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Abstract
Code generation is the leading approach to making high-perfor-
mance software reusable. Effects are indispensable in code gener-
ators, whether to report failures or to insert let-statements and if-
guards. Extensive painful experience shows that unrestricted effects
interact with generated binders in undesirable ways to produce un-
expectedly unbound variables, or worse, unexpectedly bound ones.
These subtleties hinder domain experts in using and extending the
generator. A pressing problem is thus to express the desired effects
while regulating them so that the generated code is correct, or at
least correctly scoped, by construction.

We present a code-combinator framework that lets us express ar-
bitrary monadic effects, including mutable references and delimited
control, that move open code across generated binders. The static
types of our generator expressions not only ensure that a well-typed
generator produces well-typed and well-scoped code. They also ex-
press the lexical scopes of generated binders and prevent mixing up
variables with different scopes. For the first time ever we demon-
strate statically safe and well-scoped loop exchange and constant
factoring from arbitrarily nested loops.

Our framework is implemented as a Haskell library that embeds
an extensible typed higher-order domain-specific language. It may
be regarded as ‘staged Haskell.’ To become practical, the library
relies on higher-order abstract syntax and polymorphism over gen-
erated type environments, and is written in the mature language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Control struc-
tures; polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure

Keywords Multi-stage programming; mutable state and control
effects; binders; CPS; higher-order abstract syntax; lexical scope

1. Introduction
High-performance computing applications (scientific simulation
[15], digital signal processing [31], network routing [1], and many
others) require domain-specific optimizations that the typical do-
main expert performs by hand over and over again to write each
specialized program. The manual optimizations are not only excru-
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ciating: their correctness is hard to see, they distort the code beyond
recognition making it unmaintainable, they require significant and
rare expertise, which cannot be reused for similar cases. It is widely
recognized in the high-performance community (see [8] and refer-
ences therein) that we cannot count on optimizing compilers to
perform these domain-specific optimizations. Code generation has
emerged as one of the most promising approaches to producing
optimal code with high confidence and relatively low effort [8].

In this approach, the optimal code is the result of a code genera-
tor – or is selected from the results of a family of generators through
empirical search. A generator is built from reusable pieces written
by different groups of experts; the pieces encapsulate parts of the
algorithm (such as dot-product or pivoting), parameterized by opti-
mizations (like partial loop unrolling and tiling) or specializations
(such as the preferred data layout, or statically known inputs). The
pieces may be regarded as a domain-specific language (DSL). Ide-
ally, the pieces should compose: a user could replace one algorithm
with a putatively more optimal one or apply a different optimiza-
tion, without changing the rest of the generator. Furthermore, the
user should reason in terms of the generator pieces rather than the
generated code: the generator DSL should abstract over the code.
The generated code should at the very least be well-formed and
well-typed, and hence compilable without errors, so that the end
user should be spared from looking at it, let alone debugging com-
pilation problems. (The end user might not even know the target
language of the generator).

The goals of expressivity, composability and static assurances
are in conflict, which so far has remained unresolved. (See §5 for
discussion of trade-offs.) In this paper we report the first approach
that simultaneously achieves the goals. We express optimizations
such as loop tiling, we change optimizations without rewriting the
rest of the generator, and we assure the well-formedness, well-
typedness and well-scopedness of the generated code.

1.1 Code-generating combinators, effects, and scope
extrusion

A generator is a program in one language (called a host language,
or metalanguage) that produces programs in another, possibly dif-
ferent language (called target, or object language). In the present
paper, the metalanguage is Haskell. There are two styles of writ-
ing generators: with antiquotations, familiar from Lisp, and code-
generation combinators [36, 39]. The former are quite more con-
venient for the user but require assistance from the compiler and
the typechecker. Code-generation combinators are more suitable
for prototyping and investigating the design space (which is our
activity). In the rest of the paper, we focus on combinators. Here is
an illustrative example, to be discussed in detail in §2.5:

loop (int 0) (int (m−1)) (int 1) (lam $ \j →
loop (int 0) (int (n−1)) (int 1) (lam $ \i →
vec incr (weakens v’) (vr i ) =≪ :
(mat get (weakens a) (vr i ) (vr j ) ‵ mulM‵

vec get (weakens v) (vr j ))))



This is the main part of a generator to produce the code to multi-
ply an n×m matrix a by a vector v obtaining v’. The combinators
vec get, mat get and vec incr generate code to access or incre-
ment matrix or vector elements; int generates the code for a given
integer, mulM takes two pieces of generated code and produces
the code to multiply them, etc. The function vr marks the refer-
ence to a bound variable (the loop counter here). The near ubiq-
uitous weakens lets us refer to the representation of target code
from under binders. The combinator loop generates the code for
the loop with the given boundaries, the step and the body. Each
combination and the whole expression, when evaluated, produces
some representation for the target code, a ‘code value’. Typical rep-
resentations are the abstract syntax tree (AST) or text strings. In the
rest of the paper, for clarity and concreteness, the combinators pro-
duce Haskell code (although other choices are possible, including
OCaml, JavaScript, etc.)

There may be several implementations of the combinator loop.
In fact, there could be libraries of loop combinators written by
high-performance computing experts. Besides the straightforward
generation of the simple loop forM [0,1..m−1]1 the combinator
may strip a loop into blocks, effectively converting a loop into two
nested loops (the outer iterating over blocks and the inner iterating
within a block). Such a combinator implements the classical ‘strip
mining’ optimization. For example, with the blocking factor 4, the
strip-mining loop will generate

forM [0,4.. m−1] $ \jj →
forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [0,4.. n−1] $ \ii →
forM [ ii , ii +1..min (ii +3) (n−1)] $ \i →
...

Strip-mining is a common optimization, used, for example, as
the first phase of vectorization. The blocking factor may be re-
quested from the user or learned. That is, the generator non-
deterministically produces several candidates with different de-
grees of blocking, to benchmark and choose the fastest. SPIRAL
[31] is based on this idea. Generators, therefore, need effects such
as IO, exceptions, non-determinism. We are particularly interested
in control effects that are necessary for the follow-up optimization,
exchanging the order of the loops, to produce so-called ‘tiled loops’

forM [0,4.. m−1] $ \jj →
forM [0,4.. n−1] $ \ii →

forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [ ii , ii +1..min (ii +3) (n−1)] $ \i →
...

which is one of the very profitable optimizations. Our aim is to
write a generator once, following the textbook algorithm, and then
to choose an appropriate implementation of loop for strip-mining,
tiling and other optimizations.

To achieve loop tiling, specifically, to exchange striped loops,
the two loop combinators in the sample code must interact – they
have to be effectful. The danger of producing ill-scoped code is
also clear. For example, if the wrong loops are exchanged, we may
move the code that uses jj past its binder:

forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [0,4.. m−1] $ \jj →
...

which is called ‘scope extrusion’. This error becomes devious if the
above code is part of a program with another binder for jj :: Int.
The generated code will successfully compile and will even run, but
subtly unexpectedly. A similar optimization, also requiring control
effects, is loop-invariant code movement, moving the code that
does not depend on the loop index out of the loop. Moving out

1 forM [lb,lb+st..ub] (\i → body) is how for i=lb to ub step st do
body is written in Haskell.

the code that does depend on the loop index again creates scope
extrusion. We wish to prevent scope extrusion statically and right
away, even for separate program fragments. The code should be
typed-correct and well-scoped as it is being constructed.

Performing optimization like loop exchange while statically
preventing scope extrusion was identified as an open problem by
Cohen et al. [8]. It is only now that the problem has been solved, in
a mainstream metalanguage such as Haskell, in a code-generation
framework that can be used in practice.

1.2 Contributions
Our goal was to generate code with compositional, modular com-
binators that statically assure that the results (even intermediate,
open results) are well-formed and well-typed. This goal is achieved.
Specifically, our contributions are as follows.

First, we present a method for writing code combinators that
may do arbitrary monadic effects – including effects that move
open code across generated binders – and yet preserve lexical
scope (hygiene). We use types to express and enforce a notion of
lexical scope on generated code. Our type discipline ensures that
generated variables are always bound intentionally, never captured
accidentally. We argue (see §4.1 for details) that lexical scope in a
code generator means that different generated variables cannot be
substituted for each other (because they have different types in our
system), even if they have the same named label or the same De
Bruijn index. In the present paper, our argumentation is informal.
The formalization is quite involved and is the subject of another
paper. We stress that our method requires neither intersection nor
dependent types; all the needed features such as higher-rank types
are commonly available in mainstream functional languages.

Second, we present a Haskell library of code-generation com-
binators, which we built to validate our approach. This paper ex-
plains our approach to effects and scope by describing this library.
Our concrete examples show how to express effects on open code
across generated binders, as well as how rank-2 types enforce lexi-
cal scope.

Our library is not yet ready for real-life applications like those
supported by MetaOCaml [21], because its syntax is rather heavy.
We write int 1 +: int 2 to generate the expression 1 + 2. (We
avoid overloading Haskell’s type class Num, for clarity and to em-
phasize that our approach is not restricted to Haskell but works
in any functional language with rank-2 polymorphism.) Moreover,
weakening coercions often have to be applied explicitly to gen-
erated code, and there is no syntactic sugar for pattern matching.
(Again, type-class overloading can help.) Although we have im-
plemented many interesting examples with our library, more ex-
perience is needed to recommend its wide practical use. Still, our
library is imminently practical in that

1. it has been built in the mature language Haskell, not an experi-
mental language with a dearth of documentation and tools;

2. it uses higher-order abstract syntax (HOAS) [23, 25] rather than
De Bruijn indices, so bindings in the generator are human-
readable;

3. it allows polymorphism over generated environments, so the
same generator module can be reused in many environments;

4. the language of generated code can easily be extended with
more features and constants (this paper shows many examples)
or changed to any other language – typed or untyped, first- or
higher-order.

Our library can serve as a prototype for a more expressive and yet
statically safer Template Haskell.

Finally, we propose a new applicative continuation-passing-
style (CPS) hierarchy that allows loop exchange and let-insertion



across several generated bindings. These tasks cannot be accom-
plished in the traditional CPS hierarchy [9].

The structure of the paper The next section introduces the in-
terface of our library and explains it on simple examples of code
generation with effects. We then turn to hitherto impossible, with
static well-scopedness assurances, examples: in §2.3 we store open
code in mutable variables across binders, and in §2.4 we do the
invariant code motion, which changes the order of binding forms.
Attempts to move open code beyond the binders of its variables
are flagged as type errors. §2.5 describes a case study of using our
library for common loop optimizations: loop exchange and loop
tiling. We briefly outline the implementation in §3, and describe
and informally justify in §4 the static assurances of our generators.
§5 discusses related work, specifically the comparison with Tem-
plate Haskell (TH).

For brevity and clarity, the code shown in the paper is not al-
ways self-contained and is presented in the following conventions:
The implicitly quantified type variable repr in type signatures rep-
resents a type that is a member of SSym or another ‘symantics’
class [6]; we almost always omit the corresponding constraint.
We assume that the type variables m, i and j are all constrained
to be Applicative. Should confusion arise the reader may refer
to Figure 1 and 2, which show the complete signatures of the
public functions in our library. Furthermore, the complete code
is available online at http://okmij.org/ftp/tagless-final/
TaglessStaged/.

2. Library
This section presents our library of impure and yet hygienic code-
generation combinators and illustrates it on a progression of exam-
ples. Figure 1 shows the library interface.

The target code is treated as an EDSL, a domain-specific lan-
guage embedded in Haskell. The target language is simply-typed:
the target code of type t is represented as a Haskell value of the
type repr t. It is a coincidence that the same Int denotes the inte-
ger type both in Haskell and in the target language. The Haskell
function (combinator) intS represents an integer literal of the tar-
get language, and addS stands for target’s addition function. The
combinator appS, which combines two code values, denotes appli-
cation in the target language. Whereas (1 +2):: Int, which is the
same as (+) 1 2, is a Haskell expression for Haskell’s addition,
exS1 of the characteristic type below

exS1 :: SSym repr ⇒ repr Int
exS1 = (addS ‵appS‵ intS 1) ‵ appS‵ intS 2

represents an integer expression in the target language for adding
the two integers. We should have said, however pedantic for now,
that exS1 is the Haskell expression that, when evaluated, produces
a value representing the target addition. The types, inferred by
the Haskell compiler, make it clear when a Haskell expression
represents target code. (We shall elide the constraint SSym repr.)

The method of embedding a language by defining its primitives
as methods of a type class such as SSym repr – with the parame-
ter repr :: ∗ → ∗ representing a concrete realization indexed by
the expression’s type – is called the “tagless final” approach [6].
The approach encourages several concrete realizations of the tar-
get language. Our library provides two: the type R, which is the
instance of SSym and similar extension classes, takes the target
code to be a subset of Haskell and realizes the code as a Haskell
expression: R is essentially an identity functor. Since Haskell is
non-strict, it is more precise to say that the R-realization repre-
sents target code as a ‘thunk.’ The C-realization also takes the tar-
get code to be Haskell, but represents it as a Haskell AST. The
function runCS pretty-prints the AST, letting us see the generated
code. For example, runCS exS1, instantiating repr to C, produces

Pure base combinators
class SSym repr where
intS :: Int → repr Int
addS :: repr (Int → Int → Int )
mulS :: repr (Int → Int → Int )
appS :: repr (a→ b) → (repr a → repr b)

Two representations of the code
newtype R a = R{unR :: a}

type C a −− Haskell AST
runCS :: C a → String −− pretty−printed AST

Generating code with effects, in an applicative m
infixl 2 $$

($$ ) :: (SSym repr, Applicative m) ⇒
m (repr (a→ b)) → m (repr a) → m (repr b)

int :: (SSym repr, Applicative m) ⇒ Int → m (repr Int )

infixl 7 ∗: infixl 6 +:
(+: ), (∗: ) :: (SSym repr, Applicative m) ⇒

m (repr Int ) → m (repr Int ) → m (repr Int )

−− Composition of two type constructors (kind ∗ → ∗ )
newtype (i ◦ j ) a = J{unJ:: i (j a)}
liftJ :: (Applicative m, Applicative i ) ⇒

m a → (m ◦ i ) a

runR :: (m ◦ Identity ) (R a) → m a
runC :: (m ◦ Identity ) (C a) → m String

Higher-order fragment
class LamPure repr where
lamS :: (repr a → repr b) → repr (a→ b)

lam :: (Applicative m, AppPermutable i, SSym repr, LamPure repr) ⇒
(∀ j . AppPermutable j ⇒
(i ◦ j ) (repr a) → (m ◦ (i ◦ j )) (repr b))
→ (m ◦ i ) (repr (a→ b))

var :: i (repr a) → (m ◦ i ) (repr a)
weaken :: (m ◦ i ) (repr a) → (m ◦ (i ◦ j )) (repr a)

weakens :: Extends m n ⇒m a → n a
vr = weakens ◦ var

Extension: let-expressions
class SymLet repr where
let S :: repr a → (repr a → repr b) → repr b

let :: (m ◦ i ) (repr a) → (∀ j . AppPermutable j ⇒
(i ◦ j ) (repr a) → (m ◦ (i ◦ j )) (repr b))

→ (m ◦ i ) (repr b)

Figure 1. The interface of hygienic code-generation combinators

”(GHC.Num.+) 1 2”. (We shall elide the module qualification
”GHC.Num.” when showing the code.) The generated code can be
‘spliced-in’ using Template Haskell (TH), or saved into a file and
compiled separately.

2.1 Faulty power
As the first example to illustrate our library we take the canonical
power – specializing xn to the given value of n [13]. Already
this trivial example calls for effects in code generation – although
this aspect of power is frequently glossed over. Since the effect
here is simple – throwing a string as an exception – all code-
generation frameworks (for example, MetaOCaml, Mint [38] or
λ⊘ [14]) can assure the generation of well-scoped code. We rely
on the simplicity and the familiarity of power to introduce our
library, pointing out how it ensures well-scopedness by design. The



later sections show off this design in full, demonstrating the unique
expressive power of our library.

The integral exponentiation xn can be written in Haskell as:
type ErrMsg = String
powerF :: (ErrT m ˜ ErrMsg, ErrorA m) ⇒ Int → Int → m Int
powerF 0 x = pure 1
powerF n x | n > 0 = fmap (x ∗ ) (powerF (n−1) x)
powerF = throwA ”negative exponent”

Unlike the common presentations of power, we have made clear its
partiality: it is not defined for the negative values of the exponent.
We use an Error applicative (an Error monad, which is also an
applicative) to throw a String exception. (The reason for using
applicatives will become clear soon.)

The task is to specialize this code: to generate the code comput-
ing xn for the given value of n. We are to write a generator, which
takes an integer n and a generator for “x”. Recall that exponenti-
ation is partial: the generator, just as the ordinary powerF, has to
throw an exception if the exponent is negative, thus producing no
code. The exception can be caught in the rest of the program. The
specialized powerF therefore should have the following type

spowerF :: (SSym repr, ErrT m ˜ ErrMsg, ErrorA m) ⇒
Int → m (repr Int ) → m (repr Int )

Recall, repr Int is the type of a code value, the code of an Int
expression; m (repr Int) is the type of a computation that will
generate Int code and possibly have effects. We represent effects
in an applicative rather than in a full monad (we will soon see
applicatives that are not monads).

To write spowerF of this signature we have to ‘lift’ our primitive
code generators to an applicative m. Figure 1 shows such lifted
generators; for example, (∗: ) combines two pieces of generated
code to build their product, while performing the effects of their
generation.

spowerF 0 x = int 1
spowerF n x | n > 0 = x ∗: spowerF (n−1) x
spowerF = throwA ”negative exponent”

The generator spowerF is lucid and obviously correct, matching
in appearance the original, ‘textbook’ code powerF. However,
spowerF does not yet answer our problem. For one, it is not clear
where m (repr Int) for the second argument of spowerF should
come from. Mainly, the specialized exponentiation should be an
Int→ Int function. To fulfill the task, we have to generate the code
of a function (whose body will be generated by spowerF).

Our library provides a primitive generator for target functions,
lamS (see Figure 1), which uses higher-order abstract syntax
(HOAS), relying on Haskell functions to represent the bodies of
target functions. For instance, the code for the twice eta-expanded
addition is generated by

exS2 :: repr (Int→ Int→ Int)
exS2 = lamS(\x → lamS (\y → addS ‵appS‵ x ‵ appS‵ y))

In HOAS, bound variables in the target code are represented by
Haskell variables, of the type repr t. We get to use the familiar
Haskell notation for target-code functions, with human-readable
variable names and with the automatic α-conversion. For that rea-
son, HOAS is popular in code generation; for a good early example
see Xi et al. [39]. The tagless-final approach uses HOAS too [6];
that paper (and the accompanying code) describes the instances of
LamPure for our two concrete realizations, R and C. The latter
instance lets us see the generated code; for example, runCS exS2
gives ”\x 0 → \x 1 → (+) x 0 x 1” (the C interpreter makes
its own variable names). The alternative to HOAS is De Bruijn in-
dices, which were also used in [6]. One would not want to write
more than a couple of lines of code with De Bruijn indices.

We stress that we pursue the so-called pure generative approach,
which treats the generated code as a black box (See the related
work section for other approaches and their comparison). For us,

the representation of code values is opaque; we may only combine
code values. Therefore our library deliberately offers no facilities
to examine the generated code.

To finish our task of specializing powerF we want to write
lamS (\x → spowerF n x), but it will not type. The argument of
lamS is a function that should return a code value, of the type
repr Int. However, spowerF is an effectful generator, of the type
m (repr Int). We have to ‘lift’ lamS to the applicative in which
the body of the function was generated. The effect of generating
the body should be allowed to ‘propagate through the binder’: if
the generation of the body of the function terminates with an ex-
ception, the same exception should terminate the generation of the
whole function. Such a lifting to an applicative is the main contribu-
tion of the paper; it is here where our code generating library differs
sharply from the state of the art, such as MetaOCaml or Template
Haskell. The main problem to overcome is that the ‘effect prop-
agation’ threatens well-scopedness. Although no ill-scoped code
can result from a simple string exception, an exception that car-
ries open code may well lead to code with unbound variables. This
problem of permitting arbitrary effects and statically ensuring well-
scopedness is a difficult one. The solution has to be involved.

The combinator lam, Figure 1, produces the code of an a→ b
function in an applicative m ◦ i, which is a composition of two
applicatives m and i. (The applicative m may be, and often is, a
monad. The composition m ◦ i however is not a monad.) The ar-
gument of lam is to generate the body of the function, in the ap-
plicative m ◦ i’ where i’ is itself the composition i ◦ j. The ap-
plicatives i and j represent type environments of the target code,
or, put differently, the effects of generating target-code variables.
The composition i ◦ j is in effect the concatenation of the cor-
responding type environments. The applicatives i and j must be
AppPermutable, with an additional law that makes their compo-
sition commute, so to support the familiar exchange rule for the
components of type environments. (AppPermutable applicatives
are also closed under composition. The Identity and the Reader ap-
plicatives are AppPermutable.) The generator for the body of the
function receives as its argument the value (i ◦ j) (repr a) repre-
senting the bound variable. The combinator var lifts the variable to
the type (m ◦ (i ◦ j)) (repr a) so that it can be combined with
other generators. The reasons for such an intricate type of lam will
become clear much later, in §4. For now, we point out the similarity
with runST of Haskell’s ST monad. The higher-rank type of lam
prevents ‘leaking’ of bound variables, just like the type of runST
prevents leaking of references created within its region.

We now have all the ingredients to complete the task: the fol-
lowing is the generator of the exponentiation function specialized
to the given exponent. Its inferred type makes it clear that the result
is either the code for the int→ Int function, or an exception.

spowerFn :: (LamPure repr, SSym repr, AppPermutable i, ErrorA m,
ErrT m ˜ ErrMsg) ⇒

Int → (m ◦ i ) (repr (Int → Int ))
spowerFn n = lam (\x → spowerF n (var x))

To run the generator and see the generated code, we instantiate m
to be Either ErrMsg (a particular error applicative) and i to be
the Identity. The accompanying code, file TSPower.hs, includes
several sample specializations.

2.2 Tracing
To illustrate the remaining core part of our library, weaken, we need
another example. It will also demonstrate code generation with IO,
to print a trace. The tracing is not part of the library; rather, it is
easily defined by the user as

trace :: String → (IO ◦ i ) a → (IO ◦ i ) a
trace msg m = liftJ (putStrLn msg) ∗>m
addt :: (IO ◦ i )( repr Int ) → (IO ◦ i )( repr Int ) → (IO ◦ i )( repr Int )



addt x y = trace ”generating add” (x +: y)

The user-defined addt logs all generated additions; the trace is
emitted when the code is generated, rather than when it is executed.
The simplest example generates the code for the addition function,
and logs that fact:

ex2 :: (IO ◦ i ) (repr (Int → Int → Int ))
ex2 = lam (\x → lam (\y → weaken (var x) ‵ addt‵ var y))

From the type of lam, Figure 1, we deduce the types
x :: (IO ◦ (i ◦ j1 )) (repr Int )
y :: (IO ◦ (( i ◦ j1 ) ◦ j2 )) (repr Int )

where j1 is the AppPermutable introduced by the outer lam and
j2 comes from the inner lam. That is, x and y both denote integer
variables in the generated code, but in different type environments.
The environment of y is longer. Therefore, to use x and y in the
same expression, we need to make the type of x the same as the
type of y, that is, to weaken x: a variable in a type environment is a
variable in any longer environment. The explicit weaken is a chore,
which can be automated in many cases with weakens – the method
in the type class Extends m n that checks that the applicative type
n is a weakened, by 0 or more steps, version of m. So, our example
can be re-written as

ex2 = lam (\x → lam (\y → weakens (var x) ‵ addt‵ weakens (var y)))

Since the composition weakens ◦ var occurs frequently, it is given
the name vr. The example takes the final form

ex2 = lam (\x → lam (\y → vr x ‵ addt‵ vr y))

On the simplest examples of power and addition we have seen
the main components of our code-generation framework. The ac-
companying code, file TSEx.hs, has many more examples, some
significantly more complex. The next sections will show genera-
tors where the danger of scope extrusion is real. The coming ex-
amples were not possible to generate in the existing mainstream
frameworks such as MetaOCaml or TH while statically assuring
the absence of scope extrusion at all times.

2.3 Moving open code
The warm-up example in §2.1 was rather simple, and could be im-
plemented with the existing techniques, such as Mint [38] or a triv-
ial ad hoc extension of λ⊘ [14]. The code-generation library intro-
duced in §2.1 permits however the manipulation of open code in
any applicative. The generation applicative can truly be anything,
far beyond throwing text-string exceptions. In this section we in-
stantiate the generation applicative to that of reference cells, and
demonstrate storing open code and retrieving it across the binders,
while statically ensuring the generation of well-scoped code. We
demonstrate that scope extrusion becomes a type error. That is be-
yond any existing higher-order code-generation approach with safe
code motion.

Our running example is of assertion-insertion, a special case of
if-insertion. It has been described in detail in [14], which argued
that in practice an assertion has to be inserted beyond the closest
binder. Such an insertion was left to future work – which becomes
the present work in this section. For the sake of exposition, we
first demonstrate open code movement under a binder; a simple
modification will move beyond the binder.

We start by extending our DSL assertPos and the integral divi-
sion (/:), see Figure 2. The tagless-final approach makes extend-
ing an EDSL trivial, by defining a new type class and its instances
for the existing interpreters, R and C in our case. The expression
assertPos test m will generate an assertion statement in the tar-
get code, to check that the code generated by test produces a pos-
itive integer. If the assertion checks, the code m is run; otherwise
the program crashes.

Our goal is to write a guarded division, making sure the divisor
is positive. The first version is

class AssertPos repr where
assertPosS :: repr Int → repr a → repr a

assertPos :: m (repr Int ) → m (repr a) → m (repr a)

class SymDIV repr where divS :: repr (Int → Int → Int )
infixl 7 /:
(/:) :: m (repr Int ) → m (repr Int ) → m (repr Int )

Figure 2. Library extension: assertion statement and integer divi-
sion

guarded div1 :: m (repr Int ) → m (repr Int ) → m (repr Int )
guarded div1 x y = assertPos y (x /: y)

to be used as
lam (\y → complex exp +: guarded div1 (int 10) (var y))

The first version is unsatisfactory: we check for the divisor right
before doing the division. If the divisor is zero, we crash the pro-
gram wasting all the (potentially long) computations done before.
It helps to report the error as soon as possible, when we learn the
value of the divisor. We have to move the assertion code.

We can accomplish the movement with reference cells. We allo-
cate a reference cell holding a code-to-code transformer, originally
identity. As the code is generated, the cell accumulates post-hoc
transformations. At the end of the generation, the resulting trans-
former is retrieved and applied to the generated code. To add asser-
tions therefore, the generator modifies the contents of the cell, com-
posing the current transformer with assertPos test. The follow-
ing code implements the idea, using IO as the generating applica-
tive, and its reference cells IORef.

assert locus :: (m ˜ (IO ◦ i )) ⇒
(IORef (m (repr a) → m (repr a)) → m (repr a)) → m (repr a)

assert locus f = J $ do
assert code ref ← newIORef id
mv ← f assert code ref
transformer ← readIORef assert code ref
transformer (pure mv)

We re-define guarded division to insert the positive divisor assertion
at the given locus

add assert :: (m’ ˜ (IO ◦ i )) ⇒
IORef (m a → m a) → (m a → m a) → m’ ()

add assert locus transformer =
liftJ $ modifyIORef locus ( ◦ transformer )

guarded div2 locus x y =
add assert locus (assertPos y) ∗> x /: y

Here is the example:
exdiv2 = lam (\y → assert locus $ \locus →
complex exp +: guarded div2 locus (int 10) (var y))

The generated code demonstrates that assert is inserted before the
complex exp, right under the binder, as desired. We stress that
the code transformer, assertPos y, includes the open code. We do
store functions that contain open code. However, the reference cell
that accumulates the transformer has been manipulated completely
inside a binder. There is no risk of scope extrusion then. The above
example is hence implementable in λ⊘[14].

In the second, main part of our example, we change guarded div2
slightly so that it may insert the assertion even beyond the binder.
Such a movement of the open code has not been possible before,
while ensuring well-scopedness. The modification to guarded div2
is simple: adding the generic weakens. The inferred signature tells
the difference

guarded div3 :: (m’ ˜ (IO ◦ i ), Extends m m’) ⇒
IORef (m (repr a) → m (repr a))
→ m’ (repr Int ) → m (repr Int ) → m’ (repr Int )

guarded div3 locus x y =
add assert locus (assertPos y) ∗> x /: weakens y



The divisor and the dividend expressions do not have to be in
the same environment; the environment of the dividend, m’, may
be weaker, by an arbitrary amount. The generalized guarded div3
can be used in place of guarded div2 in exdiv2. A more general
example becomes possible:

exdiv3 = lam (\y → assert locus $ \locus →
lam (\x → complex exp +:

guarded div3 locus (var x) (var y)))

The generated code shows the assertion y>0 is inserted right after
the binding of y, at the earliest possible moment – exactly as de-
sired. Thus assertPos (var y) has really been moved across the
binder, lam (\x → ...). If we make a mistake and switch var x
and var y as the arguments of guarded div3, attempting to move
assertPos (var x) beyond the binder for x, the type checker re-
ports a problem

Could not deduce (j1 ˜ j )
Expected type: (◦ ) i0 j (repr0 Int )
Actual type: (◦ ) (i0 ◦ j ) j1 (repr0 Int )

In the first argument of ‵ var’, namely ‵x’
In the third argument of ‵ guarded div3’, namely ‵ (var x)’

telling us that we have attempted to move x to a smaller binding
environment. In other words, the x binding leaks. Scope extrusion
indeed becomes a type error. (The generated code is shown in full
as regression tests of the generators, in the code accompanying
the article. The file Anaphora.hs includes other examples of code
movement with mutable cells.)

The example is of course simplistic, but easily extensible. For
example, by representing the transformer differently, so that the
generator, before recording a new assertion, could check if there is
already the same or a stronger assertion recorded. The technique
thus extends to code generation with constraints (supercompila-
tion). The locus, describing where the assertion is to be inserted,
could be bundled with the bound variable in a new data structure,
so that it does not have to be passed around separately. Alterna-
tively, one could use a form of dynamic binding, which could be
implemented via the continuation monad as the generating applica-
tive. Code generation with continuations is described next.

2.4 Inserting let across binders
We have seen the examples of what looked like ‘patching-up’
the already generated code, to insert assertions (whose contents
are determined after the generation is complete). One may view
such patching-up as code movement. The ultimate, and the most
difficult task is inserting not just assert statements but binding
forms such as let and loop statements – moving not just open code
but binders. We describe let-insertion now and loop-insertion in the
next section.

The significance of let-insertion is generating code with the ex-
plicit sharing of the result of a sub-expression, eliminating code
duplication. If the target code is imperative, controlling code du-
plication is not only desirable but necessary. For that reason, let-
insertion is used extensively in partial evaluation, staging [34] and
other meta-programming. The paper [14] argued for the need to
let-insert across binders and posed several such cases as open
problems. We now demonstrate the solution, with well-scopedness
safety guarantees.

Our library in Figure 1 provides the primitive generator of let-
expressions in the target code, and the effectful generator let ,
whose two arguments generate the expression to share, and the let-
body. Whereas the generator using Haskell’s let

let x = int 1 +: int 2 in x ∗: x
−− (∗ ) ((+) 1 2) ((+) 1 2)

yields the code (shown underneath in the comments) with the
obvious code duplication, the generator producing the target-code
let

type CPSA w m a −− abstract
instance Applicative (CPSA w m)

runCPSA :: CPSA a m a →m a
runJCPSA :: (CPSA (i a) m ◦ i ) a → (m ◦ i ) a
runJCPSA = J ◦ runCPSA ◦ unJ

resetJ :: (CPSA (i a) m ◦ i ) a → (CPSA w m ◦ i) a

genlet :: (CPSA (i0 (repr a)) m ◦ i0 ) (repr a) →
(CPSA (i0 (repr w)) m ◦ i ) (repr a)

−− growing the hierarchy
liftCA :: m a → CPSA w m a
liftJA :: (m ◦ j ) a → (CPSA w m ◦ j) a

Figure 3. The interface for let-insertion

let (int 1 +: int 2) $ \x → var x ∗: var x
−− let z 0 = (+) 1 2 in (∗ ) z 0 z 0

shares the result of the addition without re-computing it. The code
generation for the addition also happens once in the latter case
and twice in the former case (which is noticeable if the addition
generator is effectful, e.g., printing a trace message).

Just like the assert statements, we often wish to insert let in an
earlier part of the code, to accomplish what is called an invariant
code motion (moving code out of the loop or a function). Insert-
ing let is significantly more complex than inserting assert since
before let is inserted, the let-bound variable does not even exist.
Seemingly, we cannot generate the let body before we generate the
binder. The answer to the quandary was found in partial evalua-
tion community long time ago: writing the code or the generator
in the continuation-passing style (CPS) [2] (for the detailed expla-
nation, see [5, Section 3.1]) – or else using control operators [20].
Alas, the ordinary CPS [9] cannot be used for let-insertion beyond
binders (that is, cannot be used for the invariant code motion) [14].
Our library provides a new CPS hierarchy, called CPSA, which is
applicative rather than monadic. It lets us implement, in the file
TSCPST.hs, the let-insertion interface shown in Figure 3. The im-
plementation is outside the core of our library, relying only on the
interface of Figure 1 but not on any details of its implementation.

The interface defines an applicative CPSA w m where w is
the answer type and m is a (base) applicative. The latter can be
Identity, IO, or another CPSA w’ m’. Thus CPSA may be iterated,
giving us a hierarchy and the possibility of let-insertion beyond
many bindings. The combinator for let-insertion itself is called
genlet. It receives an expression to let-bind and evaluates to the
let-bound variable. The place to insert the let form is marked by
resetJ. An example should make it clear:

resetJ $ lam (\x → var x +: genlet (int 2 +: int 3))
−− let z 0 = (+) 2 3 in
−− \x 1 → (+) x 1 z 0

with the generated code shown in comments. The let-expression
indeed occurs outside the generated function: we have moved the
expression 2+3, which does not depend on the function’s argu-
ment, outside the function’s body. The let-insertion point may be
arbitrarily many binders away from the genlet expression:

resetJ $ lam (\x → lam (\y →
var y +: weaken(var x) +: genlet (int 2 +: int 3)))
−− let z 0 = (+) 2 3 in
−− \x 1 → \x 2 → (+) ((+) x 2 x 1) z 0

The right-hand-side of the binder may contain variables; that is, we
may let-bind open code. Here the type-checker watches that we do
not move such open expressions too far. For example, the following
code attempts to let-bind var x +: int 3 at the place marked by
resetJ, which is outside the x’s binder.

resetJ $ lam (\x →



(lam (\y → var y +: weaken (var x) +:
genlet (var x +: int 3))))

Expected type: i0 (repr0 Int )
Actual type: (◦ ) i0 j (repr0 Int )

In the first argument of ‵ var’, namely ‵x’
In the first argument of ‵ genlet ’, namely ‵ (var x +: int 3)’

The type checker reports the error, pointing out the binder whose
variable escapes (attempted to be smuggled to a shorter environ-
ment, without j). We must move the insertion point within that
binder, moving the resetJ:

lam (\x →
resetJ (lam (\y → var y +: weaken (var x) +:

genlet (var x +: int 3))))
−− \x 0 → let z 1 = (+) x 0 3 in
−− \x 2 → (+) ((+) x 2 x 0) z 1

One may use several genlet expressions and even nest them:
lam (\x → resetJ (lam (\y →

int 1 +: genlet (var x +: genlet (int 3 +: int 4))
+: genlet (int 5 +: int 6))))

−− \x 0 → let z 1 = let z 1 = (+) 3 4
−− in (+) x 0 z 1
−− in let z 2 = (+) 5 6
−− in \x 3 → (+) ((+) 1 z 1) z 2

The result is not quite satisfactory: since one of the let-bound
expressions contains the variable x, we must insert resetJ under
the binder for x, forever preventing let-insertions beyond that point.
Some of the let-bound expressions are closed, and could be let-
bound outside of lam (\x→ ...).

To permit multiple let-insertion at multiple points, we have to
use the CPSA hierarchy, with the applicative CPSA w (CPSA
(i0 (repr w1)) m). The nested CPSA lets different genlet move
to different places. We only need to indicate which genlet goes
to which place using liftJA, which may be used repeatedly (the
more liftJA combinators, the wider the scope of the corresponding
genlet):

lam (\x → resetJ (lam (\y →
int 1 +: genlet (var x +:

(liftJA $ genlet (int 3 +: int 4)))
+: (liftJA $ genlet (int 5 +: int 6)))))

−− let z 0 = (+) 3 4 in
−− let z 1 = (+) 5 6 in
−− \x 2 → let z 3 = (+) x 2 z 0 in
−− \x 4 → (+) ((+) 1 z 3) z 1

We have demonstrated generating code in which different let-
bound expressions are moved to different places, as far as possible,
crossing an arbitrary number of target code binders, including the
binders introduced by the earlier genlet.

2.5 Loop tiling
This section presents the case study of using our library for com-
mon high-performance computing loop optimizations: strip min-
ing, loop exchange and loop tiling. Performing loop exchange with
static assurances of well-typedness and well-scopedness of the gen-
erated code was posed as an open problem [8]. This section presents
the first solution.

Our running example is matrix-vector multiplication2 (see the
complete code in the file TSLoop.hs).

mvmul textbook n m a v v’ = vec clear n v’ ≫
forM [0,1.. m−1] (\j →
forM [0,1.. n−1] (\i →
vec incr v’ i =≪
mat get a i j ∗ vec get v j ))

2 Matrix-matrix multiplication benefits more from loop tiling, but it is less
suitable for exposition.

This is the standard Haskell implementation of the textbook code
for multiplying the matrix a with n rows and m columns by the
vector v with the result in the vector v’. The operations vec get and
mat get retrieve a vector/matrix element by its index. We assume
that n is much greater than m. Once a00 is accessed, memory
loads the whole cache line, that is, elements a00 through a07 (with
the cache line 8*8 bytes). Alas, by the time the algorithm needs
a01, at the next major iteration, it will be already evicted. So
mvmul textbook performs poorly since it fails to take advantage
of the memory bandwidth’s bringing in several array elements at a
time. A tiled program handles the array one chunk (of size b) at a
time.

mvmul tiled b n m a v v’ = vec clear n v’ ≫
forM [0, b.. m−1] (\jj →
forM [0, b.. n−1] (\ii →
forM [ jj , jj +1..min (jj +b−1) (m−1)] (\j →
forM [ ii , ii +1..min (ii +b−1) (n−1)] (\i →
vec incr v’ i =≪
mat get a i j ∗ vec get v j ))))

Since a tile is small enough, the element a01, brought along with
the requested a00, will not be evicted when it is needed at the j = 1
iteration. Tiling improves spacial locality, and is one of the basic
optimizations in high-performance computing. Tiling is converting
each i and j loop into a nested pair of loops, followed by loop
exchange, pulling the ii loop right after the jj loop. The body of the
loops remains exactly the same as before; it is executed the same
number of times – but in a different pattern.

The tiled code looks more complex; it is easy to make a mistake
when tiling by hand. We need automation. We need automation
even more when we will be combining loop tiling with scalar pro-
motion, partial unrolling and other optimizations. Our task thus is
to generate ordinary and tiled loop nests modularly and composi-
tionally.

The starting point is converting mvmul textbook to a genera-
tor:

mvmul0 n m a v v’ = vec clear (int n) v’ ≫ :
loop (int 0) (int (m−1)) (int 1) (lam $ \j →
loop (int 0) (int (n−1)) (int 1) (lam $ \i →
vec incr (weakens v’) (vr i ) =≪ :
(mat get (weakens a) (vr i ) (vr j ) ‵ mulM‵

vec get (weakens v) (vr j ))))

The code is the straightforward staging of mvmul textbook assum-
ing that the dimensions n and m are known statically. It clearly cor-
responds to the textbook code and seems ‘obviously’ correct. Here
mat get and vec get are the generators of matrix/vector indexing
operations. There may be several implementations for loop, the
generator of a loop with the given lower and upper bounds and the
step. The straightforward one generates forM [lb,lb+step..ub],
which gives back mvmul textbook. The second implementation
does the so-called ‘strip mining’, striping a loop into blocks and
hence converting a single loop into two, iterating over blocks (by
the statically known factor b) and then within a block:

loop nested :: Int → Int→ Int→ (m ◦ i) (repr (Int → IO ()))
→ (m ◦ i ) (repr (IO ()))

loop nested b lb ub body =
loop (int lb ) (int ub) (int b) (lam $ \ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))

This generator is written once and for all, in terms of the primitive
loop, by a domain expert, and put in a library. If we just replace
loop with loop nested b in mvmul0, keeping everything else the
same, we obtain a more optimal, strip-mined code.

Yet another implementation of the loop generator is to split a
loop in two, as in strip mining, and hoist the first loop. The only
change to loop nested is insloop, which, like genlet from §2.4,
inserts the loop at some position, to be indicated by resetJ.



loop nested exch b lb ub body =
let (insloop (int lb ) (int ub) (int b)) (\ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))

Using loop nested exch instead of loop in mvmul0 with resetJ at
the top – but keeping exactly the same loop body – results in the
generation of the tiled loop code just like mvmul tiled. (See the
accompanying code for the full details.) Truly, tiling is strip mining
with the loop exchange.

We have demonstrated the step-wise development of the opti-
mized iterative code. We write the loop body once, and apply var-
ious transformations (strip-mining, tiling, etc) many times. In par-
ticular, we exchange loop bodies, moving open code with binders
across other binders.

3. Implementation
This section briefly outlines the implementation of the interface in
Figure 1. The full implementation is in the file TSCore.hs in the
accompanying code.

The two representations of the target code, the data types R and
C are as follows:

newtype R a = R{unR :: a}
newtype C a = C{unC :: VarCounter → Language.Haskell. TH.Exp}

R is just the identity functor; C represents the target code as a
Haskell AST, as reflected in the TH.Exp data type (VarCounter
is used internally for generating fresh names). Making R and S
instances of SSym, LamPure, SymLet, etc. is simple; see the
exposition of the tagless-final approach [6] for detailed discussion.

Before showing the implementation of lam, we explain why it
has such a complex and strange type. Recall the primitive generator
of functions lamS and the example of its use:

lamS :: (repr a → repr b) → repr (a→ b)
exS2 = lamS(\x → lamS (\y → addS ‵appS‵ x ‵ appS‵ y))

As evident from the type of lamS, not only Haskell variables rep-
resent bound variables in the target code (as exS2 illustrates), but
also the Haskell type environment represents the type environment
of the generated code. The former is implicit in Haskell code, and
hence is the latter. Therefore, a generator program, which is neces-
sarily a closed Haskell term, is guaranteed to generate closed target
code, without unbound variables.

The downside of lamS is that its type does not permit any effects
during code generation. To accommodate effects, the type of the
abstraction generator should be, at first blush

(repr a → m (repr b)) → m (repr (a→ b))

However, this type provides no information so to tell if the mov-
ing of open code across a binder results in scope extrusion. Moving
open code across binders using mutation or control effects breaks
the correspondence between the Haskell type environment and that
of the target code. To retain static guarantees of well-scopedness
we have to make the target type environment explicit. Suppose
Code Γa is such a type of code values with the explicit type en-
vironment Γ. We could then give the effectful function generator
the following type:

lam’ :: (Code (Γ;a) a → m (Code (Γ;a) b)) → m (Code Γ(a→ b))

where Γ;a extends Γ with the type a. Our lam in Figure 1 is es-
sentially the above lam’, with Code Γa realized as i (repr a),
where the applicative i represents Γ. Then Code (Γ;a) b is re-
alized as (i ◦ j) (repr b) where the Reader applicative j, be-
ing (repr a → ), represents type a in the target type environ-
ment. Since applicatives compose, (i ◦ j) also has the form of
the target type environment. Furthermore, m (Code (Γ;a) b) is
m ((i ◦ j) (repr b)), which is (m ◦ (i ◦ j)) (repr b) and
(m ◦ (i ◦ j)) is again an applicative if m is. The implementation

of our lam is straightforward, keeping in mind that we chose j to
be the Reader applicative (repr a→ ).

lam :: (∀ j . AppPermutable j ⇒
(i ◦ j ) (repr a) → (m ◦ (i ◦ j )) (repr b))
→ (m ◦ i ) (repr (a→ b))

lam f = fmap lamS (J ◦ fmap unJ ◦ unJ $ f (J ◦ pure $ v))
where
v = \repra → repra −− bound variable

(The reason of the quantification over j will become clear in §4.)
It is remarkable that our lam is expressible entirely in terms of the
primitive function generator lamS, without looking under its hood.
The implementation of let is similar. The implementation of var
and weaken follows from the Applicative laws.

We now describe how the representation of the target code with
the explicit type environment makes let-insertion very difficult.

If let-insertion is the only generation effect and if let-insertion
is restricted within a binder, then it is easy. The solution, involving
delimited continuations, has been known in the partial evaluation
community for decades. We can write it in our library as

newtype CPS w a = CPS{unCPS :: (a → w) → w}
runCPS :: CPS a a → a
runCPS m = unCPS m id

genlet simple :: CPS (repr a) (repr a) → CPS (repr w) (repr a)
genlet simple e = CPS $ \k → let S (runCPS e) (\x → k x)

Alas, it is exasperating to generalize this solution from repr a to
the more detailed type of code values Code Γa, that is, i (repr a).
The straightforward attempt

genlet0 e = CPS $ \k → runCPS $ let e (\x → k x)

fails to type check, because x ostensibly leaks out from the scope
of let . The real reason for the type-checking failure may be under-
stood as follows. On one hand, if we are to insert let across bind-
ings, the environment Γ of genlet0 e should be an extended envi-
ronment Γ0 of e, the let-bound expression. Specifically, Γ should be
Γ0;Γ′ where Γ′ represents the environment of the bindings crossed
by let-insertion. On the other hand, from let e (\x → k x) we
obtain that x is a bound variable in the target code in the envi-
ronment Γ0;b where b represents the new binding created by let .
Since the continuation k receives x as an argument, Γ = Γ0;b. Ob-
viously b and Γ′ are not related and don’t have to be the same.

The solution is very complex, see the file TSCPST.hs. It in-
troduces a new CPS hierarchy, called CPSA, with the following
rank-3 type of the applicative CPS transformer:

newtype CPSA w m a =
CPSA{unCPSA ::

∀ hw. AppPermutable hw ⇒
(∀ h. AppPermutable h ⇒
((m ◦ hw) ◦ h) a → ((m ◦ hw) ◦ h) w)
→ (m ◦ hw) w}

Since the parameter m can be instantiated to be CPSA w’ m’ again,
CPSA generates the hierarchy. Unlike that of Danvy-Filinski [9],
ours is applicative but not monadic. Before looking at the code,
the reader is encouraged to write an applicative instance for CPSA
w m as an exercise. A good way to understand CPSA is as a
specialization of the following

newtype CPSA w m a =
CPSA{unCPSA ::

∀ m1. Extends m m1 ⇒
(∀ m2. Extends m1 m2 ⇒m2 a →m2 w) →m1 w}

However, to make an instance of Applicative we need the transitiv-
ity of Extends, which is very difficult to express in Haskell.



4. Safety properties
This section details static assurances of our generators and gives
informal justification. Formal justification is quite involved and is
the subject of another paper.

Our library relies on the tagless-final [6] representation of
the target language (which is a simply-typed subset of Haskell,
presently). Since the encoding is tight, we have

Proposition 1 Every value of the type ∀repr. (SSym repr,
LamPure repr, ...) ⇒ repr a in an environment xi : repr a, . . .
denotes a well-typed target term of the type a in a target-language
type environment xi : a, . . ..

It immediately follows, by the type soundness of Haskell, that
every code value produced by a well-typed Haskell program de-
notes a well-typed target term. Our library statically ensures well-
typedness even for parts of the generated code, not only for the
entire generated program.

Our effectful generators explicitly carry the target-language
type environment: by design, an effectful generator of the type
(m ◦ i) (repr a) (omitting the constraints on the type variables
per our convention), if successfully terminates, produces poten-
tially open target code, whose free variables are in the type envi-
ronment represented by the applicative i. The ‘run’ functions such
as runC in Figure 1 set i to be the Identity, corresponding to the
null environment. It follows that

Proposition 2 The code value produced by the functions runR and
runC represents closed target code.

Thus our Haskell generators produce well-typed code without un-
bound variables. The property is relatively weak: if e is a faulty
generator that attempts to produce code with unbound variables,
the type error will be emitted only upon type-checking the runC e
expression. Our library has a stronger property, maintaining well-
scopedness at all times and making such e ill-typed. Mainly, our li-
brary statically prevents generation of code with accidentally bound
variables. The notion of well-scopedness is subtle; the next section
explains.

4.1 Examples of breaking lexical scope
Guaranteeing the generation of well-typed and closed code is not
enough however. The generated code may be closed, but its bind-
ings could be ‘mixed-up’ or ‘unexpected’. It is a quite subtle prob-
lem to define what it means exactly to generate code with expected
bindings; the literature, which we review in this section, relies on
negative examples, of intuitively wrong binding or violations of
lexical scope.

As the first example of intuitively wrong behavior we use the
one from [7, Section 3.3]. The example, unfortunately admitted
in the system of [7], exhibits the problem that bindings “vanish
or occur ‘unexpectedly’ ”. The example can be translated to our
library, but only if we break it:

exCX f = unsafeLam(\y → unsafeLam (\x → f (var x)))

here unsafeLam is the unsafe version of the lam generator for
building target code functions – without the higher-rank type (with-
out the ∀j). We introduce unsafeLam for the sake of this problem-
atic example, because otherwise, happily, it will not type check. We
may apply exCX to different functions, obtaining the code shown
in the comments beneath the generator:

exCX c1 = exCX id
−− \x 0 → \x 1 → x 1”

permute env :: (m ◦ (( i ◦ j ) ◦ j1 )) a → (m ◦ (( i ◦ j1 ) ◦ j )) a
exCX c2 = exCX permute env
−− \x 0 → \x 1 → x 0

The binding structure of the generated code depends on the argu-
ment passed to exCX at run time. Thus scope is not lexical in the
sense that the mapping between binding and reference occurrences
of variables cannot be determined just by looking at the code for
exCX or its type. Speaking of the type, here is the inferred type of
exCX (omitting the constraints per our convention):

exCX :: ((m ◦ (( i ◦ (→ ) (repr a)) ◦ (→ ) (repr b))) (repr b)
→ (m ◦ (( i ◦ (→ ) (repr a)) ◦ (→ ) (repr b))) (repr c))
→ (m ◦ i ) (repr (a → b → c))

The type says that the argument of exCX maps target code valid
in the environment with at least two slots into target code in the
same environment – or in the environment of the same structure. If
we instantiate the type variables appropriately, swapping two slots
in the environment preserves its structure. That is why exCX c2
above was accepted. If the type environment is just a sequence and
variables are identified by the offsets in the sequence, swapping two
elements in the environment preserves the property that each free
variable in a term corresponds to a slot in the environment. Alas,
swapping changes the mapping between the variable references
and the slots. If the type system of the staged language enforces
merely the well-formedness property that each free variable in
the target code should correspond to some slot in the (explicit)
target environment, we lose lexical scoping for the generated code.
We cannot statically tell the correspondence between binding and
reference occurrences of target variables. We thus give further,
clearer evidence for the argument of Pouillard and Pottier [30]
that well-scoped De Bruijn indices do not per se ensure that the
variable names are handled “in a sound way.” (The system of Chen
and Xi [7] used raw De Bruijn indices for variables; therefore,
they could demonstrate the problem by choosing f to be either
the identity or the De Bruijn shifting function. In our system,
a variable reference is a projection from the environment rather
than an abstract numeral, which makes the example a bit more
complicated.)

Let us take another example of an effectful code generator, from
Kim et al. [16, §6.4]. Written with our library, it is as follows (see
Unsafe.hs for the complete code for these examples.)

exKYC1 :: (IO ◦ i ) (repr (Int → Int → Int ))
exKYC1 = do
a ← int 1 ≫= newIORef
f ← unsafeLam (\x → unsafeLam (\y →

(weaken (var x) +: var y) ≫= writeIORef a ≫ int 2))
g ← unsafeLam (\y → unsafeLam (\z → readIORef a))
return g
−− \x 0 → \x 1 → (+) x 0 x 1

The generator stores the open code (weaken (var x) +: var
y) in an outside reference cell a and inserts the code under the
scope of two different abstractions, in g. Kim et al. argue that a
(Lisp) programmer might have expected that only the variable y is
captured by the new abstraction in g; if the programmer used the
system of Chen and Xi [7], then both variables would be captured
(producing the code shown on the comment line). We view this
example as a blatant violation of lexical scope: leaking bound
variables from under their binders, and especially capturing them
by different binders, violating hygiene, is an offense. We can only
write exKYC1 if we deliberately break our library; inserting even
one regular, safe lam provokes the ire of the type checker.

We stress again that the two problematic examples will not type
with the unbroken lam. It is the higher-rank type of lam that is
responsible for the rejection of the generators attempting to gener-
ate ill-scoped code. (Incidentally, since the let-insertion and loop-
exchange code is written in terms of lam and similar let , their
safety follows.) We may liken the higher-rank type of lam to that
of runST in the ST monad [19]. In fact, our ill-scoped examples are
akin to those [19, §2.5.2] of mutable cells created in one state thread
escaping or being used in another thread. Launchbury and Peyton



Jones argue how parametricity (which comes from the universal
quantification over the state of the thread – target code type environ-
ment in our case) prevents bad examples. The analogy with runST
helps us make precise the notion of well-scopedness. Recall that
(m ◦ i) (repr a) is a generator of a potentially open code whose
free variables are described by the type environment denoted by i.
The implementation of lam realizes a particular mapping, ‘coding
function’ in the words of [19], assigning target-code free variables
particular slots in i. The generated code is well-scoped if using a
different coding function will generate α-equivalent code. The pa-
per [19] outlines an argument based on logical relations to prove
the coding-function independence for their runST threads. We ex-
pect that a similar argument can apply to our case, but its formal
treatment is left for another paper.

5. Related work
5.1 Template Haskell
For generating Haskell code, our library relies on Haskell AST as
represented by Exp data type of Template Haskell (TH). We also
rely on TH’s pretty-printing.

Template Haskell also provides much more convenient, com-
pared to Exp, way of building code, using quasiquotation, in the
spirit of Lisp and MetaML. Template Haskell permits effects, in-
cluding IO, within unquotes, via the so-called Q monad. Tem-
plate Haskell does limited and idiosyncratic type checking of un-
der quasiquotation – and still permits construction of ill-typed code
or code with unbound variables. Like low-level Lisp macros, TH
is unhygienic. Therefore, the completely generated code must be
type-checked, at which time code generation errors become appar-
ent. Alas, the error messages are quite unhelpful, referring to the
generated code, which is often large and hardly comprehensible.
Normally, a generator is made of many components written by sep-
arate people. Effects can be non-local. So, when effectful genera-
tors produced wrong code (inserted a binding to a wrong place), it
could be quite difficult to figure out who did it (keeping in mind
that identifiers in the generated code are all obfuscated, and the
generated code is typically long. We aim at the generated code to
be well-formed and well-typed by construction; attempts to gener-
ate bad code should be reported when the generator itself is type-
checked.

We must stress that the post-validation approach employed by
TH – type check the generated code before use – does not catch
all violations of the lexical scope. Lexical scope mixup (accidental
capture) may well generate well-formed code – but with unantic-
ipated bindings. The generated code will compile, but run in an
unexpected way, which is very difficult to debug. Thus the TH ap-
proach is not acceptable to us.

Recently TH has introduced typed quoted expressions TExp,
which is quite like MetaOCaml brackets, only restricted to two
levels, with no run and no polymorphic lift (although that may be a
feature). TExp are type checked as they are constructed, reporting
the errors in terms of the generator. TExp thus provides the same
static assurances as MetaOCaml. Alas, TExp permits no effects
whatsoever during code generation.

We demonstrate the code-generation library that has the same
static guarantees as TExp, and permits all effects of the Q monad,
including arbitrary IO (and even control effects). Incidentally, our
work points out that the Q monad is redundant. Our library permits
storing open expressions in mutable cells and communicating open
expressions in exceptions or control effects, across binders – and
yet statically ensures well-typedness and well-formedness. To our
knowledge, nobody was able to demonstrate that before.

5.2 Code generation with effects
The present paper is the last in the line of research on effectful
program generation. The most notable in this line is [11, 37], who
developed an off-line partial evaluator for programs with mutation.
Partial evaluator can perform some of the source code mutations
at specialization time, if possible. Such operations may involve
code, including open code. Scope extrusion is prevented by careful
programming of the partial evaluator (followed by a proof). The
partial evaluator is not extensible and is not maintained; if new
specializations are desired, a user has little choice but to thoroughly
learn the implementation, extend it, and redo the correctness proof.

Staged languages attempt to ease the burden, giving the user
code-generating facilities without requiring the user to become a
compiler writer. The latter requirement implies that the generated
code should be well-formed and well-typed and free from unbound
variables, so the end user should not need to examine it. Since the
unrestricted use of effects quickly leads to the generation of code
with unbound variables, it has been a persistent problem to find the
right balance between the restrictions on effects and expressive-
ness. So far, that balance has been tilted away from expressiveness.
We can judge the expressiveness by several benchmarks: (1) Faulty
power §2.1: throwing simple exceptions in code generators; (2) Gi-
bonacci [34], an epitome of code generation with memoization; (3)
assert-insertion beyond the closest binder, §2.3; (4) let-insertion be-
yond the binder, §2.4. Only the present work implements all four
benchmarks; even assert-insertion was not reachable before with
statically assured generators.

The work [12] presents a type-and-effect system for meta-
programming with exceptions, allowing exception propagation be-
yond target-code binders. Exceptions are treated as atomic con-
stants, and cannot include open code. The system permits Faulty
power but not the other benchmark in our suite. [3, 4] permitted
mutations but only of the closed code; the approach cannot there-
fore implement the Gibonacci benchmark.

Mint [38] is a staged imperative language, hence permitting
generators with effects such as mutation and exceptions. Mint does
support the Faulty power. Mint severely restricts the code values
that may be stored in mutable variables or thrown in exceptions,
by imposing so-called weak separability. Even closed code values
cannot be stored in reference cells allocated outside a binder. There-
fore, Mint cannot implement the Gibonacci benchmark.

Swadi et al. [34] and Kameyama et al. [14] described the sys-
tems that permit the use of control effects, and hence mutation,
restricting them within a binder: the generator of a binder is always
pure. The first system used continuation-passing (or, monadic)
style, whereas the latter was in direct style. Both systems imple-
ment Gibonacci; neither implements faulty power, although the
system [14] can be trivially extended for that case (imposing the
same restrictions on values thrown from under the binder, as those
of Mint). The two systems hit the local optimum, allowing writing
moderately complex generators, e.g., [5].

The parallel line of work [16] (and, in the same spirit, [22]) at-
tempts to formalize and make safe Lisp practice of generating code
with concrete symbolic names. The variable capture is specifically
allowed and the lexical scope of the generated code is not assured
statically.

Rompf and Odersky proposed a lightweight approach to staging
in Scala [33], which provides an effective way to generate high-
performance code. Their goals are quite different from ours: they
focus on practical issues on code generation, in particular, how to
make the designing, efficiently implementing and using practical
DSLs convenient for the end user. We, on the other hand, focus on
defining and statically assuring well-scopedness.

The language Terra [10] is a multistage language based on Lua.
Although untyped, it assures the absence of unbound variables in



the generated code syntactically, by representing any open gener-
ated code as a metalanguage function. This approach does not how-
ever prevent generation of code with unexpectedly bound variables.

5.3 Contextual systems
In our approach, code generators may produce open target code
and have the type that includes the target code typing environment.
Moreover, the type contains the ‘names’, or the type-level j proxies,
for term’s free target variables. The latter fact in particular relates
our work to the contextual modal type theory [24]. Unlike the
latter work, our ‘unquotation’ (which is implicit in the use of
cogen combinators) is much more concise; we also support some
polymorphism over environments, and thus, modularity. We also
never destruct or pattern-match on code values (see the next section
for more discussion).

Environment classifiers [35] are an elegant simplification of
contextual modal type theories, which indexes open code and con-
texts by classifiers that stand for extensible sets of free variables
(rather than variables themselves). Alas, the classifiers as originally
proposed are not precise enough to statically assure well-scoped
generated code in the presence of generator effects. The present
paper may be viewed as the system of environment classifiers with
improved precision.

Rhiger [32] proposed a multi-stage calculus which allows ef-
fects in generators with the static guarantee of type safety. Although
simple and elegant, his calculus lacks polymorphism over environ-
ments so that a code cannot be re-used in different environments.

5.4 Programming with names
The nominal tradition has been extensively reviewed in [30]. Using
the latter’s criteria, our approach can be classified as using explicit
contexts, with ‘names’ inhabiting every type (the consequence of
HOAS), and no costly primitives. The type system ensures not only
that a closed generator generates closed code, but also that the code
generator preserves the lexical scope.

Our approach has many similarities with that of [30], in partic-
ular, their De Bruijn-index implementation. Our environment i is
quite like World. The main difference, which explains the others,
is the different foci of ours and nominal approaches. We are inter-
ested in domain-specific languages for code generation. The pro-
grammer building generators from given blocks is not necessarily
an expert in the target language; therefore, keeping the generated
code abstract and non-inspectable is the advantage. It also enables
a richer equational theory (see below). One of the main intended
applications for the nominal systems is writing theorem provers,
code verifiers, etc. The ability to inspect, traverse and transform
terms, which may contain bindings, is a must then.

The framework of [30] provides for the generation of fresh
names, comparing them, moving them across the worlds. We per-
mit none of that. Our approach is purely generative: the generated
code is a black box and cannot be inspected. Comparing variables
names for equality, computing the set of free variables of a term
are in principle unimplementable in our approach. The main bene-
fit of the pure generative restriction is simplicity. The framework of
[30] required the power of dependent types to ensure some of the
soundness of dealing with names and so was implemented in Agda.
The remaining invariants were not expressed and had to be ensured
by an off-line proof of the implementation. Pure FreshML [29],
an experimental language, attained the soundness of name manip-
ulation by introducing a specialized logic and expressing logical
assertions in types, extending the type checking. One can say the
same about Delphin and Beluga [26, 28]. In contrast, we imple-
ment our code-generation library in ordinary Haskell. Experience
showed that pure generative approach, albeit seemingly restrictive,
does not prevent generation of highly optimal code [17, 18].

The system of [30] and the other nominal systems reviewed
therein do not specify how and if they permit let-insertion across
binders while ensuring lexical scope. Perhaps solving this problem
requires additional primitives or environment polymorphism.

We should specifically contrast our approach with well-scoped
De Bruijn indices [7]. Although the approach ensures that all vari-
ables in the generated code are bound, the binding may be unantici-
pated, see §4.1. The problem was indicated in the review of [30], al-
though it has been pointed out by [16] and already in [7]. Although
our representation of target environment by nested ◦ is reminiscent
of the well-scoped De Bruijn-index approach, our use of rank-2
types for future-stage binders prevents unintended permutations of
the environment or forgetting to add weaken and ensure that ‘vari-
able references’, represented as projections from the environment,
always match their environment slot.

Interestingly, Chen and co-authors gave up on HOAS (which
was used by the authors in [39]) because “In general, it seems rather
difficult, if not impossible, to manipulate open code in a satisfactory
manner when higher-order code representation is chosen.” Second,
HOAS representation makes it possible to write code that does
“free variable evaluation, a.k.a. open code extrusion”. The authors
use De Bruijn indices, however cumbersome they are for practical
programming (which the authors admit and try to sugar out). The
sugaring still presents the problems (reviewed in §4.1). We demon-
strate how to solve both problems, manipulation of open code and
prevention of free variable elimination, without giving up conve-
niences of HOAS. [7] need type annotations even for local defi-
nitions. Also, [7] acknowledge that their language is experimental
and integrating to the full-fledged language is left for future work.

6. Conclusions
We have presented the so far most expressive statically safe code
generation approach. It permits arbitrary effects during code gener-
ation, including those that store or move open code. For the first
time we demonstrate let-insertion across an arbitrary number of
generated binders and loop exchange while statically assuring that
the generated code is well-typed and contains no unbound variables
or unexpectedly bound ones. A generator or even a generator frag-
ment that would violate these assurances is rejected by the type
checker.

We have fulfilled the dream of Taha and Nielsen [35]: “that the
notion of classifiers will provide a natural mechanism to allow us
to safely store and communicate open values, which to date has not
been possible.” Our approach is to make classifiers more precise,
associating them with each binding rather than a set of bindings.
Classifiers, or quantified type variables, act as names for free vari-
ables; the quantification scopes of these type variables correspond
to the binding scopes of the respective generated variables. In other
words, the generator type tells the scope of generated variables.

Although our approach makes the ‘names’ of free variables ap-
parent in the types of open code, it avoids the common drawback
of context calculi: the need to state freshness-of-names constraints.
They are implicit and enforced by the type checker. Although our
approach exposes target-code binding environments in the types
of the generator, it permits environment polymorphism and stati-
cally prevents weakening too little or too much. Our approach fur-
ther departs from statically scoped De Bruijn indices by permitting
human-readable names for the variables. In fact, our approach vin-
dicates HOAS, which has been regarded as unsuitable for assured
and expressive code generation.

We have implemented the approach as a Haskell library. It may
be regarded as a blueprint for a safe subset of Template Haskell.
The approach can be implemented in any other language with
first-class polymorphism, such as OCaml. Our use of mature lan-
guages, our guarantee that the generated code compiles, the human-



readable variable names afforded by HOAS, and the generator
modularity enabled by environment polymorphism together let do-
main experts today implement efficient domain-specific languages.

As for theory, we demonstrated an applicative CPS hierarchy
that does not treat abstraction as a value, permitting effects to ex-
tend past a binder. That result has many implications, for example,
for the analysis of quantifier scope in linguistics.
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