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Abstract
Staging dynamically typed programming languages safely
is a challenge, as the programming-language support for
staged computation typically relies on static type systems.
To solve this problem, we propose a staged gradual type
system that seamlessly integrates static and dynamic typing
with staged computation. Our system combines the basic
gradual type system and the let-polymorphic staged type
system for run-time code generation safely. We discuss the
design and issues in developing the calculus, and present a
type system and operational semantics via a translation to a
cast calculus where dynamic type checking is made explicit.
We also show several applications, such as lightweight stage
polymorphism.

CCS Concepts: • Theory of computation→ Type struc-
tures; • Software and its engineering → General pro-
gramming languages.

Keywords: staging, run-time code generation, gradual typ-
ing, type soundness, lexical scope
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1 Introduction
Staged computation a la MetaML [23] distinguishes itself
from other sorts of program-generation techniques by a
static guarantee for safety properties such as well-typedness
and well-scopedness. The static guarantee means that a pro-
gram generator is checked before being executed against
parameters, and it is guaranteed that the generated code is
safe regardless of the values of the parameters.
While this paradigm has been proved effective in a va-

riety of application domains, it is not always the best; this
strong guarantee can impose a strong restriction on the ap-
plicability of staging; we sometimes encounter situations
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where the safety property of generated codes depends on
the values of its inputs, while the inputs are really dynamic
in the sense that some combination of inputs may lead to
unsafe programs to be generated. For another example, a
program generator has to manipulate heterogeneous data
and programs, which can be handled by a sophisticated type
system, but wemaywant to have a simpler solution that does
not need an involved type system for the metaprogramming
language.

Note that we still want to ensure certain safety properties
for the program generator and generated programs, so ig-
noring static type checking completely is not our solution.
For instance, the program generator itself should not be ill-
scoped, or sometimes, there is a case where the program
generator can raise an exception, but the generated code
should be statically typed if program generation succeeds
without causing an exception. Hence, totally abandoning a
type system is not desirable. We need a way to express both
static and dynamic types for staged programming languages.
Gradual typing [16, 18] has been proposed to mediate

static typing and dynamic typing seamlessly in a single lan-
guage. Technically, it extends a static type system with the
type ? (orAny), which designates program fragments whose
type-checking is postponed to runtime. Program fragments
that have non- ? types are type-checked as in a static type
system, hence a programmer can combine statically and dy-
namically typed fragments in a program. Gradual typing can
serve as a tool for gradual development from an ill-typed
program to a well-typed program.

This paper introduces a gradually typed calculus for staged
computation. Our aim is to build a staged programming lan-
guage whose application needs both static type checking
and dynamic type checking (type checking after programs
are generated). We also aim to building a solid foundation
for program generation, where the object language for gen-
erated programs is gradually typed, for instance, TypeScript
has the type Any that allows program fragments to bypass
static type checking. We design our calculus in the hope that
it serves as the foundation of a staged extension of Type-
Script. In summary, our calculus should have the type Any
at both stages, namely, at the present stage when a program
generator is executed to generate a program, and at the fu-
ture stage when a generated program is executed. Indeed,
we allow more than two stages, and the type Any can be
used at all stages in our calculus.
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In this paper, we take the minimalist approach to focus on
the foundational issues, including the design space and the
basic properties. Hence, we combine the simple gradual type
system proposed by Siek and Taha [16] with a polymorphic
extension of the staged calculus 𝜆◦ [6]. The latter allows the
manipulation of open code, and has served as the founda-
tion for several staged programming languages such as BER
MetaOCaml [11].

The contribution of this paper is summarized as follows:
• We propose a type system for 𝜆𝐺◦, the gradually typed
calculus for staged computation.

• We present a type-preserving translation from 𝜆𝐺◦ to a
cast calculus 𝜆𝐶 , and give operational semantics for the
latter. Together, they define an operational semantics
for 𝜆𝐺◦.

• We show illustrative examples of our calculus.
• We show a few properties including type preservation
and decidability of type checking for 𝜆𝐶 .

The rest of this paper is organized as follows: Sect. 2 in-
formally gives a few programming examples in our calculus
and explains the issues addressed in this paper. Sect. 3 argues
the design decisions we made and mentions technical issues
in this work. Sect. 4 presents our calculus 𝜆𝐺◦ for gradually
typed staged computation. Sect. 5 gives a cast calculus, and
a translation from 𝜆𝐺◦ to it, and Sect. 6 presents its opera-
tional semantics, and desirable properties such as the subject
reduction property. Sect. 7 shows an illustrative example of
𝜆𝐺◦ with type case. In Sect. 8, we compare our work with
related work, and Sect. 9 concludes the paper.

2 Preliminaries
In this section, we introduce several examples to address the
issues in combining a staged programming language and a
gradually typed system.

2.1 Basics of Staged Computation
We take theMetaML approach for staged computation, which
uses quasi-quotation (anti-quotation) for generating code,
is purely generative in the sense that the decomposition of
generated code is not allowed, and allows run-time code
generation as opposed to compile-time code generation (e.g.,
macros) such as TemplateHaskell andMacoCaml. TheMetaML
approach is realized by MetaOCaml, a staged extension of
OCaml, that has been used for various practical application
domains.
We start with a simply typed lambda calculus extended

with staging constructs, as illustrated by the following ex-
ample:

𝑒1 ≡ (𝜆𝑥 . < ∼𝑥 ∗ 5 + ∼𝑥 >) < 2 + 3 >
↩→ < (2 + 3) ∗ 5 + (2 + 3) >

The term <𝑒> generates a code, which is not evaluated at
the present stage, but its evaluation is delayed. The term ∼𝑒

splices a code into another code, as shown above. We can
run a generated code within the language as follows:

run 𝑒1 ↩→ 30

The purpose of the type systems for staged programming
languages is to guarantee safety properties such as well-
stagedness (there is no confusion of stages), well-scopedness
(there are no scope errors for variables), and well-typedness.
To understand them, we consider the following terms where
𝑓 is a polymorphic function of type ∀𝛽. 𝛽 → 𝛽 (which is the
type for the identity function):

𝑒2 ≡ <𝜆𝑥 : int . ∼ (𝑓 𝑥)>
𝑒3 ≡ <𝜆𝑥 : int . ∼ (𝑓 <𝑥>)>
𝑒4 ≡ <𝜆𝑥 : int . ∼ (run (𝑓 <𝑥>); <3>)>

The term 𝑒2 should be rejected by any reasonable type
system since it is ill-staged: While the variable 𝑥 is bound
inside a bracket, which implies 𝑥 is a future-stage (or level-1)
variable, its use site (the term 𝑓 𝑥) is inside a spliced term,
namely, 𝑓 𝑥 is evaluated at the present stage (at level 0). To
evaluate this term, we need to know the future value of 𝑥 at
the present stage, violating the chronological order of stages.

The term 𝑒3 is well-typed since 𝑥 is used at the future stage
(𝑥 appears in <𝑥>), so stages are respected.

The term 𝑒4 is problematic.1 Since <𝑥> is an open code
(it contains a free variable 𝑥), the value of 𝑓 <𝑥> may be
an open code, and running it would potentially violate the
lexical scope of variables. Therefore, a static type system
must reject 𝑒4 regardless of the actual value of 𝑓 .

Preventing an open code from being run has been a major
goal of designing a type system for staged programming
languages [2, 12, 21]. In this work, however, we use a simpler
type system than theirs. Hence, we cannot statically detect
the closedness of a code before running it, and instead, we
will dynamically check it. It is left for future work to extend
our calculus to statically detect closed code.

2.2 Basics of Gradual Typing
Gradual typing [16] combines static typing and dynamic
typing by introducing the type ? (the type Any) to static
typing. A program fragment of type ? is not typechecked
at compile time (statically), but its value will be typechecked
at runtime (dynamically). Consider the following term:

𝑒5 ≡ (𝜆𝑥 : ? . 𝑥 + 3) true

The term 𝑒5 typechecks in a gradual type system: (𝜆𝑥 :
? . · · ·) true is well typed since the types bool and ? are
consistent, and 𝑥 + 3 typechecks under the typing context
𝑥 : ? , since ? and int are consistent.

To evaluate the term 𝑒5, we translate gradually typed terms
into those in a cast calculus where the dynamic type checking

1Readers can ignore the subterm <3> in 𝑒4, which is inserted here to keep
typability, but our analysis does not depend on this subterm.
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is made explicit by the cast operation [𝜏]𝑒 .2 The above term
𝑒5 is translated to a term 𝑒′5 in the cast calculus:

𝑒′5 ≡ (𝜆𝑥 : ? . ( [int]𝑥) + 3) ( [ ? ]true)

which has two cast operations [int] and [ ? ]. When eval-
uating 𝑒′5 under the call-by-value strategy, we first check if
true has type ? , which succeeds. Then, we substitute true
for 𝑥 , evaluate the body, and finally check if the value of 𝑥
has type int, which fails. This way, delayed typechecking
caused by the type ? is executed at runtime.
Since Siek and Taha’s seminal paper introduced the sim-

plest possible gradual type system, a number of authors have
proposed various extensions of gradual type systems, for in-
stance, [3, 8, 14, 17]. In this work, we use the original calculus
by Siek and Taha [16] to focus on the most essential features.

3 Design Decisions and Technical Issues
Our goal is to build a single calculus that combines gradual
typing and staged computation. This section explains our de-
sign decisions using illustrative examples, and then discusses
technical issues to be addressed to achieve the goal.

3.1 Design Decisions
To design a type system for our combined calculus, we revisit
the examples in Sect. 2.1, and replace several types by the
any type (denoted by ? ). Below we assume that 𝑓 is a term
of type ? → ? .

𝑒′2 ≡ <𝜆𝑥 : ? . ∼ (𝑓 𝑥)>
𝑒′3 ≡ <𝜆𝑥 : ? . ∼ (𝑓 <𝑥>)>
𝑒′4 ≡ <𝜆𝑥 : ? . ∼ (run (𝑓 <𝑥>); <3>)>

The primed terms 𝑒′𝑖 assign the type ? to the variable 𝑥 ,
which implies that, we do not statically typecheck it.

We think that the term 𝑒′2 should be rejected. To run the
subterm 𝑓 𝑥 , the value of 𝑥 is needed, but it is a future-stage
variable, and its value is not available at the present stage.
Hence, running 𝑒′2 would cause a serious error. In short, it
violates well-stagedness.

The term 𝑒′3 is non-problematic, since <𝑥> is allowed, and
the static type of 𝑓 <𝑥> is ? , which implies that we will not
check if it has a code type at the present stage.
The term 𝑒′4 is the most interesting example. If 𝑓 is an

identity function, we need to evaluate run <𝑥>, but <𝑥> is
an open code, and hence, the evaluation of 𝑒′4 would cause an
error. On the other hand, if 𝑓 <𝑥> returns a code like <10>,
then running such a code is not problematic. To handle these
two cases, our calculus should accept 𝑒′4, and insert dynamic
type checking into this term that checks if the argument of
the run operator is a closed code or not.

2The cast operation is usually written as < · >·, but we use the notation [ · ] ·
to avoid conflict with brackets.

In summary, we employ the following design principles
for staged gradual typing:

• The type system should ensure well-scopedness (lexi-
cal scope).

• The type system should ensure well-stagedness.
• The type system should allow ill-typed terms by the
type ? . More precisely, it should allow both static
type-checking and dynamic type-checking, and the
programmer can choose either one.

Following the design choices above, we design our type
system by adjusting typing rules. The adjustment is straight-
forward for constructor terms such as 𝜆. For eliminators
such as application, we need to have an extra rule which
incorporates the case when the term decomposed by the rule
has type ? .
For instance, the splice-term is an eliminator, hence we

need to add one typing rule as follows:

Γ ⊢𝑖 𝑒 : ? Esc2
Γ ⊢𝑖+1 ∼𝑒 : ?

This rule means that when the subterm 𝑒 has type ? , then
∼𝑒 is still well typed with type ? .
Our type system will be shown in Sect. 4.

3.2 Technical Issues
In the development of our calculus, we found a few technical
issues to be addressed in this work.

The first issue is related to dynamic type checking. Recall
the term 𝑒′3 in the previous section. Following Siek and Taha’s
approach, we translate it to the following term 𝑒′′3 :

𝑒′′3 ≡ <𝜆𝑥 : ? . ∼ ([⟨ ? ⟩] (𝑓 ( [ ? ]<𝑥>)))>
Suppose 𝑓 is the identity function, then 𝑓 ( [ ? ]<𝑥>) re-
turns [ ? ]<𝑥>.3 Then, we need to check if <𝑥> has type
⟨ ? ⟩ , that requires the type information of 𝑥 . In general,
staged computation allows evaluation under binders. It fol-
lows that dynamic checking also needs to be done under
binders. Hence, we need the type information (the typing
context) of bound variables.
We solve this issue by making the operational semantics

of the cast calculus slightly more involved. Namely, our oper-
ational semantics should collect the typing context of bound
variables from the evaluation contexts. In the above type-
check, the evaluation context is <𝜆𝑥 : ? . ∼•>, where the
hole • designates the place for the redex. From this evalu-
ation context, we can extract the typing context (𝑥 : ? )1.
Alternatively, we can collect the type information of bound
variables at the translation time, and attach it to the cast
term. For example, the above cast can be changed to [Γ ⊢ 𝜏]
where Γ is the type information of bound variables. We do
not take this approach, since Γ can always be recovered from
the evaluation context if we assume that we evaluate closed
terms only.
3In our formulation, [ ? ]𝑣 is a value if 𝑣 is a value.
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Variable 𝑥 ∈ 𝑋

Term 𝑒 ::= 𝑥 | 𝑐 | 𝜆𝑥 : 𝜏 . 𝑒 | 𝑒 𝑒 | <𝑒> | ∼𝑒 | run 𝑒

| let 𝑥 : 𝜏 = 𝑒 in 𝑒

Figure 1. Terms of 𝜆𝐺◦

The second issue is caused by the interplay between poly-
morphism and dynamic type checking. Since we extract
types for dynamic type checking, we need to be careful about
free type variables in these types, which should not be ill-
scoped. For this purpose, we translate the source calculus to
an intermediate calculus where universally quantified type
variables are made explicit.

The third issue is related to the run primitive. To ensure
that the argument of the run primitive must be closed, which
is a necessary condition for a generated code to be run safely,
the staged calculi in the literature required rather involved
type systems, that would complicate dynamic type checking
in our formulation. In this work, we take a simple type system
for staged computation, and rely on dynamic closedness
checking before running the generated code.

4 The Calculus 𝜆𝐺◦

We introduce 𝜆𝐺◦, a gradually typed multi-stage calculus. It
is based on two classic calculi: the first one is 𝜆𝐺 , a gradually
typed calculus proposed by Siek and Taha [16], which has
the type ? (or Any) to allow dynamic type checking. The sec-
ond one is a polymorphic extension of 𝜆◦, a staged calculus
proposed by Davies [6]. The latter allows the manipulation
of open code.

In this section, we give the calculus and its type system.

4.1 Syntax of 𝜆𝐺◦

Fig. 1 gives the syntax of terms of 𝜆𝐺◦.
In this figure,𝑋 denotes a set of variables. Terms are those

in the standard lambda calculus with the let expression,
extended with staging constructs: a bracket term <𝑒> for
generating a code, a splice term ∼𝑒 for splicing a code into
another code, and a run term run 𝑒 for running a code. In
this work, we omit cross-stage persistence (CSP) that allows
a value created at some stage to be used in a later stage, since
CSP would complicate evaluation rules [21].
Our calculus uses the Church style in the sense that all

bound variables are explicitly given their types. It is desir-
able to formulate a Curry-style calculus, and develop a type
inference algorithm, but we leave it for future work.

Variables are bound by 𝜆 and let, andwe identify𝛼-equivalent
terms as usual.

Stage 𝑠 is a natural number
Basic Type 𝑏 ∈ 𝐵𝑇

Type Variable 𝛽 ∈ 𝑇𝑉

Type 𝜏 ::= 𝑏 | 𝛽 | ? | 𝜏 → 𝜏 | ⟨𝜏⟩
Type Scheme 𝜎 ::= 𝜏 | ∀𝛽.𝜎

Figure 2. Stages, Types and Type Schemes

(For types)

𝜏 ∼ 𝜏 𝜏 ∼ ? ? ∼ 𝜏

𝜏1 ∼ 𝜏 ′1 𝜏2 ∼ 𝜏 ′2
𝜏1 → 𝜏2 ∼ 𝜏 ′1 → 𝜏 ′2

𝜏1 ∼ 𝜏2
⟨𝜏1⟩ ∼ ⟨𝜏2⟩

(For type schemes)
𝜎 ∼ 𝜎 ′

∀𝛽.𝜎 ∼ ∀𝛽.𝜎 ′

Figure 3. Type Consistency

4.2 Stages and Types
Fig. 2 defines stages, types and type schemes where 𝐵𝑇 and
𝑇𝑉 , resp. denote mutually distinct sets of basic types, and
type variables, resp.

In this calculus, a stage is simply a natural number, where
the stage 0 means the present stage when a code is generated,
and the stage 1 means the next stage when the generated
code is executed. We allow 𝑖 > 1 stages, in which case execut-
ing a generated code will generate another code, and so on.
Historically, more involvedmachineries such as environment
classifiers [2, 21] and contextual modal type theory [10, 15]
have been used to distinguish closed code from arbitrary
code, to allow the safe evaluation of a run term. In this work,
we do not employ these machineries to avoid clutter. Instead,
we will discuss how we can introduce a run-primitive with
the help of environment classifiers.
A type is either a basic type, a type variable, the type

? (sometimes written as Any), a function type, or a code
type ⟨𝜏⟩ . For instance, the term <<<𝑥 + 𝑦>>> has the type
⟨⟨⟨int⟩⟩⟩ if 𝑥 and 𝑦 are stage-3 variables of type int.
The calculus 𝜆𝐺◦ has ML-style let-polymorphism where

type variables are abstracted. For this purpose, types in Fig. 2
represent monomorphic types, while type schemes represent
polymorphic types abstracted by type variables 𝛽 . In type
schemes,∀ binds type variables, andwe identify𝛼-equivalent
types as usual.

4.3 Type Consistency
In Siek and Taha’s formulation of gradual typing, the type
? designates dynamically typed terms, and all other type
constructors behave the same as statically typed calculi. To
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allow dynamic typing by ? , they introduced the notion of
type consistency; two types 𝜏1 and 𝜏2 are consistent if they
differ only at the occurrence of ? . For instance, 𝑏 → ( ? →
𝛽) is consistent with ? → ? , but not with 𝑏 → (𝑏 → 𝑏) or
( ? → ? ) → ? .
Fig. 3 formally defines type consistency for types and type

schemes.

4.4 Type System
The type system of 𝜆𝐺◦ is given by the typing rules in Fig. 4.

Before explaining each rule, we first introduce a few aux-
iliary notions.

• We say a type 𝜏 is an instance of a type scheme 𝜎 , writ-
ten by 𝜎 ≻ 𝜏 , if 𝜎 has the form ∀𝛽1 . · · · ∀𝛽𝑚 .𝜏0, and 𝜏
is 𝜏0 [𝛽1 := 𝜏 ′1, · · · 𝛽𝑚 := 𝜏 ′𝑚] for some types 𝜏 ′1, · · · , 𝜏 ′𝑚
where ·[· := ·] denotes the usual substitution. The in-
stance relation is common in ML-like let-polymorphic
calculi.

• For any syntactic entity 𝑋 , we write Free(𝑋 ) for the
set of free types in 𝑋 . For example, Free(∀𝛽2 .(⟨𝛽1⟩ →
⟨𝛽2⟩)) is {𝛽1}.

• 𝛽 denotes a sequence 𝛽1, · · · , 𝛽𝑛 .
A judgment in 𝜆𝐺◦ takes the form

(𝑥1 : 𝜎1)𝑠1 , · · · , (𝑥𝑘 : 𝜎𝑘 )𝑠𝑘 ⊢𝑠 𝑒 : 𝜏

where 𝑥𝑖 are variables, 𝜎𝑖 are type schemes, 𝑠𝑖 and 𝑠 are stages
(natural numbers), 𝑒 is a term, and 𝜏 is a type. It is mostly
standard except that each assumption and the judgment itself
are annotated by a stage. Also, 𝜆𝐺◦ has let-polymorphism
which allows type schemes in the assumption (left to ⊢), but
allows only types in the conclusion (right to ⊢).

Let us explain each typing rule. The rules Var and Lam are
as usual except that we have stages that annotate assump-
tions and judgments.
For an application term 𝑒1 𝑒2, we have two rules App1

and App2. The rule App1 is used when the term 𝑒1 is known
to have a function type 𝜏1 → 𝜏2. This rule generalizes the
standard application rule in that the argument 𝑒2 may have
a different type 𝜏 ′ than the expected type 𝜏1, but they must
be consistent 𝜏1 ∼ 𝜏 ′. If these two terms are not identical, we
will perform dynamic type checking. The second rule App2
is used when the type of 𝑒1 is statically unknown. For this
case, 𝑒2 still needs to be well typed, but its type can be an
arbitrary type 𝜏 . The resulting type of 𝑒1 𝑒2 is also unknown.

It is worth mentioning that the typing rule for a construc-
tor such as 𝜆 remains essentially the same as the typing rules
in a static type system, while the rule for an eliminator such
as application needs to be split into two rules, as shown
above.

For staging constructs, a bracket term has essentially the
same typing rule as that in 𝜆◦, while a splice term ∼𝑒 needs
two typing rules just like an application term.

The first rule for splice, Esc1, is used when 𝑒 is known
to have a code type, in which case the rule is essentially
the same as one in 𝜆◦. The second rule for splice, Esc2, is
used when the type of 𝑒 is unknown statically. It is handled
similarly to the rule App2.
The two rules for run, Run1 and Run2, are designed in

the same way as App1 and App2.
Finally, the rule Let is formulated in the same way as the

standard let-rule in ML-like polymorphic languages. The
type 𝜏1 of 𝑒1 is made polymorphic over type variables 𝛽

provided they appear in 𝜏1 freely, and must not appear in Γ
freely.

This concludes the type system of 𝜆𝐺◦.

5 Translation to Cast Calculus
We shall give the semantics for the calculus 𝜆𝐺◦ via a trans-
lation to the cast calculus. The cast calculus 𝜆𝐶 is similar
to 𝜆𝐺◦, but it has the explicit cast operation4 for dynamic
type-checking, written by [𝜏]𝑒 .
As explained in Sect. 3.2, our translation inserts the cast

operators, namely, a term 𝑒 is translated to [𝜏]𝑒 if the dy-
namic type checking for 𝑒 is needed. The type information
𝜏 is extracted from static typechecking, which implies that
the input of the translation is not just a term, but a type
derivation of the term.
It is important to note that the evaluation in the cast cal-

culus needs to handle types explicitly, therefore, we need to
make it explicit that how a type scheme is instantiated with
a concrete type at each use of a polymorphic variable. Hence,
we modify the Var rule so that a variable is accompanied
by a sequence of types, such as 𝑥{𝜏1, · · · , 𝜏𝑛}. For instance,
the 𝜆𝐺◦ term let 𝑥 : 𝛽 → 𝛽 = 𝜆𝑦 : 𝛽 .𝑦 in (𝑥 5); (𝑥 𝑡𝑟𝑢𝑒)
becomes a more verbose term:

let 𝑥 : ∀𝛽.𝛽 → 𝛽 = Λ𝛽.𝜆𝑦 : 𝛽 .𝑦 in
(𝑥{int} 5); (𝑥{bool} 𝑡𝑟𝑢𝑒)

in the cast calculus. The subterm 𝑥{int} means that the type
scheme ∀𝛽. 𝛽 → 𝛽 has been instantiated by int, and the
type of this subterm is int → int. Similarly for 𝑥{bool}.
Then, we can smoothly define operational semantics for the
resulting calculus. For instance, the above term evaluates to
((𝜆𝑦 : int . 𝑦) 5); ((𝜆𝑦 : bool . 𝑦) 𝑡𝑟𝑢𝑒).
In this section, we first introduce the calculus 𝜆𝐶 , then

translate 𝜆𝐺◦ to 𝜆𝐶 , and finally, define the operational se-
mantics of 𝜆𝐶 . By composing the ingredients, we obtain the
operational semantics of 𝜆𝐺◦.

4Despite the name, the cast operation in this paper does not change the type
of a term, and merely checks it. We follow the terminology in the literature
[16].
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(𝑥 : 𝜎)𝑠 ∈ Γ 𝜎 ≻ 𝜏
Var

Γ ⊢𝑠 𝑥 : 𝜏
Γ, (𝑥 : 𝜏1)𝑠 ⊢𝑠 𝑒 : 𝜏2 Lam

Γ ⊢𝑠 𝜆𝑥 : 𝜏1 . 𝑒 : 𝜏1 → 𝜏2

Γ ⊢𝑠 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢𝑠 𝑒2 : 𝜏 ′ 𝜏1 ∼ 𝜏 ′ App1
Γ ⊢𝑠 𝑒1 𝑒2 : 𝜏2

Γ ⊢𝑠 𝑒1 : ? Γ ⊢𝑠 𝑒2 : 𝜏 App2
Γ ⊢𝑠 𝑒1 𝑒2 : ?

Γ ⊢𝑠+1 𝑒 : 𝜏 Brkt
Γ ⊢𝑠 <𝑒> : ⟨𝜏⟩

Γ ⊢𝑠 𝑒 : ⟨𝜏⟩
Esc1

Γ ⊢𝑠+1 ∼𝑒 : 𝜏
Γ ⊢𝑠 𝑒 : ? Esc2

Γ ⊢𝑠+1 ∼𝑒 : ?

Γ ⊢𝑠 𝑒 : ⟨𝜏⟩
Run1

Γ ⊢𝑠 run 𝑒 : 𝜏
Γ ⊢𝑠 𝑒 : ? Run2

Γ ⊢𝑠 run 𝑒 : ?

Γ ⊢𝑠 𝑒1 : 𝜏 ′ Γ, (𝑥 : ∀𝛽.𝜏1)𝑠 ⊢𝑠 𝑒2 : 𝜏2 {𝛽} ⊆ Free(𝜏1) − Free(Γ) 𝜏 ′ ∼ 𝜏1 Let
Γ ⊢𝑠 let 𝑥 : 𝜏1 = 𝑒1 in 𝑒2 : 𝜏2

Figure 4. Type System for 𝜆𝐺◦

5.1 Cast Calculus 𝜆𝐶

We extend 𝜆𝐺◦ by a cast term to 𝜆𝐶 .
Term 𝑒 ::= . . . | 𝑥{𝜏} | [𝜏]𝑒

| let 𝑥 : ∀𝛽.𝜏 = Λ𝛽.𝑒 in 𝑒′

where 𝑥{𝜏} denotes a variable with type instantiation, and
[𝜏]𝑒 is a cast term for dynamic type checking. We write 𝑥
for 𝑥{}. The syntax of let is more vrebose than that in 𝜆𝐺◦.

The typing rules for new terms are given as follows:

(𝑥 : 𝜎)𝑠 ∈ Γ 𝜎 = ∀𝛽.𝜏
Var’

Γ ⊢𝑠 𝑥{𝜏 ′} : 𝜏 [𝛽 := 𝜏 ′]
Γ ⊢𝑠 𝑒 : 𝜏 𝜏 ∼ 𝜏 ′ Cast

Γ ⊢𝑠 [𝜏 ′]𝑒 : 𝜏 ′

We use the same typing rules as Lam, Brkt, Esc1, and Run1,
and remove App2, Esc2, and Run2. The rule App1 is modified
so that 𝜏1 ∼ 𝜏 ′ is replaced by 𝜏1 = 𝜏 ′.
The rule Let is slightly modified as follows:

Γ ⊢𝑠 𝑒1 : 𝜏1
Γ, (𝑥 : ∀𝛽.𝜏1)𝑠 ⊢𝑠 𝑒2 : 𝜏2
{𝛽} ⊆ Free(𝜏1) − Free(Γ)

Let’
Γ ⊢𝑠 let 𝑥 : ∀𝛽.𝜏1 = Λ𝛽.𝑒1 in 𝑒2 : 𝜏2

The modified rule has the same assumptions as the Let rule,
while in the conclusion, we have made explicit which type
variables are universally quantified by ∀𝛽 . We have added
the type abstraction Λ𝛽. to the term [𝜏 ′ ⇒ 𝜏1]𝑒1, to make it
easier to understand the term. When it is substituted for 𝑥
in 𝑒2, the type variables 𝛽 are instantiated with 𝜏 specified
by type application 𝑥{𝜏}.
Since we use the type system of 𝜆𝐶 during runtime, it is

important to have the following properties.

Theorem 5.1 (Decidable typability). The type checking prob-
lem in 𝜆𝐶 is decidable. In other words, given Γ, 𝑠 , and 𝑒 , there
is an algorithm to decide whether Γ ⊢𝑠 𝑒 : 𝜏 is derivable for
some type 𝜏 in 𝜆𝐶 . Moreover, this type 𝜏 is unique.

Proof sketch. Since 𝜆𝐶 is in the Church style, all variables
are given their types (and stages) in 𝑒 or Γ. Hence, we can
build a type derivation for 𝑒 from the bottom-up, and this
process is unique. In 𝜆𝐺◦, there is freedom about the choice
of universally quantified type variables 𝛽 , however, in 𝜆𝐶 ,
they are explicitly shown in the let-term, so we can fully
recover the type derivation. The uniqueness of the type is
also obvious from this argument. □

5.2 Translation from 𝜆𝐺◦ to 𝜆𝐶

Fig. 5 gives our translation from 𝜆𝐺◦ to 𝜆𝐶 . A judgment takes
the form Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : 𝜏 , which intuitively means that 𝑒 is
translated to 𝑒′ under the context Γ at stage 𝑠 with type 𝜏 . In
the translation, we use the notation [𝜏 ⇒ 𝜏 ′]𝑒 , which is 𝑒 if
𝜏 is identical to 𝜏 ′, and [𝜏 ′]𝑒 otherwise.

The translation needs not only a term 𝑒 , but also a typing
derivation for 𝑒 as input. The name of each typing rule is in
the form Cname, where name is the corresponding typing
rule in Fig. 4.
We shall explain a few interesting rules. The rule CVar

translates a variable to a variable with type instantiation.
The rule CApp1 inserts a cast [𝜏 ′ ⇒ 𝜏1]𝑒′2 since we use the
consistency 𝜏1 ∼ 𝜏 ′ to derive this term. The rule CApp2 en-
forces that 𝑒′1 needs to have a function type whose argument
type is 𝜏 . Similarly for the rules CEsc2, CRun2 and CLet.
The above definitions work in the sense that the transla-

tion is well-defined and preserves typing.

Theorem 5.2 (Type Preserving Translation). Suppose Γ ⊢𝑠
𝑒 : 𝜏 is derivable in 𝜆𝐺◦. Then, Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : 𝜏 is derivable
for some term 𝑒′ such that Γ ⊢𝑠 𝑒′ : 𝜏 is derivable in 𝜆𝐶 .

Proof outline. The theorem is proved by straightforward
induction on the type derivation. Γ ⊢𝑠 𝑒 : 𝜏 . Also, given a
type derivation, the choice of 𝑒′ in the theorem is essentially
unique. □
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(𝑥 : 𝜎)𝑠 ∈ Γ 𝜎 = ∀𝛽.𝜏0 CVar
Γ ⊢𝑠 𝑥 ⇒ 𝑥{𝜏 ′} : 𝜏0 [𝛽 := 𝜏 ′]

Γ, (𝑥 : 𝜏1)𝑠 ⊢𝑠 𝑒 ⇒ 𝑒′ : 𝜏2 CLam
Γ ⊢𝑠 𝜆𝑥 : 𝜏1 . 𝑒 ⇒ 𝜆𝑥 : 𝜏1 . 𝑒′ : 𝜏1 → 𝜏2

Γ ⊢𝑠 𝑒1 ⇒ 𝑒′1 : 𝜏1 → 𝜏2 Γ ⊢𝑠 𝑒2 ⇒ 𝑒′2 : 𝜏 ′ 𝜏1 ∼ 𝜏 ′
CApp1

Γ ⊢𝑠 𝑒1 𝑒2 ⇒ 𝑒′1 ( [𝜏 ′ ⇒ 𝜏1]𝑒′2) : 𝜏2
Γ ⊢𝑠 𝑒1 ⇒ 𝑒′1 : ? Γ ⊢𝑠 𝑒2 ⇒ 𝑒′2 : 𝜏

CApp2
Γ ⊢𝑠 𝑒1 𝑒2 ⇒ ([𝜏 → ? ]𝑒′1) 𝑒′2 : ?

Γ ⊢𝑠+1 𝑒 ⇒ 𝑒′ : 𝜏 CBrkt
Γ ⊢𝑠 <𝑒> ⇒ <𝑒′> : ⟨𝜏⟩

Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : ⟨𝜏⟩
CEsc1

Γ ⊢𝑠+1 ∼𝑒′ : 𝜏
Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : ? CEsc2

Γ ⊢𝑠+1 ∼𝑒 ⇒∼[⟨ ? ⟩]𝑒′ : ?

Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : ⟨𝜏⟩
CRun1

Γ ⊢𝑠 run 𝑒 ⇒ run 𝑒′ : 𝜏
Γ ⊢𝑠 𝑒 ⇒ 𝑒′ : ? CRun2

Γ ⊢𝑠 run 𝑒 ⇒ run [⟨ ? ⟩]𝑒′ : ?

Γ ⊢𝑠 𝑒1 ⇒ 𝑒′1 : 𝜏 ′ Γ, (𝑥 : ∀𝛽.𝜏1)𝑠 ⊢𝑠 𝑒2 ⇒ 𝑒′2 : 𝜏2 {𝛽} ⊆ Free(𝜏1) − Free(Γ)
CLet

Γ ⊢𝑠 let 𝑥 : 𝜏1 = 𝑒1 in 𝑒2 ⇒ let 𝑥 : ∀𝛽. 𝜏1 = Λ𝛽. [𝜏 ′ ⇒ 𝜏1]𝑒′1 in 𝑒′2 : 𝜏2

Figure 5. Translation from 𝜆𝐺◦ to 𝜆𝐶

6 Semantics of Cast Calculus
To complete the picture, we give the operational semantics
of the cast calculus.

Evaluation of the cast calculus employs the call-by-value
strategy. The notion of values is dependent on stages, so we
index a value by a stage 𝑠 , and write 𝑣𝑠 for stage-𝑠 values.

𝑢 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑒 | <𝑣1>
𝑣0 ::= 𝑢 | [ ? ]𝑢
𝑣1 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑣1 | 𝑣1 𝑣1 | <𝑣2> | run 𝑣1

| [𝜏]𝑣1 | let 𝑥 = 𝑣1 in 𝑣1𝑣1

(𝑠 > 1) 𝑣𝑠 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑣𝑠 | 𝑣𝑠 𝑣𝑠 | <𝑣𝑠+1> | ∼𝑣𝑠−1 | run 𝑣𝑠

| [𝜏]𝑣𝑠 | let 𝑥 = 𝑣𝑠 in 𝑣𝑠𝑣𝑠

The intuition behind this definition is that we are concerned
with the stage-0 computation only, and 𝑣𝑠 means it is a stage-
𝑠 term that does not have a stage-0 redex. Such a redex may
exist in a stage 𝑠 > 0 term, since it may contain a splice term.
For instance, (𝜆𝑥 : int . 𝑥) 3 is not a stage-0 value, but is
a stage-1 value, hence, <(𝜆𝑥 : int . 𝑥) 3> is a stage-0 value.
The term <(𝜆𝑥 : int . ∼𝑒) 3> is not a stage-0 value.

We use the following function 𝑢𝑛𝑏𝑜𝑥 to remove a cast
from a stage-0 value:

𝑢𝑛𝑏𝑜𝑥 𝑢 = 𝑢

𝑢𝑛𝑏𝑜𝑥 ( [ ? ]𝑢) = 𝑢

We define the call-by-value, operational semantics of 𝜆𝐶
in the small-step semantics.

Fig. 6 gives evaluation rules for non-cast terms, and Fig. 7
gives evaluation rules for cast terms.
The basic judgment in the semantics takes the form of:

Γ ▷ 𝑒1 ↩→𝑠 𝑒2 where Γ is a typing context, 𝑠 is a stage, and
𝑒1 and 𝑒2 are stage-𝑠 terms. As we have discussed in Sect. 3,
we need a context Γ to evaluate a cast term [𝜏]𝑒 , since, the
term being evaluated may be a (locally) open term in staged

calculi, and we need to typecheck such an open term in
cast calculi. We can compute the necessary typing context
Γ smoothly in the style of structural operational semantics
(SOS).

The evaluation rules in Fig. 6 are indexed by stages. The
stage-0 evaluation is similar to standard lambda calculi, while
the stage-𝑠 (𝑠 > 0) evaluation does not evaluate the term,
except for the spliced terms. For example, 𝜆𝑥 : 𝜏 . 𝑒 is a
value at stage 0, while we may possibly reduce it at stage 1
since 𝑒 may contain splice terms (Rule ELamI). For instance,
the term <𝜆𝑥 : 𝜏 . ∼ ((𝜆𝑦 : 𝜏 .𝑦) <𝑥>)> has a redex inside it.
On the other hand, (𝜆𝑥 : 𝜏 . 𝑒) 𝑣𝑠 is a redex at stage 𝑠 = 0
(EApp0), while it is a value at stage 𝑠 if 𝑒 is also a stage-𝑠
value.

The ERun0 rule shows how we evaluate a run term at
stage 0. Unlike the involved type systems using environ-
ment classifiers or contextual modal type theory, our type
system 𝜆𝐶 (and 𝜆𝐺◦) does not prevent an open code from
being an argument of a run term. We, therefore, need to
check at runtime if its value is a closed code before running
it. Dynamic checking for the closedness of generated code is
implemented in the latest version of BER MetaOCaml, which
combines static and dynamic checking. Namely, if the run
primitive takes as an argument a code which is statically
known to be closed, dynamic checking is not called. Oth-
erwise, dynamic checking is inserted into the code, and it
will be performed at runtime. Extending our work to formal-
ize the practice of the latest BER MetaOCaml would be an
interesting future work.
The ELet0 rule reduces a let-term as we expect. In the

substitution, we need to instantiate type variables 𝛽 with
appropriate concrete types. It is defined straightforwardly
except for the variable case 𝑥{𝜏}, shown below:

𝑥{𝜏1, · · · , 𝜏𝑛}[𝑥 := Λ𝛽1. · · · .Λ𝛽𝑛 .𝑣0]
:= 𝑣0 [𝛽1 := 𝜏1, · · · , 𝛽𝑛 := 𝜏𝑛]
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Γ, (𝑥 : 𝜏)𝑠 ▷ 𝑒 ↩→𝑠 𝑒′ 𝑠 > 0
ELamI

Γ ▷ 𝜆𝑥 : 𝜏 . 𝑒 ↩→𝑠 𝜆𝑥 : 𝜏 . 𝑒′
EApp0

Γ ▷ (𝜆𝑥 : 𝜏 . 𝑒) 𝑣0 ↩→0 𝑒 [𝑥 := 𝑣0]

Γ ▷ 𝑒1 ↩→𝑠 𝑒′1EAppI1
Γ ▷ 𝑒1 𝑒2 ↩→𝑠 𝑒′1 𝑒2

Γ ▷ 𝑒 ↩→𝑠 𝑒′EAppI2
Γ ▷ 𝑣𝑠 𝑒 ↩→𝑠 𝑣𝑠 𝑒′

Γ ▷ 𝑒 ↩→𝑠+1 𝑒′EBrackets
Γ ▷ <𝑒> ↩→𝑠 <𝑒′>

EEscape0
Γ▷ ∼<𝑣1> ↩→1 𝑣1

Γ ▷ 𝑒 ↩→𝑠 𝑒′EEscapeI
Γ▷ ∼𝑒 ↩→𝑠 ∼𝑒′

𝑣1 is closedERun0
Γ ▷ run <𝑣1> ↩→0 𝑢𝑛𝑏𝑜𝑥 𝑣1

Γ ▷ 𝑒1 ↩→𝑠 𝑒′1ERunI
Γ ▷ run 𝑒1 ↩→𝑠 run 𝑒′1

ELet0
Γ ▷ let 𝑥 : ∀𝛽.𝜏 = Λ𝛽.𝑣0 in 𝑒2 ↩→0 𝑒2 [𝑥 := Λ𝛽.𝑣0]

Γ ▷ 𝑒1 ↩→𝑠 𝑒′1ELetI
Γ ▷ let 𝑥 : ∀𝛽.𝜏 = Λ𝛽.𝑒1 in 𝑒2 ↩→𝑠 let 𝑥 : ∀𝛽.𝜏 = Λ𝛽.𝑒′1 in 𝑒2

Figure 6. Operational Semantics for 𝜆𝐶 : Non-cast terms

Γ ⊢0 𝑢𝑛𝑏𝑜𝑥 𝑣0 : 𝑏ECastB
Γ ▷ [𝑏]𝑣0 ↩→0 𝑢𝑛𝑏𝑜𝑥 𝑣0

Γ ⊢0 𝑢𝑛𝑏𝑜𝑥 𝑣0 : 𝜏ECastU
Γ ▷ [ ? ] ( [𝜏]𝑣0) ↩→0 [ ? ]𝑣0

Γ ⊢0 𝑢𝑛𝑏𝑜𝑥 𝑣0 : 𝜏 ′1 → 𝜏 ′2 𝜏1 → 𝜏2 ∼ 𝜏 ′1 → 𝜏 ′2 𝑧 is fresh
ECastF

[𝜏1 → 𝜏2]𝑣0 ↩→0 Γ ▷ 𝜆𝑧 : 𝜏1 . [𝜏2] ((𝑢𝑛𝑏𝑜𝑥 𝑣0) ( [𝜏1 ⇒ 𝜏 ′1]𝑧))

Γ ⊢0 𝑢𝑛𝑏𝑜𝑥 𝑣0 : ⟨𝜏 ′⟩ 𝜏 ∼ 𝜏 ′
ECastC

Γ ▷ [⟨𝜏⟩]𝑣0 ↩→0 <[𝜏 ′ ⇒ 𝜏] ∼ (𝑢𝑛𝑏𝑜𝑥 𝑣0)>
Γ ▷ 𝑒 ↩→𝑠 𝑒′ECastI

Γ ▷ [𝜏]𝑒 ↩→𝑠 [𝜏]𝑒′

Figure 7. Operational Semantics for 𝜆𝐶 : Cast terms

The right-hand side of this definition is an ordinary substitu-
tion for type variables, which is necessary in this definition,
since 𝑣0 may contain types that have free occurrences of the
type variable 𝛽𝑖 .

The rules in Fig. 7 shall be explained in detail below.
The evaluation rules, except (ECastI), define stage-0 eval-

uation for a cast term [𝜏]𝑣0 where 𝑣0 is already a stage-0
value. We have four cases depending on the type 𝜏 .

The ECastB rule is used when 𝜏 is a basic type 𝑏, in which
case we only have to check if 𝑣0 has the type 𝑏. Note that
𝑣0 may have free variables of stage 𝑠 > 0, hence we need a
typing context Γ built from the surrounding context.
The ECastU rule is used when 𝜏 is the any type ? . If 𝑣0

has another cast [𝜏], then we check it and eliminate it if the
test succeeds. If 𝑣0 has no cast, then [ ? ]𝑣0 is a value.

The ECastF rule is used when 𝜏 is a function type. It looks
complicated, but essentially it is the same as the rule in Siek

and Taha’s work, which 𝜂-expands 𝑣0 and splits one single
checking (for the type 𝜏1 → 𝜏2) into two checking (one for
𝜏 ′1, and the other for 𝜏2).

The ECastC rule is used when 𝜏 is a code type. We de-
signed this rule in the same spirit as the ECastF. Namely,
we first check if 𝑢𝑛𝑏𝑜𝑥 𝑣0 has a type under the context Γ.
If it succeeds and returns a type that is consistent with the
expected type, we insert another, simpler cast, and continue
the evaluation.

The ECastI rule defines the evaluation for cast terms if its
argument is not a value at the stage 𝑠 .

We remark that if there is no applicable rule for a cast-term,
the term gets stuck, which means a runtime error.

Note that there is no rule in the form Γ▷[𝛽]𝑣0 ↩→0 𝑒 where
𝛽 is a type variable. Namely, the term [𝛽]𝑣0 is stuck. We
may encounter such a term during the evaluation since we
evaluate under the Λ𝛽-binder (see the ELetI rule). However,
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type checking caused by it must fail, since there is no stage-0
value that has no free stage-0 variables5 and has type 𝛽 .

For the operational semantics and the type system in the
previous section, we have the subject reduction property in
the following form.

Theorem 6.1 (Subject Reduction). Suppose Γ ⊢𝑠 𝑒 : 𝜏 is
derivable in 𝜆𝐶 , and Γ ▷ 𝑒 ↩→𝑠 𝑒′ where Γ contains no stage-
0 variables, and Free(Γ, 𝜏) is empty.6 Then Γ ⊢𝑠 𝑒′ : 𝜏 is
derivable in 𝜆𝐶 .

Proof outline. We can prove the theorem by induction on
Γ ▷ 𝑒 ↩→𝑠 𝑒′. The case for 𝛽-reduction (the EApp0 rule in
Fig. 6) is proved by the substitution lemma as usual. The case
for the bracket-splice reduction (EEscape0) is easy. The case
for the run reduction (ERun0) is the most complicated, but
since 𝑣1 is closed, we can adjust the stages of all subterms
of 𝑣1. The case for the let reduction (ELet0) also looks com-
plicated, but it is just an instance of System F-style redex
(where type abstraction and type application are explicitly
performed), and is shown to be type preserving. □

The calculus 𝜆𝐶 does not have the progress property, since
the evaluation in 𝜆𝐶 sometimes gets stuck due to the failure
of dynamic type checking. We can define a variant of 𝜆𝐶 in
which stuck terms in 𝜆𝐶 evaluate to the constant wrong, and
the evaluation propagates wrong. Then, the variant would
enjoy the modified progress property in the following form:
every closed, typable term at stage 0 is either a stage-0 value
or makes progress in evaluation (possibly to wrong).

7 Examples and Discussion
We show a few programming examples of our calculus in
this section. Whereas we give the formal account to the foun-
dational calculus in the previous sections, we make it more
practical by extending it with familiar data structures such
as integers, and also typecase, which allows the dispatching
on the type of a given value if its type is not fully specified.

7.1 Typecase in Program Generation
The syntax of the term is extended with a typecase term as
follows:

tcase 𝑒0 with 𝑥1 : 𝜏1 → 𝑒1 | · · · | 𝑥𝑛 : 𝜏𝑛 → 𝑒𝑛 end

It is abbreviated as tcase 𝑒0 with 𝑥 : 𝜏 → 𝑒 end. We as-
sume that the last case 𝑥𝑛 : 𝜏𝑛 → 𝑒𝑛 is the default case, which
is realized by setting 𝜏𝑛 = ? in our calculus.
To evaluate this term, we first evaluate 𝑒0 to obtain a

value 𝑣 , then compute its type 𝜏0 (under the suitable typing
context). If 𝜏0 ∼ 𝜏1 holds, then the first case is selected and the
above term one-step-reduces to 𝑒1. Otherwise, we continue
traversing the cases until we reach a successful case. (Since
5We can easily show that, if 𝑒 is closed and ▷𝑒 ↩→𝑒′ , then 𝑒′ is closed.
6This condition is necessary since we do not have a cast rule for a free type
variable. Note that the Let’ rule in 𝜆𝐶 makes type variables bound by ∀, so
there is no loss of expressivity by this condition.

we assume that a typecase term has the default case, we will
eventually succeed.)

We omit the formal typing rule, the translation rules and
the evaluation rules for typecase in this paper, but they are
easily formulated.

7.2 Stage Polymorphism, Partially
Below we show an example in the MetaOCaml-like notation:

let add :(?->?->?) a:? b:? =
tcase a with
| x:int ->

tcase b with
| y:int -> x+y
| y:<int > -> < x + ~y >
| y:? -> false
end

| x:<int > ->
tcase b with
| y:int -> < ~a + b >
| y:<int > -> < ~a + ~b >
| y:? -> false
end

| x:? -> false
end

The above function receives two arguments of type Any ( ? )
and its return type is also Any. When called on two argu-
ments, it dispatches on the types of the two arguments 𝑎 and
𝑏: if both are integers, it adds them and returns the result.
If both are codes of integers, it builds a code to add two in-
tegers. It also handles the case where one argument is an
integer, but the other is a code of an integer, provided that
an integer value can be lifted to a later stage. If any of the
arguments is not an integer or a code of an integer, it returns
false.

We can test the function with different types of arguments:
add <3+5> <7*2> --> <(3+5) +(7*2) >
add (3+5) <7*2> --> <8 +(7*2) >
add (3+5) (7*2) --> 22

This function shows that gradual typing can be used to
build a partially staged polymorphic code that can work on
both integers and the code of integers. This simple function
is useful to convert a more complicated non-staged program
into a staged program automatically:

let foo:(t -> t -> t) a:t =
add (mul a a) (add a (const 1))

Assuming that mul and const are similarly defined, the above
function foo can be used to compute an integer, or to build a
code that computes an integer.

In fact, we canmake it recursive so that it works more than
two stages (code of code of integers, and so on). Whereas
this kind of programming using the type ? is more frag-
ile than the calculi with the built-in mechanism for stage-
polymorphism, we can still guarantee a certain safety prop-
erty. For the above example, the type ? appears in the
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present stage computation only, hence program generation
may fail, but if it succeeds, the generated code is statically
typed.

7.3 Discussion
Let us discuss practical use cases of our calculus 𝜆𝐺◦.
One of the most promising applications of our language

is to have gradual typing at the present stage (stage 0) only,
whichmeans that the stage 𝑠 (for 𝑠 > 0) employs static typing.
Then, the cast operation is not invoked during the execution
of generated programs, except for the meaningless cast [ ? ]𝑒 .
When generating codes, it is sometimes useful to be freed
from the static type discipline, for instance, we generate
code from input files that include the specification of types
in the generated code. In such a case, we want to generate an
efficient specialized function to manipulate the data whose
type is given only as an input of the code generator. Although
generic programming may solve such issues, it is helpful to
write a dynamically typed program generator that generates
statically typed programs. In our calculus, we can ensure that,
if the source program contains stage-0 casts only, generated
codes do not have to perform dynamic type checking at all,
except for the spurious checking caused by [ ? ]𝑒 .
The above discussion applies to the stage-𝑛 code to have

gradual types, if our final code is generated at stage 𝑛 + 1.
In general, we can statically check in our calculus whether
dynamic type checking is necessary at stage 𝑛.

It also makes sense to generate gradually typed code from
gradually or statically typed program generators. Today,
we see a growing interest in dynamically typed program-
ming languages that allow some form of program genera-
tion, including Ruby and JavaScript/TypeScript. For instance,
JavaScript (and TypeScript) has template literals which are
equipped with the quasi-quotation (the same as brackets in
MetaML) and anti-quotation (the same as splices) mecha-
nisms. Unfortunately, it uses the string datatype to repre-
sent programs as codes, which provides no guarantee for
syntactic correctness (well-scopedness) and well-typedness.
Even worse, they cannot be nested; if we use nested quasi-
quotations and anti-quotations, we would get ill-formed or
ill-scoped programs as strings. As the program-generation
features in dynamically typed languages tend to rely on
the notorious programs-as-strings paradigm, reformulating
them based on our work would be promising future work.

8 Related Work
Program generation, or metaprogramming in general, has
been studied in Lisp and Scheme communities for years,
which has had a great influence on other studies. Efforts
have been made to guarantee desirable properties such as
hygiene (keeping lexical scope) statically. [4, 5] However,
to state static properties without a type system is hard, and
most studies focus on dynamic checking for properties such

as contracts. As far as the authors know, there is no work
on combining dynamic typing and static typing for metapro-
gramming, and take advantage of both worlds.
TypeScript may be considered a language that combines

both worlds.7 In fact, TypeScript has a mechanism for gener-
ating a program as a string, and running it as a program by
the eval operator. As is well known, the string representation
has a serious problem: generated strings may represent a
syntactically incorrect program, let alone a well-scoped or
well-typed program. Our work may be considered a refor-
mulation of TypeScript’s metaprogramming feature with a
solid foundation.
Taha applied the ’staged interpreter’ technique to an in-

terpreter whose object language is a Lisp-like dynamically
typed language. [20] He discussed how to estimate the type
of a term as much as possible, and gave a few optimizations
based on it. Although his setting is rather different from ours,
it is interesting to relate these two works.

Gradual typing has been intensively studied and extended
in various ways in the last decade. Recent work by Igarashi
et al. [7] reported a nice formulation in the presence of para-
metric polymorphism, and it is an interesting future work
to extend our work towards more expressive type systems.

Type systems for staged programming languages tend to
be rather complicated, if one desires to guarantee the safety
properties statically as in the MetaML approach. [22, 23]. For
instance, allowing open code manipulation and guaranteeing
safety of the run term (closedness of its argument) have been
a major topic, and a number of type systems have been
proposed. Yet, we are not in a fully satisfactory state for this
study, since practical staged programs need computational
effects for efficiency reasons, that would complicate the type
system further, leading to intractable type systems. We think
that combining static and dynamic typing in a single system
can be a clue for the problem, and our calculus 𝜆𝐺◦ is a first
step for it.

9 Conclusion
We have designed 𝜆𝐺◦, a staged gradual typed calculus with
ML-style let-polymorphism. It combines two fundamental
calculi: one is Siek and Taha’s gradual type system 𝜆𝐺 and the
other is Davies’ linear-time temporal logic 𝜆◦. We presented
the calculus, a type system, a translation to a cast calculus 𝜆𝐶 ,
and the operational semantics of 𝜆𝐶 . Altogether, we can run
terms in 𝜆𝐺◦ to dynamically check the typability of possibly
open terms with the help of our refined evaluation rules.
We believe that the work presented in this paper con-

stitutes a solid first step towards merging two paradigms
seamlessly. Due to exploratory purposes, we combined the
minimal calculi for both sides, yet, found a few interesting is-
sues and solutions for them. It is left for future work to extend

7In practice, TypeScript programs of type Any are not typechecked at run-
time, but it is doable to typecheck such programs at runtime.
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our calculus to various directions, including set-theoretic
types such as union and intersection [3], computational ef-
fects [9, 13, 24], runtime code generation including the safe
run primitive [1, 21], analytical metaprogramming [10, 19],
and parametric polymorphism [7].
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