to-

gether allow a type variable to be polymorphic. The side

condition t ≺ τ in T-Var means that the monotype t is an

instance of the polytype τ , where the ’instance-of’ relation is

defined as usual.

The next three rules, T-Code, T-Splice, and T-Run are

the standard rules in the calculus for environment classifiers.

The side condition γ ̸∈ FC(Γ, t) is critically important to en-

sure the absence of scope extrusion. See the literature for a

detailed discussion [15].

Finally, the rule T-Match is worth discussing, as it per-

forms not only pattern matching for ordinary values, but also

pattern matching for code values. The second assumption in

this rule means that, for each case pj → ej , the judgments

Γ; ∅ ⊢• pj : tj ⊣ Γj and Γ,Γj ⊢• ej : tj must hold for

some Γj . Here, Γj denotes a typing context, which intu-

itively means the set of free variables in pj , and we need it

when we type ej . The default clause → en+1 binds no

pattern variables.

Fig. 4 defines the typing rules for patterns. A judgment

for a pattern p takes the form Γ1; Γ2 ⊢S p : t ⊣ Γ3, which

means that p has type t at the stage S under the typing con-

texts Γ1 and Γ2. Here, Γ1 is the context for the variables

outside of the current pattern matching, whereas Γ2 is the

one for local variables within the current pattern matching.

Γ3 is the ’output’ of this pattern, that means p generates

bindings in Γ3. In several typing rules, we use the notation

Γ1,Γ2, which is defined only when the contexts Γ1 and Γ2

share no variables.

Let us elaborate on a few interesting rules in Fig. 4.

The rule (T-Pat-Var-0) is applicable for level-0 variables
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(variables at the stage •). Since a level-0 variable cannot be

bound in a pattern, it must be a free variable. Therefore, we

output its information (x : t)•.

The rule (T-Pat-Var-1) is applicable for level-1 variables

(variables at the stage γ). Since level-1 variables must not be

free, they must be present in the current typing context Γ1

or Γ2, and we output no information about it.

The rule (T-Pat-HOP) checks the pattern with higher-

order pattern variables. It states that the pattern

$f(x1, · · · , xn) is well-typed if and only if all the variables

x1, · · · , xn are bound in the current typing context Γ2 for lo-

cally bound variables. Additionally, the higher-order pattern

variable f is a free variable in this pattern, and its binding

along with its type is output.

The remaining rules are standard, and their explanation is

omitted.

3.3 Example of Type Derivation

Fig. 5 demonstrates a type derivation for the function opt

in Sect. 1 (we elided a few cases since they are similar), which

is designed to perform code optimizations by recognizing and

reducing specific patterns involving arithmetic expressions.

The purpose of this detailed explanation is to break down the

derivation step-by-step and to illustrate how our type system

ensures that the function opt is type-safe in the context of

Mayuzin.

Here, we assume that Mayuzin is extended suitably by fix

for general recursion, integers, and operators such as multi-

plication. We also assume that the overall function is used to

manipulate open code, namely, it should be typed under an

arbitrary typing context Γ0.

The derivation steps in Fig. 5 are mostly standard except

for the step deriving the type for the match expression. This

step requires verifying that the expression being pattern-

matched (z in this example) is correctly typed, as well as

ensuring that all cases of the pattern matching are properly

typed. We will show type derivations for a normal case (writ-

ten by □ ∧□′) and the default case.

The type derivations for □ and □′ are separately given in

Fig. 6. The type derivation marked with □ provides a type

for the pattern ⟨$x ∗ 1⟩ where x is a higher-order pattern vari-

able.*4 After a few steps of derivations, it produces a typing

environment (x : t1)
• for t1 = ⟨int⟩γ , which holds the typing

for pattern variables. This typing environment may be used

*4 Although the pattern variable x is not really higher order, we
call it a higher-order pattern variable for uniformity.

to type the body of the case, f@x for this case. The type

derivation marked with □′ gives a typing for this expression

under the typing context extended with (x : t1)
•.

Note that the body of each case may dereference to a vari-

able in Γ0, which is bound outside of this function, revealing

the fact that our language allows analytical metaprogram-

ming for open code freely and soundly.

4. Properties

In this section, we will consider theoretical properties

of constant-free fragments of Mayuzin. In particular, we

prove type soundness , which comprises two key properties:

progress and subject reduction. We also present the key lem-

mas necessary to prove these properties, along with a proof

sketch for important cases.

Our initial target is the progress property, which means

that a well-typed, closed, level-0 expression does not get stuck

immediately.

First, we need the Canonical-Form lemma, which can be

proved easily.

Lemma 1.

• If Γ ⊢• v0 : t1 → t2, then v0 = λa.e for some a and e.

• If Γ ⊢• v0 : t1 × t2, then v0 = (v01 , v
0
2) for some v01 and

v02.

• If Γ ⊢• v0 : ⟨t⟩γ , then v0 = ⟨v1⟩ for some v1.

To prove the progress property for closed expressions by

induction, we need to generalize the property to allow semi-

closed expressions, which have no free level-0 variables, but

may have level-1 variables.

Let us define a level ≥ 1 typing context*5 as follows:

Γ≥1 ::= ∅ | Γ≥1, (a : τ)γ

We can prove the following lemma. Note that a match ex-

pression in Mayuzin must have a default case, so it does not

get stuck.

Lemma 2. Let i = |S|. If Γ≥1 ⊢S e : t, then e is a level-i

value, or there exists an e′ such that e −→i e′.

The lemma is proved by straightforward induction on e.

As a corollary, we obtain the progress property.

Theorem 1 (Progress). If ∅ ⊢• e : t, then e is a level-0

value, or there exists an e′ such that e −→0 e′.

Proof. We only have to choose S = • and Γ≥1 = ∅ in the

above lemma.

*5 The notation ≥ 1 is equivalent to = 1 in this paper, but we can
prove the property for a more general multi-stage calculus.
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Γ0, (f : t1 → t1)•, (z : t1)• ⊢• z : t1 · · · □ ∧□′ · · · Γ0, (f : t1 → t1)•, (z : t1)• ⊢• z : t1

Γ0, (f : t1 → t1)•, (z : t1)• ⊢• match z with (⟨$x ∗ 0⟩ → ⟨0⟩ | ⟨$x ∗ 1⟩ → f@x | ⟨$x ∗ $y⟩ → ⟨∼ (f@x) ∗ ∼ (f@y)⟩ | → z) : t1

Γ0, (f : t1 → t1)• ⊢• λz.match z with (⟨$x ∗ 0⟩ → ⟨0⟩ | ⟨$x ∗ 1⟩ → f@x | ⟨$x ∗ $y⟩ → ⟨∼ (f@x) ∗ ∼ (f@y)⟩ | → z) : t1 → t1

Γ0 ⊢• λf.λz.match z with (⟨$x ∗ 0⟩ → ⟨0⟩ | ⟨$x ∗ 1⟩ → f@x | ⟨$x ∗ $y⟩ → ⟨∼ (f@x) ∗ ∼ (f@y)⟩ | → z) : (t1 → t1) → (t1 → t1)

Γ0 ⊢• fix (λf.λz.match z with (⟨$x ∗ 0⟩ → ⟨0⟩ | ⟨$x ∗ 1⟩ → f@x | ⟨$x ∗ $y⟩ → ⟨∼ (f@x) ∗ ∼ (f@y)⟩ | → z) : t1 → t1)

Fig. 5 Example of Type Derivation where t1 = ⟨int⟩γ and Γ0 is arbitrary

Γ1; ∅ ⊢γ $x : int ⊣ (x : t1)• Γ1; ∅ ⊢γ 1 : int ⊣ ∅
Γ1; ∅ ⊢γ $x ∗ 1 : int ⊣ (x : t1)•

□ = Γ1; ∅ ⊢• ⟨$x ∗ 1⟩ : t1 ⊣ (x : t1)•

Γ1, (x : t1)• ⊢• f : t1 → t1 Γ1, (x : t1)• ⊢• x : t1

□′ = Γ1, (x : t1)• ⊢• f@x : t1

Fig. 6 Deriving □ and □′ where t1 = ⟨int⟩γ and Γ1 = Γ0, (f : t1 → t1)•, (z : t1)•

Our next goal is to prove the subject-reduction property

of our type system, which states that the typing of an ex-

pression is preserved throughout evaluation. The property

is stronger than the one for ordinary (unstaged) typed cal-

culi, as it statically ensures not only the type soundness of

program generators (level-0 expressions), but also the one for

all generated programs (level-1 expressions). In particular, it

implies that generated programs are well-formed, well-scoped

and well-typed, namely, there will be no compilation errors

for generated programs.

As is usual, the key lemma to prove the subject-reduction

property is the preservation of typability under substitution

(commonly phrased Substitution Lemma). Since Mayuzin

supports let-polymorphism, we need Substitution Lemma

that takes into account polymorphism.

Lemma 3. Suppose {α⃗} ⊆ FTV(t1)− FTV(Γ). If

Γ ⊢• v : t1 and

Γ, (a : ∀α⃗.t1)• ⊢• e : t2

are derivable, then Γ ⊢• e [a 7→ v] : t2 is also derivable.

Proof. The lemma is proved by induction on the type deriva-

tion of e (the second assumption in the lemma).

The following lemma is necessary to prove the case for the

evaluation of run (the (E-Run) reduction in Sect. A.1). It

says that if the classifier γ is not used in the derivation of a

level-1 value v, we can regard v as a level-0 expression.

Lemma 4. If Γ ⊢γ v1 : t is derivable and γ ̸∈ FC(Γ, t),

then Γ ⊢• v1 : t is also derivable.

Proof. This lemma is proved by straightforward induction

on the type derivation.

The next technical lemma states a property about the re-

naming ρ.

Lemma 5. Let ρ = (x1/a1, · · · , xk/ak), I ⊆ {1, · · · , k},
and Γa = (a1 : t1)

γ , · · · , (ak : tk)
γ . Suppose Γx consists of

(xi : ⟨ti⟩γ)• for all i ∈ I. If

Γ1,Γa,Γ2 ⊢γ v : t is derivable, and

FV(v) ∩ {a1, · · · , ak} ⊆ {ai | i ∈ I}

then Γ1,Γx,Γ2 ⊢γ v ↓ ρ : t is derivable.

Note that we change not only the variable ai to xi, but also

its type ti to ⟨ti⟩γ , reflecting our semantics for higher-order

pattern variables in Fig. 2.

Proof. The lemma is proved by induction on the structure

of v. The only non-trivial case is when v is a variable aj for

some j ≤ k. We have t = tj and v ↓ ρ =∼ xj . By the con-

dition on FV(v), we have j ∈ I. Hence, (xj : ⟨tj⟩γ)• ∈ Γx,

and we get the conclusion of this lemma.

The next lemma takes care of successful pattern matching:

match v with (· · · | p → e | · · · ) −→0 e θ

where θ = M0
[ ](v, p) ̸= fail.

Lemma 6. Let S be a stage and i = |S|. Suppose ρ =

(x1/a1, · · · , xk/ak), and let Γx = (x1 : t1)
γ , · · · , (xk : tk)

γ

and Γa = (a1 : t1)
γ , · · · , (ak : tk)

γ . Let θ = Mi
ρ(v, p) ̸=

fail. If

Γ1,Γa ⊢S v : t,

Γ1; Γx ⊢S p : t ⊣ Γ2, and

Γ1,Γ2 ⊢• e : t0

are derivable, then Γ1 ⊢• e θ : t0 is also derivable.

Proof. This lemma is proved by induction on the type

derivation of Γ1; Γx ⊢S p : t ⊣ Γ2.

We show the most interesting cases only.
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(Case: S = γ and p = λx.p1) Since pattern matching

succeeds, v must have the form λa.v1. By the assumptions

and inversion of typing rules, Γ1,Γa, (a : t′)γ ⊢γ v1 : t′′ and

Γ1; Γx, (x : t′)γ ⊢γ p1 : t′′ ⊣ Γ2 are derivable for some t′ and

t′′. We also have θ = M1
ρ∪[(x/a)](v1, p1). By the induction

hypothesis, Γ1 ⊢• e θ : t0 is derivable.

(Case: S = γ and p = $f(y⃗)) Let n be |y⃗|. By the

second derivation in the assumptions of the lemma and the

typing rule (T-Pat-Hop), each yj is xij for some ij ≤ k such

that (yj : tij )
γ ∈ Γx. Then, we have Γ2 = (f : t′)• where

t′ = ⟨ti1⟩γ → · · · → ⟨tin⟩γ → ⟨t⟩γ .
Since pattern matching succeeds (θ ̸= fail), we have

(FV(v) ∩ {a1, · · · , ak}) ρ ⊆ {y1, · · · , yn}, which is

{xi1 , · · · , xin}. Let I be {i1, · · · , in}. Applying Lemma 5

to Γ1,Γa ⊢γ v : t, we obtain

Γ1, (xi1 : ⟨ti1⟩
γ)•, · · · , (xin : ⟨tin⟩

γ)• ⊢γ v ↓ ρ : t.

Since xij is yj , we can derive Γ1 ⊢• λy⃗.⟨v ↓ ρ⟩ : t′. By ap-

plying Lemma 3 to it and Γ1, (f : t′)• ⊢• e : t0, we get

Γ1 ⊢• e [f 7→ λy⃗.⟨v ↓ ρ⟩] : t0. Since θ = [f 7→ λy⃗.⟨v ↓ ρ⟩], we
are done.

Theorem 2 (Type Preservation). Let i = |S|. If Γ ⊢S e : t

and e −→i e′, then Γ ⊢S e′ : t.

Proof. The theorem is proved by induction on e −→i e′.

The evaluation rule for β-reduction ((λa.e)@v) and let-

reduction (for let a = v in e) are proved by Lemma 3.

The rule for run (run ⟨v⟩) is proved by Lemma 4.

The rule for successful pattern matching is proved by

Lemma 6.

The proof for the remaining cases is straightforward.

Theorems 1 and 2 together establish type soundness of

Mayuzin, that allows pattern-matching against code pat-

terns, open-code manipulation, run-time code generation,

and let-polymorphism.

5. Implementation

The primary motivation for this work was to provide a

type-safe Multi-Stage Programming (MSP) language that

supports both runtime generative and analytical approaches.

To assess the practical utility of the approach, we imple-

mented Mayuzin from scratch with the type system presented

in the previous sections.

At present, our implementation is prototypical in the sense

that it consists of an interpreter and a näıve type checker for

the type system, where we need to annotate all variables with

their types and stages as environment classifiers. We added

integers and their operations, general recursion, and so on, to

make our system practical and expressive for the examples in

this paper. The limitations of our type system is inherited

from the present paper, for instance, the restriction of two

stages and no classifier polymorphism, yet, we can run the

pattern-matching example in Sect. 1.

To make Mayuzin a practically useful language, we need

to revise the implementation significantly. For instance, pat-

tern matching in OCaml can be efficiently implemented [1],

and extending their work to cover code patterns is interesting

future work.

6. Related Work

In this section, we compare our work with the most closely

related work.

Multi-Stage Programming (MSP) is a concept that

underlies Mayuzin, providing a statically-scoped, type-safe

mechanism for staged computation. MSP was first popular-

ized by languages such as MetaML and MetaOCaml, which

allowed developers to specify different stages of code gener-

ation and evaluation [3], [13]. These systems helped nar-

row the gap in generative programming, enabling tasks such

as code optimizations and Domain-Specific Language (DSL)

implementations more effectively. Similar to MetaOCaml,

Mayuzin facilitates type-safe staging and emphasizes runtime

code generation and simplification, optimizing generated code

through an efficient staged evaluation mechanism.

Lisp and Scheme have long served as a foundational ex-

ample of treating code as data through its uniform represen-

tation of programs as lists, or more generally, S-expressions.

Techniques such as quotation (’) and quasiquotation (‘) al-

low seamless transitions between code fragments and data,

making Lisp powerful for metaprogramming tasks. The no-

tion of quasiquotation allows one to mix data and evaluable

code fragments within the same expression, as seen in ‘(1 2

,(+ 3 4)), where unquote (,) facilitates the evaluation of a

part of the quoted list. This approach to code manipulation

provides significant flexibility in generating and transforming

code [11].

Scala 3, inspired by MetaML and MacroML, has extended

the capabilities of MSP by integrating generative and analyt-

ical macros into a statically typed system [14]. Unlike purely

generative approaches, Scala 3 supports compile-time trans-

formations that allow developers to analyze and optimize

code during compilation. Mayuzin similarly aims to provide
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both generative and analytical capabilities but focuses pri-

marily on runtime code generation. This distinction makes

Mayuzin particularly suitable for applications that require

runtime adaptability, whereas Scala 3 emphasizes compile-

time guarantees.

Mœbius, an alternative approach to MetaML, has ex-

tended Contextual Modal Type Theory (CMTT) by multi-

stages, System-F style polymorphism, pattern patching, and

other features [7]. CMTT provides a fine-grain representa-

tion for typing context, which allows us to represent the de-

pendency between variables, including type variables, that

is essential to handle impredicative polymorphism properly.

Its pattern matching is also very expressive, for instance, it

allows different type-instantiation for each case in pattern

matching. A price for the expressiveness of Mœbius is its

complexity; The calculus needs an involved definition for typ-

ing rules and simultaneous substitutions. Also, the manipu-

lation of types and typing contexts is involved, which makes

one wonder whether it can be a basis for a practical pro-

gramming language. Our approach is opposite; we stick to a

simple setting based on environment classifiers, and live with

MetaML-like languages, for which a complete type inference

algorithm in the presence of let polymorphism is strongly de-

sired. Although it is left for future work to provide a type

inference algorithm for Mayuzin, we believe that this paper

has made a solid first step to design a suitable extension of

MetaML with pattern matching for generated code.

MacoCaml, an extension of OCaml, focuses on compile-

time code generation using macros combined with phase sepa-

ration and staging [17]. It introduces composable and compi-

lable macros as compile-time bindings, and provides a frame-

work that integrates these macros with OCaml’s type system,

enabling a safe and structured form of macro staging. Maco-

Caml supports both compile-time bindings for macro defini-

tions and runtime evaluations, effectively interleaving typing

and code generation. The emphasis on phase separation al-

lows for precise control over different stages of evaluation,

offering benefits for compile-time efficiency and correctness.

Apart from extending MSP languages to allow analytical

metaprogramming, a number of researchers have devised a

way to analyze and transform programs either after pro-

gram generation, or simultaneously during program gener-

ation. Typically, they design Domain-Specific Languages for

this purpose to exploit domain-specific knowledge for cus-

tom optimizations. Among many studies, Kiselyov devel-

oped the typed tagless-final encoding for an embedded DSL

and showed that various low-level optimizations for high-

performance computation can actually be implemented in

this DSL [10]. While powerful and general, these approaches

have an obvious drawback that the expressiveness of the DSL

is limited by the host language and encoding, and it is not

easy to cover polymorphism and other sophisticated typing

mechanisms. Our work provides strong evidence that com-

bining generative and analytical metaprogramming in a sin-

gle language can be achieved. Further investigation into the

merits and defects of our approach is to be left for future

work.

7. Conclusion

This paper has presented Mayuzin, a new multi-stage pro-

gramming language that successfully integrates both gen-

erative and analytical metaprogramming capabilities while

maintaining type safety. Our key contributions include

demonstrating how a unified approach can combine runtime

code generation and analysis, thereby addressing a notable

gap in multi-stage programming theory.

We have shown the practical benefits of Mayuzin by inte-

grating let polymorphism and environment classifiers within

the multi-stage framework. This combination allows for so-

phisticated code transformations while ensuring the gener-

ated code maintains type safety. Through practical examples,

we highlighted how Mayuzin facilitates code optimizations,

effectively eliminating redundant computations, simplifying

the code, and enhancing program efficiency.

The type safety proof for our system establishes the theo-

retical soundness of these mechanisms. Our formal treatment

serves as a basis for further research, and our implementa-

tion will provide evidence of its practicality. This foundation

sets the stage for future exploration into broader applications

of multi-stage metaprogramming, particularly in domains re-

quiring dynamic code analysis and optimization.

As future work, we plan to extend our language to more

than two stages [15], cross-stage persistence (CSP) [5], clas-

sifier polymorphism [4], and computational effects, including

control operators [9] and effect handlers [6]. We also hope

to build a type-inference algorithm that would eliminate the

burden of annotating programs with types and classifiers.

These extensions will allow us to use Mayuzin for realistic

applications.
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Appendix

A.1 Operational Semantics

The operational semantics of Mayuzin is given as the stan-

dard call-by-value semantics for lambda calculus, extended

with pattern matching for code explained in Sect. 2.2. Be-

low, we give the semantics as the set of small-step evaluation

rules where we assume that the evaluation rules for constants

are separately given.

e1 −→i e1
′

e1@e2 −→i e1
′@e2

(E-App-1)

e2 −→i e2
′

vi1@e2 −→i vi1@e2
′

(E-App-2)

(λa.e1)@v02 −→0 e1 [a 7→ v02 ]

(E-Beta)

e −→i e′ i > 0

λa.e −→i λa.e′

(E-Fun)

e −→i+1 e′

⟨e⟩ −→i ⟨e′⟩
(E-Code)

e −→i−1 e′ i > 0

∼ e −→i ∼ e′

(E-Splice)

∼ ⟨v1⟩ −→1 v1

(E-Splice-Red)

e1 −→i e′1

(e1, e2) −→i (e′1, e2)

(E-Pair-1)

e2 −→i e2
′

(vi1, e2) −→i (vi1, e2
′)

(E-Pair-2)
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e1 −→i e1
′

let a = e1 in e2 −→i let a = e1
′ in e2

(E-Let-1)

let a = v01 in e2 −→0 e2 [a 7→ v01 ]

(E-Let-Red)

e2 −→i e′2 i > 0

let a = vi1 in e2 −→i let a = vi1 in e′2
(E-Let-2)

e −→i e′

run e −→i run e′

(E-Run)

run ⟨v1⟩ −→0 v1

(E-Run-Red)

In the evaluation rules for pattern matching below, we use

abbreviation p → e for the sequence of cases p1 → e1 | · · · |
pn → en where the last pattern pn may be the default pat-

tern .

e0 −→i e′0

match e0 with (p → e) −→i match e′0 with (p → e)

(E-Match-Scrut)

1 ≤ k ≤ n

∀j < k. M0
[ ](v

0, pj) = fail

θ = M0
[ ](v

0, pk) ̸= fail

match v0 with (p → e) −→0 ek θ

(E-Match-Succ)

∀j ≤ n. M0
[ ](v

0, pj) = fail

match v0 with (p → e | → e′) −→0 e′

(E-Match-Default)

e0 −→i e′0 i > 0

match vi0 with (p → vi | p′ → e0 | p′′ → e′) −→i

match vi0 with (p → vi | p′ → e′0 | p′′ → e′)

(E-Match-Plus)
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