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Abstract
Staged computation is a means to achieve maintainability

and high performance simultaneously, by allowing a pro-

grammer to express domain-specific optimizations in a high-

level programming language. Multi-stage programming lan-

guages such as MetaOCaml provide a static safety guarantee

for generated programs by sophisticated type systems pro-

vided that program generators have no computational effects.

Despite several studies, it remains a challenging problem to

design a type-safe multi-stage programming language with

advanced features for computational effects.

This paper introduces a two-stage programming language

with algebraic effects and handlers. Based on two novel prin-

ciples ’handlers as future-stage binders’ and ’handlers are

universal’, we design a type system and prove its soundness.

We also show that our language is sufficiently expressive to

write various effectful staged computations including multi-

level let-insertion, which is a key technique to avoid code

duplication in staged computation.

CCS Concepts: • Theory of computation → Control
primitives; Type structures; • Software and its engi-
neering→ General programming languages.

Keywords: code generation, algebraic effects and handlers,

scope extrusion, type soundness

ACM Reference Format:
Kanaru Isoda, Ayato Yokoyama, and Yukiyoshi Kameyama. 2024.

Type-Safe Code Generation with Algebraic Effects and Handlers.

In Proceedings of the 23rd ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (GPCE ’24),
October 21–22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3689484.3690731

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1211-1/24/10

https://doi.org/10.1145/3689484.3690731

1 Introduction
Staged computation is a means to achieve high performance

and high modularity simultaneously, and has been applied

to generate highly efficient code in various application do-

mains. While other similar technologies such as partial eval-

uation and compilation generate programs fully or semi-

automatically, staged computation allows a human program-

mer to control the process of program generation. This aspect

has a merit that custom, domain-specific optimizations can

be exploited, but also has a demerit that one can easily gener-

ate ill-structured, ill-scoped or ill-typed programs. The scope

extrusion problem refers to the problem that well-scoped

programs evaluate to ill-scoped (or wrongly scoped) pro-

grams. To prevent these problems, static guarantee for safety

properties is strongly desired.

The pioneering works in staged computation [4, 5] gave

type systems based on modal logic, and proved type sound-

ness for them, which subsume well-scopedness and well-

typedness of generated programs. These works have practi-

cal impacts, for example, the first design of MetaOCaml was

based on a variant of Taha and Nielsen’s type system[19]

that is a descendant of these pioneering type systems. Unfor-

tunately, all of these type systems suffer from the problem

that they do not allow computational effects in program

generators, while most practical multi-stage programs need

computational effects to handle exceptions, memoize codes,

or avoid the code-duplication problem.

Statically guaranteeing safety properties for generated

programs in the presence of computations effects is recog-

nized as a hard problem. While several solutions have been

proposed [7, 10, 14, 20], all these works focused on one par-

ticular set of effect-raising primitives such as shift/reset,

shift0/reset0, and reference cells, and designed dedicated

type systems. They cannot be used to solve a general solu-

tion for the problem, where various computational effects

are used in staged programs.

Algebraic effects and handlers [16, 17] have become a

standard tool for expressing various computational effects

uniformly and modularly. Invented in an algebraic theory,

they have become practical, and a few main-stream pro-

gramming languages including OCaml
1
have implemented

them. It is natural to ask if one can design a typed calculus

1
https://ocaml.org

53

https://orcid.org/0009-0000-5810-2745
https://orcid.org/0009-0003-0284-6675
https://orcid.org/0000-0002-2693-5133
https://doi.org/10.1145/3689484.3690731
https://doi.org/10.1145/3689484.3690731


GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Kanaru Isoda, Ayato Yokoyama, and Yukiyoshi Kameyama

for staged computation with algebraic effects and handlers,

which enjoys type soundness.

This paper presents a typed two-stage programming lan-

guage where algebraic effects and handlers can be used for

program generation, and proves type soundness for it.

An important ingredient of our type system is a refined
environment classifier [10] (classifier for short), which is a

refinement of an environment classifier [19]. A classifier rep-

resents a lexical scope of generated variables, and the eigen-

variable condition of a classifier implies well-scopedness.

Our design principles are two-fold: The first one is the

“handlers as future-stage binders” principle, which means

that an algebraic effect handler should be treated as a binder

for a future-stage (generated) variable: when we use an alge-

braic handler, it may insert a code-level binder at the place

of the handler, and the handled expression must be aware of

this binder
2
. Hence, to prepare for this possibility, the typing

rule for with-handle must introduce a new classifier corre-

sponding to the (possibly generated) lexical scope, just like

the code-level lambda abstraction does. The second one is the

“handlers are universal” principle, which simply means that

a handler type should be universally quantified by classifiers.

This universality is necessary since handlers are first-class

values (they may be stored or passed to a function) so that

the definition of a handler cannot know the classifier when it

is used. By virtue of these principles, our type system enjoys

the type soundness property, which is, to our knowledge,

the first such result for the staged calculus with algebraic

effects and handlers.

Our leading example is nested let-insertion, an important

technique to avoid duplicated code in generated programs.

We show this technique can be implemented in our calculus.

The same problem was addressed by Kiselyov [9], using a

dedicated primitive that dynamically inserts let expressions.

The contribution of this paper can be summarized as fol-

lows:

• We propose two principles to soundly formulate han-

dlers in staged calculi.

• We design a two-stage language with algebraic effects

and handlers, and a type system for it, based on the

two principles.

• We show that this language is sufficiently expressive

by showing various programming examples.

• We prove that type soundness of our type system holds.

The rest of this paper is organized as follows: Section 2 in-

formally gives a few programming examples in our language,

and explains the issues addressed in this paper. Section 3

presents our language for staged computation with algebraic

effects and handlers. Section 4 gives a type system for it, and

Section 5 gives a few examples of typing. Section 6 states

2
Our principle has nothing to do with the lexically-bound algebraic handlers

[1], which introduce lexical scopes for operations. A handler in our calculus

has a dynamic extent.

our main theorems and several key lemmas to ensure type

soundness of our calculus. In Section 7, we compare our

work with related work and Section 8 concludes the paper.

2 Programming Examples
We will show several examples in our calculus that illustrate

staged computation with algebraic effects and handlers.

2.1 Basics
Our calculus is based on the fine-grain call-by-value calcu-

lus [12], which distinguishes values from computations, for

instance:

Values: 3, true, 𝜆𝑥 . 𝑥 + 5
Computations: return 3, 3 + 5, let 𝑥 ← 3 + 5 in 𝑥 + 5

if true then return 0 else 2 ∗ 3

A value 𝑉 is turned into a computation return 𝑉 , and only

values can be arguments of primitive operators such as addi-

tion.

2.2 Staged Programs
Since Lisp, most programming languages for staged compu-

tation have been using Quasi-quotation for building code

expressions, while a few others use Code combinators, and

we use the latter style.

The following examples perform the same computation

in two styles:

Quasi-quotation: let 𝑥 ← ⟨3⟩ in ⟨∼𝑥 ∗ 5⟩
Code combinator: let 𝑥 ← ⟨3⟩ in 𝑥 ∗ ⟨5⟩

The first line uses quasi-quotation where ⟨𝑒⟩ is a code ex-
pression which, when executed, generates a code, and ∼𝑒′

splices the value of 𝑒′ (which should be a code value) into

the surrounding code. It evaluates to the code ⟨3 ∗ 5⟩.
The second line has no splice operators, and instead uses

a code combinator ∗, which is a staged variant of the multi-

plication operator. It takes two arguments ⟨3⟩ and ⟨5⟩, and
builds a code ⟨3 ∗ 5⟩. The code-combinator style is used in

a few languages such as Scala LMS (lightweight modular

staging).

The staged version of a binder is more involved:

Quasi-quotation: ⟨𝜆𝑥 . 𝑥 ∗ 5⟩
Code combinator: 𝜆𝑥. 𝑥 ∗ ⟨5⟩

On the second line, the underlined lambda is the code com-

binator for abstraction, and the above examples evaluates to

⟨𝜆𝑥1. 𝑥1 ∗ 5⟩ where 𝑥1 is a generated variable.

Our calculus uses code combinators since it is more con-

venient to express additional constraints about the lexical

scope for the future-stage binders. This choice is not essential

from the viewpoint of expressivity.
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2.3 Algebraic Effects and Handlers
Algebraic effects and handlers [16, 17] are becoming popular

among researchers and practitioners in programming lan-

guages. Their strength lies in their ability to express various

user-defined computational effects such as state, exception,

non-determinism, and resumption uniformly and modularly.

Let us define handlers 𝐻id, 𝐻exc, and 𝐻nondet as follows:

𝐻id := {return 𝑥 ↦→ return 𝑥}
𝐻exc := {raise 𝑥 𝑘 ↦→ return 𝑥} ⊎ 𝐻id

𝐻nondet := {choose 𝑥 𝑘 ↦→ throw 𝑘 true; throw 𝑘 false} ⊎ 𝐻id

The handler 𝐻id does nothing, while 𝐻exc handles the op-

eration raise and can be used as follows:

with 𝐻exc handle let 𝑥 ← do raise 5 in 3 + 𝑥
{ return 5

where with ℎ handle𝑀 installs a handler ℎ, and evaluates

𝑀 while operations invoked in𝑀 will be handled by ℎ.

𝐻nondet handles the operation choose. When choose is

called, its first parameter 𝑥 is bound to its actual argument,

and the second parameter 𝑘 is bound to the delimited contin-

uation (the evaluation context) up to the nearest handler that

handles the invoked operation. The delimited continuation

bound to 𝑘 is restored by throw. Since choose calls 𝑘 twice

for different arguments, it has the effect of non-deterministic

choice:

with 𝐻nondet handle
if true then print 3 else print 5

with 𝐻nondet handle
let 𝑥 ← do choose () in if 𝑥 then print 3 else print 5

While the first code will print 3 only, the second one will

print 3 and 5.

2.4 Let-Insertion
Computational effects are useful, and sometimes indispens-

able, to generate concise and efficient programs. Let-insertion

is a technique to avoid the code-duplication problem, that

can be implemented by algebraic effects and handlers:

𝐻ins := {insert 𝑥 𝑘 ↦→ let 𝑦 ← 𝑥 in throw 𝑘 𝑦} ⊎ 𝐻id

When do insert ⟨3 + 5⟩ is evaluated, 𝑘 is bound to the de-

limited continuation, 𝑥 is bound to ⟨3 + 5⟩, and the body

of insert is evaluated. Then, it inserts a let-expression at

the place where the handler has been installed, and restores

the delimited continuation with the argument 𝑦. Hence, the

surrounding evaluation context and the let-expression are

swapped.

To understand how it works, consider the expression:

let 𝑥 ← return ⟨fact 10⟩ in (𝜆𝑦.𝑦 ∗ 𝑦) 𝑥

where fact computes the factorial of its argument. It eval-

uates to ⟨(fact 10) ∗ (fact 10)⟩, which has duplicated code.

We can use the above handler to avoid it:

with 𝐻ins handle
let 𝑥 ← do insert ⟨fact 10⟩ in (𝜆𝑦.𝑦 ∗ 𝑦) 𝑥

This expression evaluates to a code without duplication:

⟨let 𝑦1 ← fact 10 in 𝑦1 ∗ 𝑦1⟩.
The above example shows a potential risk for scope extru-

sion. Namely, if the code to be inserted (fact 10 in the above

example) contains a locally-bound variable, let-inserting

such a code would lead to an open code. For instance, the

following code:

with 𝐻ins handle
𝜆𝑧. let 𝑥 ← insert ⟨𝑧 + 10⟩ in (𝜆𝑦.𝑦 ∗ 𝑦) 𝑥

would evaluate to ⟨let 𝑦1 ← 𝑧1 + 10 in 𝜆𝑧1. 𝑦1 ∗ 𝑦1⟩, which
does not compile. This is the scope extrusion problem and

our type system rules out such a program.

2.5 Multiple Let-Insertions
We sometimes need multiple destinations of let-insertion.

Consider the following code:

⟨for 𝑖 = 1 to 𝑁1

for 𝑗 = 1 to 𝑁2

𝑎.(𝑖𝑑𝑥) ← 𝑒⟩

where 𝑎.(𝑖𝑑𝑥) dereferences the 𝑖𝑑𝑥th element of an array

𝑎. If the expression 𝑒 is closed, we can let-insert it outside

of the two for-loops, but if it contains 𝑖 freely but no 𝑗 , we

should let-insert it to the place between the two for-loops.

We can easily mimic this behavior by handlers as:

with 𝐻ins1 handle for 𝑖 = 1 to 𝑁1

with 𝐻ins2 handle for 𝑗 = 1 to 𝑁2

let 𝑦 ← do insertN ⟨𝑒⟩ in
𝐴𝑟𝑟𝑎𝑦𝐴𝑠𝑠𝑖𝑔𝑛(⟨𝑎⟩, ⟨𝑖𝑑𝑥⟩, 𝑦)

where 𝐴𝑟𝑟𝑎𝑦𝐴𝑠𝑠𝑖𝑔𝑛 is a code combinator for array assign-

ment. We assume that, for 𝑁 = 1, 2, 𝐻𝑖𝑛𝑠𝑁 handles the oper-

ation insertN. On the third line, we set 𝑁 = 1 if 𝑒 has no 𝑖

and 𝑗 freely, and 𝑁 = 2 if 𝑒 has 𝑖 but no 𝑗 freely. It is tedious

and error-prone for a human to check these constraints, and

this is the point where our type system helps.

Oishi and Kameyama [14] used the control operators shift0
and reset0 [3] to implement nested let-insertion as:

reset0 (for 𝑖 = · · ·
reset0 (for 𝑗 = · · ·
𝐴𝑟𝑟𝑎𝑦𝐴𝑠𝑠𝑖𝑔𝑛(⟨𝑎⟩, ⟨𝑖𝑑𝑥⟩, 𝑀)))

We set𝑀 as shift0 𝑘2 → let 𝑦 ← ⟨𝑒⟩ in throw 𝑘2 ⟨𝑦⟩ if we
insert a let expression between the two for-loops, while𝑀
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should be shift0 𝑘2 → shift0 𝑘1 → let 𝑦 ← ⟨𝑒⟩ in · · · if
we insert one to the outermost place.

3
Namely, they need to

iterate shift0s where the number of shift0s varies depending
on the destination of let-insertion, which is clearly tedious.

Even worse, the number must be known statically, while the

number of reset0s changes dynamically.
4
On the contrary,

we can write the above example easily, thanks to the named
feature of algebraic effects and handlers.

However, going from nameless control operators (shift0
and reset0) to named ones brought another technical issue.

Consider the following program:

with 𝐻ins1 handle
with 𝐻ins2 handle
𝑀

If the body𝑀 is insert2 (insert1 𝐶), the above term reduces

to ⟨let 𝑦1 ← 𝐶 in let 𝑦2 ← 𝑦1 in 𝑦2⟩, which is not problem-

atic. However, if the body𝑀 is insert1 (insert2 𝐶), the term
reduces to ⟨let 𝑦1 ← 𝑦2 in let 𝑦2 ← 𝐶 in 𝑦2⟩, which has a

free variable 𝑦2, causing a problem. Our type system must

distinguish these two cases appropriately.

2.6 Other Useful Effects in Staged Programs
We can use other effects, such as non-deterministic choices

and exceptions, in staged programs. For instance, we can

define the handler 𝐻col:

𝐻col := {emit 𝑥 𝑘 ↦→
let 𝑦 ← throw 𝑘 𝑥 in return cons(𝑥,𝑦),

return 𝑥 ↦→ return nil}

where cons is the list-cons operation and nil is the empty list.

We can use it to collect all emitted values into a list:

with 𝐻col handle
do emit 1;do emit 2;do emit 3

{ (1, 2, 3)

By combining it with non-deterministic choices, we can

generate a list of differently generated programs as follows:

with 𝐻col handle
with 𝐻nondet handle
let 𝑥 ← do choose () in
let 𝑦 ← codegen 𝑥 in
do emit 𝑦

{ (⟨code1⟩, ⟨code2⟩)

where codegen is a code-generating function, which gener-

ates a different code depending on its argument.

3
By iterating shift0, we can reach at the outermost reset0.

4
Note that the number of reset0s is not the de Bruijn index, since there is

no built-in mechanism to adjust the number of shift0s when an expression

moves to the scope of reset0.

2.7 Scope Extrusion Problem
We have already mentioned that using algebraic effects and

handlers in staged programs has a risk of scope extrusion,

which means that a generated code may have free variables,

leading to a compiler error. This risk may show up for let-

insertion, exception, collecting results, states (for memoizing

open codes), and many other effects (but non-deterministic

choices alone). The simplest example is shown below:

with 𝐻exc handle 𝜆𝑦. do raise ⟨𝑦⟩
{ ⟨𝑦1⟩

The expression before execution is closed, but it evaluates

to ⟨𝑦1⟩, a code with a free variable 𝑦1. Avoiding the scope

extrusion problem has been recognized as a hard problem in

staged languages, and the subject of this paper is to solve it

in the presence of algebraic effects and handlers.

3 Calculus
In this section, we present a calculus for two-stage program-

ming with algebraic effects and handlers, leaving its type

system to the next section.

3.1 Syntax
Fig. 1 defines the syntax of our calculus. It is a mixture of
<NJ> by Kiselyov et al. [10], and algebraic effects and han-

dlers [8, 17]. We organize them based on the fine-grain call-

by-value [12], which syntactically distinguishes values from

computations.

Values

𝑉 ,𝑊 F 𝑥 | 0𝐾 | 𝜆𝑥. 𝑀 | 𝜅𝑥. 𝑀 | ⟨𝑀1⟩
Computations

𝑀, 𝑁 F 𝑛𝐾 𝑉1 · · ·𝑉𝑛 | 𝑉 𝑊 | throw 𝑉 𝑊

| if 𝑉 then𝑀 else 𝑁 | return 𝑉
| let 𝑥 ← 𝑀 in 𝑁 | do op 𝑉

| with 𝐻 handle𝑀 | 𝜆𝑥. 𝑀 | 𝜆𝑥. 𝑀
Handlers

𝐻 F {return 𝑥 ↦→ 𝑀} | 𝐻 ⊎ {op 𝑥 𝑘 ↦→ 𝑀}
Level-1 Values

𝑉 1,𝑊 1 F 𝑥 | true | false | 𝜆𝑥. 𝑀1

Level-1 Computations

𝑀1, 𝑁 1 F 𝑉 1𝑊 1 | if 𝑉 1 then𝑀1 else 𝑁 1 | return 𝑉 1

| let 𝑥 ← 𝑀1 in 𝑁 1

Figure 1. Syntax

Values are either a variable, a constant
0𝐾 , lambda ab-

straction, a continuation, or a code value. The continuation

𝜅𝑥. 𝑀 is similar to lambda abstraction, but we need a special
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treatment for continuations. The superscript 1 in the code

value ⟨𝑀1⟩ indicates that the subexpression is a future-stage

(or level-1) computation. Computations are mostly standard

in the standard lambda calculus except those for algebraic

effects and handlers and for staged programs, which we will

explain shortly.

For staged programs, our calculus uses code combinators,
which are expressed as underlined constants given later and

the underlined lambda abstraction 𝜆𝑥. 𝑀 . The latter builds

a code for a lambda abstraction. The form 𝜆𝑦. 𝑁 is used as

an intermediate term only, and should not be used in the

source term. It will be explained in the operational semantics.

Level-1 values and computations are those used at the future

stage. For simplicity, we restrict that level-1 terms should not

contain code combinators or effectful computations. Thus,

the set of level-1 values (computations, resp.) forms a proper

subset of values (computations, resp.).

For algebraic effects and handlers, we have two major con-

structs: the first one is a computation do op 𝑉 , which calls

an operation op with an argument 𝑉 , and the second is a

handler 𝐻 . Each handler contains exactly one value handler
{return 𝑥 ↦→ 𝑀}, that specifies the return value when the

handled computation returns without calling an operation.

A handler can specify the behavior of an arbitrary number

of operations {op 𝑥 𝑘 ↦→ 𝑁 }, where we assume that the op-

eration names op are mutually distinct. When an operation

is called (namely, an effect is raised), its argument is bound

to 𝑥 , the continuation
5
up to the handler is captured and

bound to 𝑘 , and the corresponding behavior of the operation

specified by the handler is invoked.

For technical reasons, we need special treatment for a

captured continuation syntactically: 𝜅𝑥. 𝑀 is a continuation,

and throw 𝑉 𝑊 is a resumption of a continuation𝑉 against

an argument𝑊 .

The rest of the syntax is mostly standard. As our calculus

is based on the fine-grain call-by-value calculus, we have

return 𝑉 , which turns a value 𝑉 to an atomic computation,

and let 𝑥 ← 𝑀 in 𝑁 , which represents a sequential compu-

tation of𝑀 and 𝑁 where 𝑥 is bound to the value of𝑀 .

The constants
𝑎𝐾 of arity 𝑎 are given by:

0𝐾 F true | false 1𝐾 F cbool 2𝐾 F @ 3𝐾 F cif

where underlined constants are code combinators.We extend

the set of constants if necessary.

3.2 Operational Semantics
Fig. 2 defines the small-step operational semantics of the

calculus. The relation𝑈 ;𝑀 { 𝑈 ′;𝑁 represents a one-step

reduction from a computation𝑀 to 𝑁 . The additional infor-

mation𝑈 is a name heap, which tracks the use of future-stage
variables, namely, variables in a generated code.

5
Since the continuation captured by an algebraic effect is delimited to the

corresponding occurrence of the handlers, it is called a delimited continua-

tion. In this paper, we often call it a continuation when there is no confusion.

Most rules are standard if we ignore name heaps, which

do not change except the rule E-CAbs.

The rules E-Ret and E-Do reduce the with-handle term

with 𝐻 handle𝑀 . The former is used when the handled

term 𝑀 is a value, namely, no operations have been called

during the evaluation of𝑀 . Then, the value handler in 𝐻 is

called. The latter is used when an operation defined in 𝐻 is

called during the evaluation of𝑀 . The rule is the standard

one for deep handlers.

The rules E-CAbs and E-IAbs describe how the code-

combinator for lambda abstraction is reduced. The former is

used when 𝜆𝑥 .𝑀 is evaluated. We generate a future-stage

variable 𝑦 and substitute ⟨return 𝑦⟩ for the present-stage
variable 𝑥 , and evaluate its body where the intermediate term

is represented by doubly-underlined abstraction. The name

store 𝑈 is used to ensure the freshness of 𝑦. The rule E-IAbs

is used when the evaluation of the body of abstraction is

finished with the value ⟨𝑀1⟩. Then, it builds a code of an
abstraction and returns it.

Fig. 3. defines the semantics of constants.

Below we show a concrete examples of a reduction se-

quence which begins with an empty name heap (denoted by

·) and a computation:

·; 𝜆𝑥. cif 𝑥 ⟨false⟩ ⟨true⟩
{ 𝑦; 𝜆𝑦. cif ⟨return 𝑦⟩ ⟨false⟩ ⟨true⟩
{ 𝑦; 𝜆𝑦. return ⟨let 𝑥 ← return 𝑦 in

if 𝑥 then false else true⟩
{ 𝑦; return ⟨𝜆𝑦. let 𝑥 ← return 𝑦 in

if 𝑥 then false else true⟩

At the second step in the sequence, a future-stage variable

𝑦 has been generated, and the final result is the code value

⟨𝜆𝑦. · · ·⟩.

4 Type System
We present a type system for our calculus with the explana-

tion of our design principles.

4.1 Classifiers
We will extensively use a classifier to track future-stage vari-

ables to prevent scope extrusion. The notion of classifiers was

originally proposed by Taha and Nielsen [19] as an abstract

representation of a set of future-stage variables
6
. Kiselyov et

al. [10] refined it, and found that the eigen-variable condition

in mathematical logic can be used to express the lexical scope

of a future-stage variable, hence, scope extrusion is detected

as a violation. The set of classifiers is equipped with a partial

6
Since scope extrusion may occur only for generated future-stage variables,

we do not have to tack ordinary variables (variables used at the present

stage).
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𝑈 ;𝑀 { 𝑈 ′;𝑁

E-ConstApp 𝑈 ;
𝑛𝐾 𝑉1 · · ·𝑉𝑛 { 𝑈 ;𝑀, where

𝑛𝐾 𝑉1 · · ·𝑉𝑛 {const 𝑀

E-True 𝑈 ; if true then𝑀 else 𝑁 { 𝑈 ;𝑀

E-False 𝑈 ; if false then𝑀 else 𝑁 { 𝑈 ;𝑁

E-App 𝑈 ; (𝜆𝑥. 𝑀)𝑊 { 𝑈 ;𝑀 [𝑊 /𝑥]
E-Throw 𝑈 ; throw (𝜅𝑥. 𝑀)𝑊 { 𝑈 ;𝑀 [𝑊 /𝑥]
E-Seq 𝑈 ; let 𝑥 ← return 𝑉 in 𝑁 { 𝑈 ;𝑁 [𝑉 /𝑥]
E-Ret 𝑈 ;with 𝐻 handle return 𝑉 { 𝑈 ;𝑀 [𝑉 /𝑥], where (return 𝑥 ↦→ 𝑀) ∈ 𝐻
E-Do 𝑈 ;with 𝐻 handle E[do op 𝑉 ] { 𝑈 ;𝑀 [𝑉 /𝑥,𝑊 /𝑘],

where op ∉ bl(E), (op 𝑥 𝑘 ↦→ 𝑀) ∈ 𝐻 , and𝑊 = 𝜅𝑤.with 𝐻 handle E[return𝑤]
E-CAbs 𝑈 ; 𝜆𝑥. 𝑀 { 𝑈 ,𝑦; 𝜆𝑦.𝑀 [⟨return 𝑦⟩/𝑥], where 𝑦 ∉ 𝑈

E-IAbs 𝑈 ; 𝜆𝑦. return ⟨𝑀1⟩ { 𝑈 ; return ⟨𝜆𝑦.𝑀1⟩
E-Lift 𝑈 ; E[𝑀] { 𝑈 ′; E[𝑁 ], where𝑈 ;𝑀 { 𝑈 ′;𝑁

Evaluation contexts E F [ ] | let 𝑥 ← E in𝑀 | with 𝑉 handle E | 𝜆𝑦. E
Name heaps 𝑈 F · | 𝑈 , 𝑥
Bound lables bl( [ ]) = ∅, bl(let 𝑥 ← E in𝑀) = bl(E), bl(𝜆𝑦. E) = bl(E),

bl(with 𝐻 handle E) = bl(E) ∪ dom(𝐻 )
Domains of handlers dom({return 𝑥 ↦→ 𝑀}) = ∅, dom(𝐻 ⊎ {op 𝑥 𝑘 ↦→ 𝑀}) = dom(𝐻 ) ∪ {op}

Figure 2. Small-step Operational Semantics

cbool 𝐿 {const return ⟨return 𝐿⟩ (𝐿 = true, false)
cif ⟨𝑀1

1
⟩ ⟨𝑀1

2
⟩ ⟨𝑀1

3
⟩ {const return ⟨let 𝑥 ← 𝑀1

1
in if 𝑥 then𝑀1

2
else𝑀1

3
⟩

⟨𝑀1

1
⟩@ ⟨𝑀1

2
⟩ {const return ⟨let 𝑥1 ← 𝑀1

1
in let 𝑥2 ← 𝑀1

2
in 𝑥1 𝑥2⟩

Figure 3. Constant Applications

Classifiers 𝛾 F 𝛾𝑖 | 𝛾 ∪ 𝛾 ′

Figure 4. Classifiers

order, as lexical scopes are partially ordered by inclusion.

Oishi and Kameyama [14] added a semi-lattice structure to

classifiers. We use refined environment classifiers equipped

with an upper semi-lattice structure and simply call them

classifiers.
Figure 4 defines the syntax of classifiers where 𝛾𝑖 is a

classifier variable, and 𝛾 ∪ 𝛾 ′ is the join of 𝛾 and 𝛾 ′. Figure 5
specifies the partial order ⪰, and the join operation. Typing

contexts 𝛥 and 𝛤 in 𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2 will be explained later.

𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2

𝛥; 𝛤 ⊨ 𝛾 ⪰ 𝛾
(𝛾1 ⪰ 𝛾2) ∈ 𝛥 ⊎ 𝛤
𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2

𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2 𝛥; 𝛤 ⊨ 𝛾2 ⪰ 𝛾3
𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾3 𝛥; 𝛤 ⊨ 𝛾1 ∪ 𝛾2 ⪰ 𝛾1

𝛥; 𝛤 ⊨ 𝛾1 ∪ 𝛾2 ⪰ 𝛾2
𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2 𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾3

𝛥; 𝛤 ⊨ 𝛾1 ⪰ 𝛾2 ∪ 𝛾3

Figure 5. Classifier Rules

There are no classifier constants. For concrete examples,

we use an initial classifier 𝛾0 to designate the empty set of

future-stage variables.
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4.2 Types

Levels 𝐿 F · | 𝛾
Value types 𝐴, 𝐵 F bool | 𝐴→ 𝐶 | 𝐴 ↣ 𝐶

| ⟨𝐴1⟩𝛾

Computation types 𝐶, 𝐷 F 𝐴 !𝐸

Effects 𝐸 F · | 𝐸 ⊎ {op : 𝐴 ↠ 𝐵}
Handler types 𝐹 F ∀𝛾 .𝐶 ⇒ 𝐷

Level-1 types 𝐴1, 𝐵1 F bool | 𝐴1 → 𝐵1

Figure 6. Types

true : bool

false : bool

cbool : bool→ ⟨bool⟩𝛾

cif : ⟨bool⟩𝛾 → ⟨𝐴1⟩𝛾 → ⟨𝐴1⟩𝛾 → ⟨𝐴1⟩𝛾

@ : ⟨𝐴1 → 𝐵1⟩𝛾 → ⟨𝐴1⟩𝛾 → ⟨𝐵1⟩𝛾

Figure 7. Types of Constants

Figure 6 defines types and related terms. Levels are either

· , which represents the present stage (level-0), or a future

stage (level-1) represented by a classifier 𝛾 .

Value types and computation types, resp., are the types for

values and computations, resp. Computations may involve

an effect; hence, a computation type 𝐴 !𝐸 has the effect type

𝐸, which specifies the type of operations that may be called

during the computation. We simply write 𝐴 for 𝐴 ! ·. We

distinguish the type for the continuation 𝐴 ↣ 𝐶 from the

ordinary function type 𝐴→ 𝐶 for technical reasons.

⟨𝐴1⟩𝛾 is the type for a code value whose content has type

𝐴1
where the code is in the lexical scope associated with

𝛾 . As is the case with values and computations, level-1 (fu-

ture stage) types 𝐴1
are more restricted than the ordinary

(present-stage) types.

Finally, a handler type is assigned to a handler; consider

a handler 𝐻 for which with 𝐻 handle𝑀 is typable under

a suitable context. If the type of𝑀 is 𝐶 , and the type of the

whole term (the return type of the value handler in 𝐻 ) is

𝐷 , 𝐻 has the type ∀𝛾 .𝐶 ⇒ 𝐷 . In this case, 𝛾 is not used in

𝐶 and 𝐷 , so the quantifier is meaningless; later, we will see

concrete examples where 𝛾 has a significant role.

4.3 Typing Judgments
A typing judgment for a computation takes the form 𝛥; 𝛤 ⊢𝐿
𝑀 : 𝐶 , which is a five-place relation. (Those for a value 𝑉

and a handler 𝐻 are similar.) 𝐿, 𝑀 , and 𝐶 , resp. are levels,

⊢ 𝛥 wf

⊢ · wf
⊢ 𝛥 wf 𝛾 ∉ 𝛥

⊢ 𝛥,𝛾 wf

⊢ 𝛥 wf 𝛾1 ∈ 𝛥 𝛾2 ∈ 𝛥
⊢ 𝛥, (𝛾1 ⪰ 𝛾2) wf

⊢ 𝛥 wf 𝛾 ∈ 𝛥 𝑥 ∉ 𝛥

𝛾 ′ ≠ 𝛾 for all (𝑦 : 𝐵)𝛾 ′ ∈ 𝛥
⊢ 𝛥, (𝑥 : 𝐴1)𝛾 wf

𝛥 ⊢ 𝛤 wf

𝛥 ⊢ · wf
𝛥 ⊢ 𝛤 wf 𝛾 ∉ 𝛥 ⊎ 𝛤

𝛥 ⊢ 𝛤,𝛾 wf

𝛥 ⊢ 𝛤 wf 𝛾1 ∈ 𝛥 ⊎ 𝛤 𝛾2 ∈ 𝛥 ⊎ 𝛤
𝛥 ⊢ 𝛤, (𝛾1 ⪰ 𝛾2) wf

𝛥 ⊢ 𝛤 wf

𝛥 ⊢ 𝛤, (𝑥 : 𝐴) wf
𝛥 ⊢ 𝛤 wf 𝛾 ∈ 𝛥 ⊎ 𝛤
𝛥 ⊢ 𝛤, (𝑥 : ⟨𝐴1⟩𝛾 ) wf

𝛥 ⊢ 𝛤 wf 𝛾 ∈ 𝛥 ⊎ 𝛤
𝛥 ⊢ 𝛤, (𝑥 : 𝐴1)𝛾 wf

Figure 8.Well-formedness of Judgments

𝛥 ⊢ 𝑈

𝛥 ⊢ ·
𝛥 ⊢ 𝑈 (𝑥 : 𝐴1)𝛾 ∈ 𝛥

𝛥 ⊢ 𝑈 , 𝑥

Figure 9. Typing Rules for Name Heaps

computations, and computation types, resp. The contexts

𝛥 and 𝛤 are well-formed sequences of an individual typing

(𝑥 : 𝐴)𝐿 , a classifier 𝛾 , and an ordering 𝛾1 ⪰ 𝛾2, where well-
formedness is defined by Figure 8.

We will also need a judgment for a name heap𝑈 , denoted

by 𝛥 ⊢ 𝑈 , which is defined by Figure 9.

4.4 Design Principles
As we explained in Section 1, we made two important obser-

vations on our calculus, both of which are reflected in the

typing rule for handlers (see the rule T-Hdl in Figure 12).

The “handlers as future-stage binders” principle means

that, in the computation with 𝐻 handle □, the handler 𝐻
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acts like a binder at the future stage 𝜆𝑥.□. consider the han-
dler 𝐻 defined by:

𝐻ins := {return 𝑥 ↦→ return 𝑥,
ins 𝑥 𝑘 ↦→ let 𝑦 ← return 𝑥 in throw 𝑘 𝑦}

and the following evaluation:

with 𝐻ins handle E[do ins 𝑉 ] (1)

{ let 𝑦 ← return 𝑉 in
throw (𝜅𝑧.with 𝐻ins handle E[return 𝑧]) 𝑦

(2)

Before the evaluation (1), E[do ins 𝑉 ] is not in the scope of

any future-stage binders. After the evaluation (2), E[return 𝑧]
in the result (where 𝑦 will be substituted for 𝑧) is bound by

a generated let-expression let 𝑦 ← return 𝑉 in □. To cope

with this phenomenon soundly, the termwith 𝐻ins handle □
in (1) should be regarded as a binder.

The second principle, “handlers are universal”, simply

means the universality of handlers; since a handler is a first-

class citizen in our calculus, it may be used at any place in

a program. Hence, it must be universal in classifiers which

will be instantiated to various classifiers when the handler

is used by the with-handle expression.

4.5 Typing Rules
We give typing rules of our type system in groups.

Figure 10 defines those for basic primitives. T-Contd in-

troduces the typing for a constant
0𝐾 if its type is given as𝐴.

Similarly for the rule T-Nonstop where
𝑛𝐾 is a 𝑛-ary primi-

tive operator. T-Var, T-Abs, T-App, and T-Cond are standard,

except that the level of the judgments and the level of the

variable must coincide. T-Cont is similar to T-Abs, but uses a

different syntax to represent a continuation. T-Ret and T-Seq

give types for computations in the fine-grain call-by-value

calculus.

Figure 11 defines those for staging primitives. T-CAbs

assigns a type to a code generator for lambda abstraction.

Namely, 𝜆𝑥 .𝑀 introduces a new lexical scope for a future-

stage variable (which will be generated during the computa-

tion), hence, this rule introduces a new classifier 𝛾1 which

has an equal or smaller lexical scope than 𝛾 , which is asso-

ciated with the whole expression 𝜆𝑥 .𝑀 . Note that we write

𝛾1 ⪰ 𝛾 when 𝛾1’s scope is smaller than 𝛾 ’s. To ensure the

freshness of a classifier, 𝛾1 must obey the eigen-variable con-

dition, which is the key innovation of Kiselyov et al.’s refined

environment classifiers. T-IAbs is similar to T-CAbs, except

that the present-stage variable 𝑥 is replaced by a future-stage

variable 𝑦. T-Code describes the meaning of a level 𝛾 ; it is

typed inside a bracket of the classifier 𝛾 . T-Sub0 and T-Sub1

are subsumption rules according to our intuition that classi-

fiers are partially ordered.

𝛥; 𝛤 ⊢𝐿 𝑉 : 𝐴 𝛥; 𝛤 ⊢𝐿 𝑀 : 𝐶 𝛥; 𝛤 ⊢ 𝐻 : 𝐹

T-Const

0𝐾 : 𝐴

𝛥; 𝛤 ⊢𝐿 0𝐾 : 𝐴

T-Var

(𝑥 : 𝐴)𝐿 ∈ 𝛤
𝛥; 𝛤 ⊢𝐿 𝑥 : 𝐴

T-Abs

𝛥; 𝛤, (𝑥 : 𝐴)𝐿 ⊢𝐿 𝑀 : 𝐶

𝛥; 𝛤 ⊢𝐿 𝜆𝑥. 𝑀 : 𝐴→ 𝐶

T-Cont

𝛥; 𝛤, (𝑥 : 𝐴) ⊢ 𝑀 : 𝐶

𝛥; 𝛤 ⊢ 𝜅𝑥. 𝑀 : 𝐴 ↣ 𝐶

T-ConstApp

𝑛 ≥ 1
𝑛𝐾 : 𝐴1 → · · · → 𝐴𝑛+1[

𝛥; 𝛤 ⊢𝐿 𝑉𝑖 : 𝐴𝑖

]
1≤𝑖≤𝑛

𝛥; 𝛤 ⊢𝐿 𝑛𝐾 𝑉1 · · ·𝑉𝑛 : 𝐴𝑛+1 !𝐸

T-App

𝛥; 𝛤 ⊢𝐿 𝑉 : 𝐴→ 𝐶

𝛥; 𝛤 ⊢𝐿 𝑊 : 𝐴

𝛥; 𝛤 ⊢𝐿 𝑉 𝑊 : 𝐶

T-Cond

𝛥; 𝛤 ⊢𝐿 𝑉 : bool 𝛥; 𝛤 ⊢𝐿 𝑀 : 𝐶 𝛥; 𝛤 ⊢𝐿 𝑁 : 𝐶

𝛥; 𝛤 ⊢𝐿 if 𝑉 then𝑀 else 𝑁 : 𝐶

T-Ret

𝛥; 𝛤 ⊢𝐿 𝑉 : 𝐴

𝛥; 𝛤 ⊢𝐿 return 𝑉 : 𝐴 !𝐸

T-Seq

𝛥; 𝛤 ⊢𝐿 𝑀 : 𝐴 !𝐸 𝛥; 𝛤, (𝑥 : 𝐴)𝐿 ⊢𝐿 𝑁 : 𝐵 !𝐸

𝛥; 𝛤 ⊢𝐿 let 𝑥 ← 𝑀 in 𝑁 : 𝐵 !𝐸

Figure 10. Type System (1)

T-CAbs

𝛾 ∈ 𝛥 ⊎ 𝛤 𝛾1 ∉ 𝛥 ⊎ 𝛤
𝛥; 𝛤,𝛾1, (𝛾1 ⪰ 𝛾), (𝑥 : ⟨𝐴1⟩𝛾1 ) ⊢ 𝑀 : ⟨𝐵1⟩𝛾1

𝛥; 𝛤 ⊢ 𝜆𝑥. 𝑀 : ⟨𝐴1 → 𝐵1⟩𝛾

T-IAbs

𝛥 = 𝛥′, 𝛾1, (𝛾1 ⪰ 𝛾), (𝑦 : 𝐴1)𝛾1
𝛥; · ⊢ 𝑀 : ⟨𝐵1⟩𝛾1

𝛥; · ⊢ 𝜆𝑦.𝑀 : ⟨𝐴1 → 𝐵1⟩𝛾

T-Code

𝛥; 𝛤 ⊢𝛾 𝑀1
: 𝐴1

𝛥; 𝛤 ⊢ ⟨𝑀1⟩ : ⟨𝐴1⟩𝛾

T-Sub0

𝛥; 𝛤 ⊢ 𝑀 : ⟨𝐴1⟩𝛾1
𝛥; 𝛤 ⊨ 𝛾2 ⪰ 𝛾1

𝛥; 𝛤 ⊢ 𝑀 : ⟨𝐴1⟩𝛾2

T-Sub1

𝛥; 𝛤 ⊢𝛾1 𝑀 : 𝐴1

𝛥; 𝛤 ⊨ 𝛾2 ⪰ 𝛾1
𝛥; 𝛤 ⊢𝛾2 𝑀 : 𝐴1

Figure 11. Type System (2)

Figure 12 gives the most interesting typing rules, namely,

those for algebraic effects and handlers in conjunction with

staging primitives.
7

7
Due to lack of space, we omitted the typing rules for algebraic effects and

handlers which do not interact with staging primitives. They can be added

to our type system straightforwardly while preserving type safety.
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T-Throw

𝛥; 𝛤 ⊢ 𝑉 : ⟨𝐴1⟩𝛾1 ↣ ⟨𝐵1⟩𝛾0 !𝐸
𝛥; 𝛤 ⊢𝑊 : ⟨𝐴1⟩𝛾1∪𝛾2
𝛥; 𝛤 ⊨ 𝛾2 ⪰ 𝛾0

𝛥; 𝛤 ⊢ throw 𝑉 𝑊 : ⟨𝐵1⟩𝛾2 !𝐸

T-Do

𝐸 = {op : 𝐴op ↠ ⟨𝐵1op⟩
𝛾 } ⊎ 𝐸′

𝛥; 𝛤 ⊢ 𝑉 : 𝐴op

𝛥; 𝛤 ⊢ do op 𝑉 : ⟨𝐵1op⟩
𝛾
!𝐸

T-Hdl

𝛾 ∈ 𝛥 ⊎ 𝛤 𝛾1 ∉ 𝛥 ⊎ 𝛤
𝛥; 𝛤 ⊢ 𝐻 : ∀𝛾 ′ . ⟨𝐴1⟩𝛾

′
!𝐸 ⇒ ⟨𝐵1⟩𝛾

′
!𝐸′

𝛥; 𝛤,𝛾1, (𝛾1 ⪰ 𝛾) ⊢ 𝑀 : ⟨𝐴1⟩𝛾1 !𝐸 [𝛾1/𝛾 ′]
𝛥; 𝛤 ⊢ with 𝐻 handle𝑀 : ⟨𝐵1⟩𝛾 !𝐸′ [𝛾/𝛾 ′]

T-Hdlr

𝐻 = {return 𝑥 ↦→ 𝑀} ⊎ {op𝑖 𝑥 𝑘 ↦→ 𝑁𝑖 }𝑖
𝐸 = {op𝑖 : 𝐴op𝑖 ↠ ⟨𝐵

1

op𝑖
⟩𝛾 }𝑖 ⊎ 𝐸′

𝛤 ′𝑖 = 𝛤,𝛾, (𝑥 : 𝐴op𝑖 ), (𝑘 : ⟨𝐵1op𝑖⟩
𝛾
↣ ⟨𝐵1⟩𝛾 !𝐸′)

𝛾 ∉ 𝛥 ⊎ 𝛤 𝛥; 𝛤,𝛾, (𝑥 : ⟨𝐴1⟩𝛾 ) ⊢ 𝑀 : ⟨𝐵1⟩𝛾 !𝐸′[
𝛥; 𝛤 ′𝑖 ⊢ 𝑁𝑖 : ⟨𝐵1⟩

𝛾
!𝐸′

]
𝑖

𝛥; 𝛤 ⊢ 𝐻 : ∀𝛾 . ⟨𝐴1⟩𝛾 !𝐸 ⇒ ⟨𝐵1⟩𝛾 !𝐸′

Figure 12. Type System (3)

T-Hdlr is a specialized typing rule for staged programs

with handlers. To type a handler𝐻 , we need to type its value

handler (the judgment 𝛥; 𝛤,𝛾, (𝑥 : ⟨𝐴1⟩𝛾 ) ⊢ 𝑀 : ⟨𝐵1⟩𝛾 !𝐸′)
and all operations op𝑖 ( · · · ⊢ 𝑁𝑖 : ⟨𝐵1⟩𝛾 !𝐸′). Assuming that

related types of these operations are code types (for instance,

⟨𝐵1⟩𝛾 ), the two assumptions in T-Hdlr are not difficult to

understand. The only important feature is that the classifier𝛾

must be fresh (𝛾 ∉ 𝛥⊎𝛤 ), in other words, it should follow the

eigen-variable condition of this typing rule. The universal

quantification for 𝛾 in the handler type (the conclusion of

this rule) means that this handler may be used in any lexical

scope.

Its counterpart is T-Hdl. According to our second principle

“handlers are universal”, we introduce a new lexical scope

by creating a new classifier 𝛾1. T-Do assigns a type to an

operation call.

T-Throw is interesting; it intuitively means that a type of

a continuation 𝛾1 ↣ 𝛾0 can be turned into 𝛾1 ∪ 𝛾2 ↣ 𝛾0 ∪ 𝛾2
(we are looking at only classifiers for simplicity). To see it

concretely, consider the following example:

let 𝑧 ← 𝑁1 in𝛾𝑧

with 𝐻op handle let𝑤 ← 𝑁2 in𝛾𝑤 do op𝑊

where

𝐻op = {return 𝑥 ↦→ return 𝑥,
op 𝑥 𝑘 ↦→ let 𝑦 ← 𝑀 in𝛾𝑦 C[throw 𝑘 𝑉 ]}.

Note that we added notations for a classifier introduced at

each future-stage let-binding. As we explained before, a clas-

sifier can be considered as a set of available future-stage

variables. From that perspective, we can consider that 𝛾𝑧 de-

notes {𝑧}, 𝛾𝑤 denotes {𝑧,𝑤}, and 𝛾𝑦 denotes {𝑧,𝑦}. Here the
continuation 𝑘 has a type 𝛾𝑤 ↣ 𝛾𝑧 . Since the future-stage

variable𝑦 will be bound outside of𝑤 ’s binder, it is reasonable

to allow 𝑉 to contain 𝑦. However, since we have no subtyp-

ing relation between 𝛾𝑦 and 𝛾𝑤 , some special treatment is

necessary to achieve this. That is the reason why we regard

𝑘 : 𝛾𝑤 ↣ 𝛾𝑧 as 𝑘 : 𝛾𝑤 ∪ 𝛾𝑦 ↣ 𝛾𝑦 under 𝛾𝑦 ⪰ 𝛾𝑧 .
The intuition of T-Throw described above means that

a continuation is polymorphic over classifiers, which is ex-

pressed more naturally by the following type:

∀𝛾2. (𝛾1 ∪ 𝛾2 ↣ 𝛾0 ∪ 𝛾2)

We could have given such a type to a continuation, but we did

not do so, since we want to keep the monomorphic nature

of our type system. Extending our calculus to a type-and-

classifier-polymorphic calculus is left for future work.

5 Examples of Typing Derivation
In this section, we show some examples of typing derivations.

5.1 Multiple Let-insertions
As an example of code generation with a complex combi-

nation of multiple effects, we demonstrate typing of the

following program.

with 𝐻1 handle
with 𝐻2 handle

let 𝑥1 ← 𝑀 in let 𝑥2 ← do ins1 𝑥1 in do ins2 𝑥2,

where

𝑀 = cbool true,

𝐸𝑖 = {ins𝑖 : ⟨b⟩𝛾𝑖 → ⟨b⟩𝛾𝑖 }, and
𝐻𝑖 = {ins𝑖 𝑥 𝑘 ↦→ let 𝑓 ← 𝜆𝑦. throw 𝑘 𝑦 in 𝑓 @ 𝑥,

return 𝑥 ↦→ return 𝑥}.

This program is eventually evaluated to the following well-

scoped code:

return ⟨(𝜆𝑦1. (𝜆𝑦2. return 𝑦2) 𝑦1) true⟩

hence it is expected to be well-typed, and indeed it is. We

show its type derivation in Fig. 13. Note that we abbreviate

bool as b and omit the same part of a type environment as

its conclusion in the figure.
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· · · ⊢ 𝑘 : ⟨b⟩𝛾 ′ ↣ ⟨b⟩𝛾 ′
T-Var

· · · ⊢ 𝑦 : ⟨b⟩𝛾 ′1
T-Var

· · · ⊢ 𝛾 ′ ∪ 𝛾 ′
1
⪰ 𝛾 ′

1

· · · ⊢ 𝑦 : ⟨b⟩𝛾 ′∪𝛾 ′1
T-Sub1

· · · ⊢ 𝛾 ′
1
⪰ 𝛾 ′

· · · , 𝛾 ′
1
, (𝛾 ′

1
⪰ 𝛾 ′), (𝑦 : ⟨b⟩𝛾 ′1 ) ⊢ throw 𝑘 𝑦 : ⟨b⟩𝛾 ′1 !𝐸1

T-Throw

· · · ⊢ 𝜆𝑦. throw 𝑘 𝑦 : ⟨b→ b⟩𝛾 ′ !𝐸1 (D4)
T-CAbs

· · · ⊢ 𝑥 : ⟨b⟩𝛾 ′
T-Var

𝛾0;𝛾1, (𝛾1 ⪰ 𝛾0), 𝛾 ′, (𝑥 : ⟨b⟩𝛾 ′ ) ⊢ return 𝑥 : ⟨b⟩𝛾 ′ !𝐸1 (D3)
T-Ret

D3

D4

· · · ⊢ 𝑓 : ⟨b→ b⟩𝛾 ′
T-Var

· · · ⊢ 𝑥 : ⟨b⟩𝛾 ′
T-Var

· · · , (𝑓 : ⟨b→ b⟩𝛾 ′ ) ⊢ 𝑓 @ 𝑥 : ⟨b⟩𝛾 ′ !𝐸1
T-ConstApp

· · · , 𝛾 ′, (𝑥 : ⟨b⟩𝛾 ′ ), (𝑘 : ⟨b⟩𝛾 ′ ↣ ⟨b⟩𝛾 ′ ) ⊢ let 𝑓 ← 𝜆𝑦. throw 𝑘 𝑦 in 𝑓 @ 𝑥 : ⟨b⟩𝛾 ′ !𝐸1
T-Seq

𝛾0;𝛾1, (𝛾1 ⪰ 𝛾0) ⊢ 𝐻2 : ∀𝛾 ′ . ⟨b⟩𝛾
′
! (𝐸1 ⊎ {ins2 : ⟨b⟩𝛾

′ → ⟨b⟩𝛾 ′ }) ⇒ ⟨b⟩𝛾 ′ !𝐸1 (D2)
T-Hdlr

(D1 is similar to D2 and is therefore omitted)

D1

D2

.

.

.

· · · ⊢ 𝑥1 : ⟨b⟩𝛾1
T-Var

· · · ⊢ do ins1 𝑥1 : ⟨b⟩𝛾1 ! (𝐸1 ⊎ 𝐸2 )
T-Do

· · · ⊢ 𝑥2 : ⟨b⟩𝛾1
T-Var

· · · ⊢ 𝛾2 ⪰ 𝛾1

· · · ⊢ 𝑥2 : ⟨b⟩𝛾2
T-Sub0

· · · , (𝑥2 : ⟨b⟩𝛾1 ) ⊢ do ins2 𝑥2 : ⟨b⟩𝛾2 ! (𝐸1 ⊎ 𝐸2 )
T-Do

· · · , (𝑥1 : ⟨b⟩𝛾1 ) ⊢ let 𝑥2 ← do ins1 𝑥1 in do ins2 𝑥2 : ⟨b⟩𝛾2 ! (𝐸1 ⊎ 𝐸2 )
T-Seq

𝛾0;𝛾1, (𝛾1 ⪰ 𝛾0 ), 𝛾2, (𝛾2 ⪰ 𝛾1 ) ⊢ let 𝑥1 ← 𝑀 in let 𝑥2 ← do ins1 𝑥1 in do ins2 𝑥2 : ⟨b⟩𝛾2 ! (𝐸1 ⊎ 𝐸2 )
T-Seq

𝛾0;𝛾1, (𝛾1 ⪰ 𝛾0 ) ⊢ with 𝐻2 handle let 𝑥1 ← 𝑀 in let 𝑥2 ← do ins1 𝑥1 in do ins2 𝑥2 : ⟨b⟩𝛾1 !𝐸1
T-Hdl

𝛾0; · ⊢ with 𝐻1 handle with 𝐻2 handle let 𝑥1 ← 𝑀 in let 𝑥2 ← do ins1 𝑥1 in do ins2 𝑥2 : ⟨b⟩𝛾0
T-Hdl

Figure 13. Example of Typing Derivation for Let-insertion

6 Properties of the Calculus
In this section, we show the key steps of the proof of type

soundness for our calculus. Type soundness is one of the

most important properties for typed calculi. In staged cal-

culi, type soundness has stronger implication than unstaged

calculi does, since it ensures the absence of run-time type

errors not only for the programs in the present stage, but

that for all the generated programs. The latter subsumes the

absence of scope extrusion.

Definition 6.1 (Normal Form of Computation). We say a

computation 𝑀 is a normal form with respect to 𝐸 if 𝑀 is

either of the form𝑀 = return 𝑉 , or𝑀 = E[do op𝑊 ] where
op ∈ 𝐸 and op ∉ bl(E).

We write 𝛤 for an environment with a special condition: it

contains only either a classifier or their constraint (𝛾2 ⪰ 𝛾1).

Theorem 6.2 (Progress). If 𝛥; 𝛤 ⊢ 𝑀 : 𝐴 !𝐸, then𝑀 is either
a normal form with respect to 𝐸, or there exists 𝑁 such that
𝑈 ;𝑀 { 𝑈 ′;𝑁 .

It can be proved straightforwardly by induction on a

derivation with the standard canonical-forms lemma.

To prove the subject reduction, we first state a key lemma

that allows us to replace a newly introduced classifier with

an arbitrary pre-defined classifier in an environment.

Lemma 6.3 (Classifier Specialization).
1. If𝛥,𝛾2, 𝛥′; 𝛤 ⊢𝐿 𝑀 : 𝐶 , then𝛥, 𝛥′ [𝛾2/𝛾1]; 𝛤 [𝛾2/𝛾1] ⊢𝐿[𝛾2/𝛾1 ]
𝑀 : 𝐶 [𝛾2/𝛾1] for all 𝛾1 ∈ 𝛥.

2. If 𝛥; 𝛤,𝛾2, 𝛤 ′ ⊢ 𝑀 : 𝐶 , then 𝛥; 𝛤, 𝛤 ′ [𝛾2/𝛾1] ⊢ 𝑀 : 𝐶 [𝛾2/𝛾1]
for all 𝛾1 ∈ 𝛥 ⊎ 𝛤 .

We also have some standard substitution lemmas proved

straightforwardly.

Lemma 6.4 (Substitution). Suppose 𝛥; 𝛤 ⊢𝑊 : 𝐵.
1. If 𝛥; 𝛤, (𝑥 : 𝐵) ⊢ 𝑉 : 𝐴, then 𝛥; 𝛤 ⊢ 𝑉 [𝑊 /𝑥] : 𝐴.
2. If 𝛥; 𝛤, (𝑥 : 𝐵) ⊢ 𝑀 : 𝐶 , then 𝛥; 𝛤 ⊢ 𝑀 [𝑊 /𝑥] : 𝐶 .
3. If 𝛥; 𝛤, (𝑥 : 𝐵) ⊢ 𝐻 : 𝐹 , then 𝛥; 𝛤 ⊢ 𝐻 [𝑊 /𝑥] : 𝐹 .

Lemma 6.5 (Substitution to Evaluation Context). If 𝛥; 𝛤 ⊢
E[𝑀] : 𝐶 , 𝛥; 𝛤 ⊢ 𝑀 : 𝐷 , and 𝛥, 𝛥′; 𝛤, 𝛤 ′ ⊢ 𝑁 : 𝐷 , then
𝛥, 𝛥′; 𝛤, 𝛤 ′ ⊢ E[𝑁 ] : 𝐶
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One of the main results is the subject reduction. We state

it as follows.

Theorem 6.6 (Subject Reduction). If 𝛥; 𝛤 ⊢ 𝑀 : 𝐶 , 𝛥 ⊢ 𝑈 ,
and 𝑈 ;𝑀 { 𝑈 ′;𝑁 , then 𝛥, 𝛥′; 𝛤 ⊢ 𝑁 : 𝐶 and 𝛥, 𝛥′ ⊢ 𝑈 ′ for
some 𝛥′.

Proof. By induction on a typing derivation. Instead of putting
the full proof, we will focus on one specific reduction as a

non-trivial case:

𝑈 ;with 𝐻 handle E[do op𝑖 𝑉 ] { 𝑈 ;𝑀op𝑖 [𝑉 /𝑥,𝑊 /𝑘]
by E-Do, where𝑊 = 𝜅𝑦.with 𝐻 handle E[return 𝑦] and
op𝑖 ∉ bl(E). Inversion of T-Hdlr and Lemma 6.3 gives

𝛥; 𝛤, (𝑥 : 𝐴op𝑖 [𝛾/𝛾
′]), (𝑘 : ⟨𝐵1op𝑖⟩

𝛾 ↣ ⟨𝐵1⟩𝛾 !𝐸′ [𝛾/𝛾 ′]) ⊢
𝑀op𝑖 : ⟨𝐵

1⟩𝛾 !𝐸′ [𝛾/𝛾 ′] (1). We have the following subderiva-

tion where (op𝑖 : 𝐴op𝑖 [𝛾1/𝛾
′] ↠ ⟨𝐵1op𝑖⟩

𝛾1 ) ∈ 𝐸′′.

𝛥; 𝛤,𝛾1, (𝛾1 ⪰ 𝛾) ⊢ 𝑉 : 𝐴op𝑖 [𝛾1/𝛾
′]

𝛥; 𝛤,𝛾1, (𝛾1 ⪰ 𝛾) ⊢ do op𝑖 𝑉 : ⟨𝐵1op𝑖⟩
𝛾1
!𝐸′′

T-Do

Applying Lemma 6.3 to the premise above gives 𝛥; 𝛤 ⊢ 𝑉 :

𝐴op𝑖 [𝛾/𝛾
′] (3). Let 𝛤 = 𝛤, (𝑦 : ⟨𝐵1op𝑖⟩

𝛾 ). We construct a typ-

ing derivation for𝑊 as follows.

𝛥; 𝛤 ⊢ 𝐻 : ∀𝛾 ′ . ⟨𝐴1⟩𝛾
′
!𝐸 ⇒ ⟨𝐵1⟩𝛾

′
!𝐸′ (a)

𝛥; 𝛤,𝛾1, (𝛾1 ⪰ 𝛾) ⊢ E[return 𝑦] : ⟨𝐴1⟩𝛾1 !𝐸 [𝛾1/𝛾 ′] (b)
𝛥; 𝛤 ⊢ with 𝐻 handle E[return 𝑦] : ⟨𝐵1⟩𝛾 !𝐸′ [𝛾/𝛾 ′]

𝛥; 𝛤 ⊢𝑊 : ⟨𝐵1op𝑖⟩
𝛾
↣ ⟨𝐵1⟩𝛾 !𝐸′ [𝛾/𝛾 ′] (2)

(a) can be obtained from the original typing of 𝐻 by weak-

ening. Let 𝛤 ′ = 𝛤,𝛾1, (𝛾1 ⪰ 𝛾), (𝑦 : ⟨𝐵1op𝑖⟩
𝛾 ). For deriving (b),

we consider a typing of return 𝑦 as follows.

𝛥; 𝛤 ′ ⊢ 𝑦 : ⟨𝐵1op𝑖⟩
𝛾 T-Var

𝛥; 𝛤 ′ ⊨ 𝛾1 ⪰ 𝛾
𝛥; 𝛤 ′ ⊢ 𝑦 : ⟨𝐵1op𝑖⟩

𝛾1
T-Sub0

𝛥; 𝛤 ′ ⊢ return 𝑦 : ⟨𝐵1op𝑖⟩
𝛾1
!𝐸′′

T-Ret

We obtain 𝛥; 𝛤 ′ ⊢ E[return 𝑦] : ⟨𝐴1⟩𝛾1 !𝐸 [𝛾1/𝛾 ′] by substi-

tution, thus we obtain (b) by harmless exchange in the envi-

ronment. Applying substitution to (1), (2), and (3) gives a de-

sired result 𝛥; 𝛤 ′ ⊢ 𝑀op𝑖 [𝑉 /𝑥,𝑊 /𝑘] : ⟨𝐵
1⟩𝛾 !𝐸′ [𝛾/𝛾 ′]. □

As a consequence of the subject reduction and a brief

discussion, we conclude the following important property

that a generated code never causes scope extrusion.

Corollary 6.7 (Absence of Scope Extrusion). If 𝛾0; · ⊢ 𝑀 :

⟨𝐴1⟩𝛾0 and ·;𝑀 {∗ 𝑈 ; return V , then𝑉 = ⟨𝑁 1⟩ and 𝛾0; · ⊢𝛾0
𝑁 1

: 𝐴1 for some 𝑁 1.

7 Related Work
One of the oldest studies on safe imperative multi-stage

programmingwas given by Calcagno et al. [2]. They obtained

safety for the language by restricting only closed codes can be

manipulated (stored in mutable cells, etc.), which is a severe

restriction on the viewpoint of the practical application of

staged computation.

Westbrook et al. [20] introduced a multi-stage extension of

Java-like languages and proved its type safety. They proposed

the weak separability property, which essentially prohibits

any open code to be stored in mutable cells,

Kameyama et al. [7] designed a staged language with con-

trol operators shift and reset, which are capable of represent-

ing various monadic effects, including states, exceptions, and

non-determinism. To achieve type soundness, they put the

restriction that any control effects may not go across the

future-stage binders and showed that ’assertion-insertion’

and a few other useful idioms can be expressed in their

language. However, more advanced techniques such as let-

insertion are not expressible under their restriction.

These classic works designed relatively simple type sys-

tems and, therefore cannot express the lexical scope of future-

stage binders of variables, which seems to be essential to

gain more expressiveness.

The seminal work by Taha and Nielsen [19] introduced

the notion of environment classifier, which is a proxy of a

typing context, thus enabling a type can mention a typing

context. They presented a safe multi-stage language that can

handle open codes, and has the run primitive. Although their

type system is a basis of the first version of MetaOCaml, type

safety is guaranteed for purely functional sublanguage only;

we can use effectful computations in MetaOCaml, but then

there is no guarantee of type safety.

Kiselyov et al. [10] proposed refined environment classi-

fiers (REC), which gives a more refined representation of

Taha and Nielsen’s environment classifier. The salient dis-

covery in their design is that the well-known eigen-variable

condition is sufficient to guarantee well-scopedness of future-

stage binders. They designed a two-stage language with REC

and ML-style reference cells and proved type soundness.

Oishi and Kameyama [14] imported REC to the two-stage

typed language with the control operators shift0 and reset0.
Thanks to REC and a sophisticated restriction to avoid type-

unsoundness, their language allows one to express nested

let-insertion for open codes. Their work and our work in this

paper share the motivation, and we have already compared

their work and our work in Section 2.

Realistic multi-stage extensions of mainstream program-

ming languages often ignore the type-unsoundness problem

in the presence of computational effects. Template Haskell,

MetaOCaml, and Scala, for instance, do not give a static guar-

antee of well-typedness and well-scopedness of generated

codes if a programmer uses computational effects.

An important exception is the genlet primitive in BER

MetaOCaml [9], which performs (nested) let-insertion. The

salient feature of genlet is that a program that uses genlet

does not have to specify the destination, and the language

system determines, on the fly, where to insert the expression
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into the code. More precisely, the destination is chosen as

the top-most point where no scope extrusion occurs, hence,

(provided the scope-checking is correct) scope extrusion will

never occur. This primitive is particularly useful, but its se-

mantics is not easy to understand nor formally documented.

This is problematic, since genlet can jump over arbitrary ex-

pressions such as conditionals and lambda-abstraction, but

a programmer cannot know the destination of let-insertion

statically. Compared with their work, our work covers not

only let-insertions but arbitrary computational effects ex-

pressible by algebraic effects and handlers, which distin-

guishes our work from their work. A possible demerit of our

language is that a programmer needs to specify the destina-

tion of let-insertion, but we think this is not a big problem in

practice since a programmer of code generators surely knows

the place where the code memoizes open codes. Combining

algebraic effects and handlers with genlet in a multi-stage

language would be an interesting future research topic.

While we extensively used environment classifiers as a

proxy of typing contexts, there is another line of work on

formalizing type-sound staged calculi based on explicit rep-

resentation of typing contexts in types.

Nanevski and Pfenning [13] proposed Contextual Modal

Type Theory, which gives a logical foundation for staged

computation. While they gave a finer type system than those

based on environment classifiers, their calculus is more ver-

bose and complicated than those based on the latter.

Rhiger [18] gave a similar, but different, calculus for stag-

ing based on explicit representation of typing contexts in

types, which covered mutable state. While the goal of his

paper is similar to ours, it is unclear whether his type sys-

tem can be used to guarantee type safety in the presence of

control operators including algebraic effects and handlers.

Formal calculi based on the contextual representation

of code types have been studied by several groups of re-

searchers [6, 15], both of which have the feature of analyz-

ing (pattern matching) generated code. We have taken the

purely generative approach where code can be generated,

but generated code cannot be decomposed.

Recent work by Kovacs [11] gave a two-level type the-

ory as the foundational system for staged compilation with

dependent type theory.

It is interesting to study an extension of our calculus where

code analysis or dependent types is allowed while preserving

type safety.

8 Conclusion
This paper presented a two-stage language for effectful staged

computation and its type system, and proved type sound-

ness, leading to the static guarantee of well-scopedness and

well-typedness for any code generated by well-typed code

generators. As far as we know, this is the first such result

in the presence of algebraic effects and handlers, which are

quickly becoming a standard construct to express various

computational effects uniformly.

Comparedwith previous studies, our calculus allows nested

named
8
operations, which allows one to express arbitrarily

nested let-insertion precisely and concisely. We believe this

is a great benefit, as the code-duplication problem is one of

the central issues for program generation to be a practically

applicable technique.

Our type system is based on a refined environment clas-

sifier, which is a proxy of a lexical scope of a code-level

variable, but two new ideas were needed. The first key idea

is the “handlers as binders” principle, which means that a

with-handle expression introduces a new lexical scope for

the future-stage variable, although there are no future-stage

variables being involved in handlers. The second key idea is

the “handlers are universal” principle, which means that the

handler types should be polymorphic over scopes. By using

these two principles, we designed a type system that enjoys

the type soundness property.

We believe that this paper demonstrates the usefulness of

classifiers, in connection with the eigen-variable condition

in natural-deduction style logic. Even though it is a first

step, we believe that our calculus based on classifiers can be

a basis for studying other interesting program generators

which need different patterns of computational effects.

Future work: this paper gave a small core calculus that

has two stages and algebraic effects and handlers. Extend-

ing our results to a full-blown programming language and

implementing it are interesting next steps. To make our cal-

culus practical in OCaml or MetaOCaml, we should consider

a type inference algorithm. We expect that the universal

quantification of handler types can be reduced to ML-style

let-polymorphism, and that the principal-type property holds

for our calculus under some suitable restriction. For the foun-

dational aspect, there is no reason to stop at two stages. It

is an interesting next step to design a truly multi-stage cal-

culus with algebraic effects and handlers, for which type

soundness is statically guaranteed.
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