
Polymorphic Multi-Stage Language with Control Effects

Yuichiro Kokaji and Yukiyoshi Kameyama

University of Tsukuba, Japan
kokaji@logic.cs.tsukuba.ac.jp,kameyama@acm.org

Abstract. Multi-stage programming (MSP) is a means for run-time code gener-
ation, and has been found promising in various fields including numerical com-
putation and domain specific languages. An important problem in designing MSP
languages is the dilemma of safety and expressivity; many foundational calculi
have been proposed and proven to be type safe, yet, they are not expressive
enough. Taha’s MetaOCaml provides us a very expressive tool for MSP, yet, the
corresponding theory covers its purely functional subset only.
In this paper, we propose a polymorphic multi-stage calculus with delimited-
control operators. Kameyama, Kiselyov, and Shan proposed a multi-stage cal-
culus with computation effects, but their calculus lacks polymorphism. In the
presence of control effects, polymorphism in types is indispensable as all pure
functions are polymorphic over answer types, and in MSP languages, polymor-
phism in stages is indispensable to write custom generators as library functions.
We show that the proposed calculus satisfies type soundness and type inference.
The former is the key to guarantee the absence of scope extrusion - open codes are
never generated or executed. The latter is important in the ML-like programming
languages. Following Calcagno, Moggi and Taha’s work, we propose a Hindley-
Milner style type inference algorithm to obtain principal types for given expres-
sions (if they exist).

1 Introduction

Writing a code generator as a metaprogram is a vital means to achieve efficiency and
maintainability simultaneously. Typed multi-stage (multi-level) programming languages
help us write code generators easily and intuitively. The merit of typed multi-stage cal-
culus over its untyped cousin, the quasiquote and unquote mechanism in Scheme, is the
static assurance of type soundness: it subsumes not only type safety of code generators,
but also that of generated codes, which in turn subsumes the absence of scope extrusion:
a closed code generator never generates open codes (codes with free variables).

Many researchers have addressed the problem of assuring type soundness for multi-
stage calculi; foundational calculi based on modal logic include λ� by Davies and
Pfenning [5], λ© by Davies [4], and λ©� by Yuse and Igarashi[17]. More expressive
calculi have been proposed such as λ α by Taha and Nielsen [13], λ i by Calcagno,
Moggi and Taha [2], λ sim

open by Kim, Yi and Calcagno [8], and the calculus by Tsukada
and Igarashi [15].

Our goal is to extend the applicability of multi-stage programing so that one can
write efficient code generators naturally, while keeping static type soundness. This is a
challenging goal as efficient code generation (such as let-insertion) often needs impure

(effectful) operations, while existing theories guarantee type soundness for purely func-
tional subcalculi only. A recent hot topic is to add computational effects into multi-stage
languages [7, 10, 16]. All of them remain monomorphic setting, though.

In this paper, we introduce ML-like polymorphism into multi-stage languages with
computational effects, and in particular, we propose a polymorphic multi-stage calcu-
lus with delimited-control operators which satisfies type soundness. We think polymor-
phism is necessary in this kind of calculi by the following reasons:

– Many useful combinators for code generation are polymorphic functions1, and,
therefore, we need polymorphism to build a useful library for code generation.

– In the presence of computational effects, a type system of MSP calculi necessarily
becomes so called a type-and-effect system. Then, all the pure functions (with-
out effects) in existing libraries should be polymorphic over effects. In the case
of delimited-control operators, the effects are expressed as the answer types, and,
therefore, polymorphism in effects boils down to polymorphism in (answer) types.

– In MSP calculi based on Taha and Nielsen’s λ α or Calcagno et al.’s λ i, polymor-
phism in environment classifiers2 is necessary to write code generators as libraries.
The staged power function is the simplest example for MSP, which already needs
polymorphism in classifiers, if written as a library function (that is, not inlined).

Introducing ML-like let-polymorphism is not as trivial as one might expect. The
value restriction used in ML families is too restrictive, as we want to generate polymor-
phic functions as the result of code generation. Other syntactic conditions do not seem
suitable, either. Our solution for this problem is to revisit the semantic notion of pu-
rity, proposed by Asai and Kameyama [1] for the unstaged polymorphic calculus with
delimited-control operators. A term is called pure if it does not have computational ef-
fects observable from outside. Asai and Kameyama have shown that a pure term can
be made polymorphic. Following them, we allow polymorphism only for pure terms in
this paper. Surprisingly, this simple idea works: it rules out all dangerous terms, while
we retain the expressivity.

The proposed calculus extends Kameyama, Kiselyov, and Shan’s calculus in the
sense that we add let-polymorphism and the run-construct (for code execution) to their
calculus. We prove type soundness of our calculus under the purity restriction, which
implies that open codes are never generated or executed. We also show Hindley-Milner’s
style type inference algorithm for our calculus, which gives principal types if they exist.

The rest of this paper is organized as follows: Section 2 shows several example
programs using multi-stage calculi and control operators, which need polymorphism.
Section 3 explains the key idea of introducing polymorphism safely. Section 4 intro-
duces our calculus λ DC

let and operational semantics, and Section 5 introduces its type
system. Then we show several useful properties such as type soundness in Section 6
and the existence of principal types in Section 7. Section 8 states concluding remarks.

1 We will see an example of code generation combinators in Section 2.
2 Environment classifiers are identifiers for stages, first introduced by Taha and Nielsen [13].

II

2 Preliminaries

This section is an example-based introduction to MSP and delimited-control operators.
A comprehensive introduction to this subject may be found in the literature [11, 12,
7]. We use MetaOCaml to write concrete programs3 in this section. It has three con-
structs for code generation: brackets, escape, and run. We do not treat CSP (cross-stage
persistence) in this paper.
Staged Power Function. The first, canonical example of MSP is the staged version of
the power function:

let rec s_power n x =

if n = 1 then x

else < ~x * ~(s_power (n-1) x)>

The expression <e> (bracket expression) represents a code which is not executed at the
present stage, but executed at the future (next) stage. We can splice a code fragment
into another code by an escape expression ∼e. In the expression <∼x∗ · · ·>, the subex-
pression x is executed, and its value is spliced in this code. For instance, if we evalu-
ate (fun x-> <~x * 2>) <3 + 4>, we get <(3 + 4) * 2>. For those familiar with
Scheme macros, brackets and escape, resp, correspond to quasiquote and backquote
(unquote), resp.

By executing the expression <fun x -> ~(s_power 5 <x>)>, we get
<fun x_1 -> (x_1*(x_1*(x_1*(x_1*x_1))))

as its value. Note that the bound variable x has been renamed to x_1 during the com-
putation, which means that variables in codes are lexically bound unlike the template
mechanisms in C++ and Haskell. We can run the resulting code internally by the run
construct (!). The computation of the expression:

let power5 = ! <fun x -> ~(s_power 5 <x>)>

yields a function equivalent to
fun x_1 -> (x_1*(x_1*(x_1*(x_1*x_1))))

which can be used at the present stage, rather than the future stage.
Let us consider the type of s_power. Intuitively, it has type int→ <int>→ <int>

where <int> is the type of codes for integer expressions. Taha’s λ let
i , the underlying

calculus of MetaOCaml, assigns to each future stage an environment classifier (clas-
sifier for short), in order to distinguish different next stages from each other. Hence
s_power has type int → <int>` → <int>` where ` is a classifier. Since s_power

is polymorphic over stages (it is not specific to any environment classifiers), its type
should be polymorphic over classifiers as: ∀`.(int→ <int>` → <int>`).
Code Generation Combinators. Combinators provide us useful patterns of generating
and manipulating code fragments. One of the simplest, but widely used combinators is
the following eta:

let eta f = <fun x -> ~(f <x>)>

in eta (fun y -> <fun z -> z + ~y>)

3 We use slightly simplified notation for multi-stage constructs: we write <e> for the MetaOCaml
notation .<e>. and we suppress type variables corresponding to environment classifiers.

III

which, when executed, yields <fun x -> fun z -> z + x>. It is easy to see that
eta should have the polymorphic type: ∀`.∀σ .∀τ.(<σ>` → <τ>`)→ <σ → τ>`.

The staged power function may be generalized to an arbitrary binary function:

let rec s_iterate n f x =

if n = 1 then x

else < ~f ~x ~(s_iterate (n-1) f x)>

in let s_iterate5 =

eta (fun f -> eta (s_iterate 5 f))

which, when executed, returns <fun f -> fun x -> f x (f x (f x (f x x)))>.
MetaOCaml assigns a monomorphic type to this expression, but we hope to assign a
polymorphic type: ∀`.∀σ .<(σ → σ → σ)→ σ → σ>` to this expression. Here, poly-
morphism is necessary both at the present stage and the future stage.
Delimited-Control Operators. Control operators in functional languages are constructs
for changing the order of execution, causing computational effects. Typical control op-
erators are catch/throw (Lisp), exception (ML, Java), and call/cc (Scheme, SML/NJ).
While call/cc provides an access to unlimited continuations, delimited-control opera-
tors provide an access to part of the current continuations (delimited continuations).

The following examples use Danvy and Filinski’s delimited-control operators shift
and reset [3]:

1 + reset (10 + 20) yields 31

1 + reset (10 + (shift k -> 20)) yields 21

1 + reset (10 + (shift k -> (k (k 20)))) yields 41

We sometimes write shift and reset, resp., as Sk.e and {e}, resp.4 reset denotes a
delimiter, and does nothing if there is no shift as shown in the first line. In the second
and third lines, shift captures the continuation (an evaluation context) up to the nearest
reset operator, and binds the variable k to it. In the example, the captured continuation
is reset (10 + []) where [] is a hole. It is bound to k and may be used later. In
the third line, k (k 20) evaluates to reset (10 + (reset (10 + 20))).

In the presence of delimited-control operators, the type system should take into
account control effects (thus becomes a type-and-effect system). If we execute the fol-
lowing program:

let f = fun x -> shift k -> (k 10) + 20

in reset (f 30 >= 40)

the continuation captured by shift is reset ([] >= 40). Then we evaluate
(reset (10 >= 40)) + 20, which raises a run-time type error.

The computational effect caused by shift and reset can be described by an an-
swer type, the return type of a delimited continuation. In the above program, the shift
expression expects the answer type to be int (since the captured continuation k is ex-
pected to return an integer), while the reset expression provides bool as its answer

4 In the literature, a reset expression is denoted by 〈e〉. We write {e} to avoid conflict with a
bracket expression.

IV

type. In the type-and-effect system, a function type takes the form σ → σ ′/β , where
β represents the answer type. This change of type system makes all pure functions to
be polymorphic over effects: for instance, the function fun x -> x + 10 should have
type int→ int/β for any type β .

Delimited-control operators such as shift and reset have been found rather ex-
pressive: Filinski [6] proved that they can express any monadic effect, and Kiselyov,
Shan and Sabry have shown a concise encoding of dynamic binding and local states in
terms of them [9]. Kameyama, Kiselyov and Shan [7] have introduced control opera-
tors to type-safe multi-stage calculi, and shown that memoization in code generators is
expressible as let-insertion in the calculus. In this paper, we proceed one step further, to
introduce polymorphism into their calculus.

3 Introducing Polymorphism Safely

In this section, we investigate the problem of introducing let-polymorphism into a multi-
stage calculus with effects, and informally show our ideas to solve the problem.
Value Restriction. As is well known, unrestricted combination of computational effects
(such as states and control) and polymorphism leads to type unsoundness, and the value
restriction is the standard solution for this problem: for an expression let x = e1 in e2,
e1 must be a (syntactic) value for x to have a polymorphic type in e2.

Unfortunately the value restriction is too restrictive in multi-stage calculi: in un-
staged calculi we only define polymorphic functions, but in staged calculi we want to
generate (the codes of) polymorphic functions, while value restriction prohibits run-
time code generation of such polymorphic functions. Let us consider the following
example:

let iterate5 = ! s_iterate5

in

iterate5 (fun x y -> x * y) 3;

iterate5 (fun x y -> x ^ y) "abc"

In this program snippet, the expression ! s_iterate5 is not a value, and, therefore,
iterate5 cannot have a polymorphic type under the value restriction.
The Problem. We need a better criterion as to which terms can be polymorphic. This
is not a trivial problem as one might expect. To see the problem, let us consider the pro-
gram let y = e in <let x = ~y in e2>. Then we have different situations de-
pending on the expression e:

– if e evaluates to a code of a value, say, <fun z-> z>, then x can be polymorphic.
– if e evaluates to a code of an effectful computation (say, <shift k -> 10>), then
x cannot be polymorphic.

In summary, it is not possible to decide the condition by simply looking at the expres-
sion e1 in let x = e1 in e2. In other words, the condition must be context sensitive.
Purity Restriction in Unstaged Calculus. Asai and Kameyama [1] have proposed a
more liberal condition for let-polymorphism, called the purity restriction, for the (un-
staged) calculus with the delimited-control operators shift and reset.

V

An expression is pure if there are no computational effects that are observable from
outside. In the calculus with shift and reset, the only observable effect (other than
termination) is the control effect caused by shift, so an expression is pure if all the
calls to shift are captured within this expression, and is not pure otherwise. A pure
expression is polymorphic in the answer types [14], and we can determine if a given
expression is pure or not by tracking its answer type. However, type inference for such
a type system is hard, and they replaced it by its conservative approximation as:

Definition 1 (Syntactic Purity [1]). An (unstaged) expression is syntactically pure if it
is a value or a reset expression {e}.

The syntactic purity is a stronger (more restrictive) notion than purity, since a pure
expression is not necessarily syntactically pure, for instance, Sk.k 10. However, there is
no loss of expressivity by choosing syntactic purity, since, for any pure e, we can add a
superfluous reset as {e} while preserving typability and operational behavior. Asai and
Kameyama have proven type soundness as well as other desirable properties for their
calculus under the syntactic purity restriction.
Purity Restriction in Multi-Stage Calculus. We borrow their idea to formulate the no-
tion of (syntactic) purity in multi-stage calculi, and apply it to let-polymorphism. Since
a level-0 expression (present stage expression) cannot have level-1 effects (computation
effects of future stage), we formulate (semantic) purity as follows:

– A level-0 expression (an expression at the present stage) is pure if and only if it
does not have observable computational effects of level-0.

– A level-1 expression (an expression at the future stage) is pure if and only if it does
not have observable computational effects of level-0 and level-1.

As in the case of unstaged calculus, this semantic notion of purity is hard to decide,
and we replace it by syntactic purity as follows:

– For a level-0 let-expression let x = e1 in e2, the expression e1 must be a syntactic
value or in the form {e′1}.

– For a level-1 let-expression let x = e1 in e2, the expression e1 must be a syntactic
value or in the form {∼{<e′1>}}.

The former is the same as syntactic purity in the unstaged calculus. As for the latter, for
a level-1 expression e′1, the expression {∼{<e′1>}} introduces a level-0 reset, and then
the outer most reset is of level-1. In summary, this expression has resets of both levels.
Syntactic Purity in Action. When we introduce the syntax of our calculus, we need
one more twist. Rather than directly treating the (syntactically) pure expressions in the
above forms, we instead use polymorphic let expression plet x = e1 in e2, which
intuitively means let x = {e1} in e2 for level-0, and let x = {∼{<e1>}} in e2 for
level-1. This change of syntax greatly simplifies our formulation and it is called the
implicit-delimiter method.

The implicit-delimiter method was also used in the literature for a different purpose;
Kameyama, Kiselyov and Shan [7] regarded a level-1 binder as a delimiter for level-0,
advocating that future-stage binders delimit present-stage control effects. For instance,

VI

the level-1 expression λx.e is intuitively equivalent to λx.∼{<e>} which has a level-0
delimiter (reset).5

In fact, we need both techniques in our calculus – one for ensuring syntactic pu-
rity and the other for regarding binders as delimiters. We list all the uses of implicit
delimiters below.

(level 0) run e ≡ run <{∼{e}}>
plet x = e1 in e2 ≡ plet x = {e1} in e2

(level-1) λx.e ≡ λx.∼{<e>}
Sk.e ≡ Sk.∼{<e>}

plet x = e1 in e2 ≡ plet x = {∼{<e1>}} in ∼{<e2>}

Note that one should understand the above equivalences (denoted by ≡) as informal
ones. They will help us understand some reduction rules in Section 4 and the type
system in Section 5, but they are not formal entities.
Summary and Discussion. We introduce the syntactic approximation of the notion of
purity in the multi-stage calculus. The notion of syntactic purity meets all our needs
for let-polymorphism: it is liberal so that we can generate the codes of polymorphic
functions in run-time. It is safe in the sense that type soundness holds for our calculus.
It is easy to decide if a given expression is pure or not.

We believe that disallowing uncaptured calls to shift in polymorphic functions is
reasonable and our implicit-delimiter approach relies on this assumption. In our ex-
perience, polymorphism and computational effects in MSP languages are completely
separated, and, therefore, our purity restriction is not problematic. However, this is not
at all a final word, and a further study is left for future work.

4 The Calculus

This section introduces the polymorphic multi-stage calculus λ DC
let , which is based on

λ i by Calcagno et al., and λ�
1 by Kameyama et al. The former has polymorphism,

more than two levels, CSP, but no control operators. The latter has control operators but
no polymorphism, no run constructs and no CSP, and is restricted to two levels. Our
calculus λ DC

let has control operators, polymorphism, run constructs, but currently does
not have CSP, and restricted to two levels. The principles of our design are simplicity
and essence: the combination of control operators, polymorphism, and run constructs
are the usual sources of type unsoundness, thus leading to scope extrusion, while adding
more than two stages and CSP seems orthogonal to these problems. It is desirable to
have all these features, but in this paper, to avoid clutter, we present a minimal calculus
which exposes the subtle problems in the design of multi-stage calculi. Extension to
more expressive calculi are left for future work.

We restrict the computational effects to those caused by shift and reset, and
their answer types be invariant through the computation (no answer-type modification).
Danvy’s type-safe printf is a typical example which needs the effect of answer-type

5 We inserted brackets and escape to make the reset be of level 1.

VII

e0 ::= v0 | e0e0 | e0 + e0 | plet x = e0 in e0 | {e0} | Sk.e0 | <e1> | run e0

e1 ::= v1 | e1e1 | e1 + e1 | plet x = e1 in e1 | {e1} | Sk.e1 |∼e0

v0 ::= x | i | λx.e0 | <v1>

v1 ::= x | i | λx.v1 | v1v1 | v1 + v1 | plet x = v1 in v1 | {v1} | Sk.v1

Fig. 1. Syntax of Expressions

modification if written in direct style, so it is not typable in our calculus. However, this
restriction is only for presentation; we can develop the calculus with answer-type mod-
ification, although it doubles the number of answer types in the judgment. We believe
that our calculus provides a useful information on how to introduce polymorphism into
multi-stage calculus with computational effects.
Syntax. We define the syntax of λ DC

let . We assume to have an infinite number of envi-
ronment classifiers (or classifiers) `,`1, `2, · · · . They are abstract entities; variables for
classifiers are quantified by ∀, but there are no constants for classifiers. The stage-level
L is either 0 (for the present stage), or a single classifier ` (for the next, or future stage).
In general a level is a finite sequence of classifiers, but we restrict the number of levels
to two, so the maximum length of levels is 1. When the names of classifiers do not
matter, all stage-levels `i are simply called “level 1”.

Fig. 1 defines the type-free expressions where en and vn, resp., are a level-n expres-
sion and a level-n value, resp., for n = 0,1.

A level-0 expression e0 is either a variable x, an integer literal i, λ -abstraction λx.e0,
addition e0 + e0, a polymorphic let expression plet x = e0 in e0, a reset expression
{e0}, a shift expression Sk.e0, a bracket expression <e1>, or a run expression run e0.
Note that, a level-1 expression e1 should come inside a bracket expression.

A level-1 expression e1 contains an escape expression ∼e0, but since the maximum
level is one, there are no expressions like <e2> or run e1.

A level-0 value v0 is standard except that a bracket expression <v1> constitutes a
code value. Note that we will introduce call-by-value operational semantics. The defini-
tion of a level-1 value v1 contains all kinds of expressions except an escape expression.

The variable x in λx.e and plet x = e′ in e, k in Sk.e are bound in each e. We
identify α-equivalent expressions as usual, and FV(e) denotes the set of free variables
in e. Given an expression e, a variable x and a value v of the same level as x, e[v/x]
denotes the result of substitution of v for x in e.
Operational Semantics. We define the call-by-value operational semantics. Fig. 2 de-
fines evaluation contexts of various levels. E i j denotes an evaluation context such that
its hole (denoted by •) will be filled by a level- j expression, and then the whole context
will become a level-i expression. An interesting one is E01[λx.•], which means that we
evaluate under lambda abstraction.

We also define a pure evaluation context F0 j for j = 0,1. Intuitively, this context
does not have resets which enclose the hole. In our calculus, certain expressions have
implicit resets, and they cannot constitute pure evaluation contexts.

VIII

E00 ::= • | E00[•e0] | E00[v0•] | E00[•+ e0] | E00[v0 +•]

| E00[plet x = • in e0] | E00[{•}] | E00[run •] | E01[∼•]

E01 ::= E01[•e1] | E01[v1•] | E01[•+ e1] | E01[v1 +•] | E01[λx.•]

| E01[plet x = • in e1] | E01[plet x = v1 in •]

| E01[Sk.•] | E01[{•}] | E00[<•>] | E01[run •]

F00 ::= • | F00[•e0] | F00[v0•] | F00[•+ e0] | F00[v0 +•] | F01[∼•]

F01 ::= F01[•e1] | F01[v1•] | F01[•+ e1] | F01[v1 +•] | F00[<•>]

Fig. 2. Evaluation Contexts

E00[i+ j] E00[m] if i+ j = m E00[{v0}] E00[v0]

E00[(λx.e0)v0] E00[e0[v0/x]] E01[∼<v1>] E01[v1]

E00[plet x = v0 in e0] E00[e0[v0/x]] E00[run <v1>] E00[v1]

E00[{F00[Sk.e0]}] E00[{e0[λx.{F00[x]}/k]}]

Fig. 3. Reduction Rules

Fig. 3 gives the reduction rules in the evaluation-context style.
The first three rules are integer addition, β reduction in call-by-value, and let-

reduction as usual. The next two rules are the ones for control operators. shift captures
the continuation delimited by the nearest delimiter. In the rule, F00 is an evaluation con-
text which does not have resets around the hole, which means that the reset displayed
in the rule is the nearest one. After capturing the delimited context {F00}, we convert
it to a functional form λx.{F00[x]}, and bind k to it, and continue the evaluation. For
the next rule, if the body of a reset expression is a level-0 value, the delimiter is simply
discarded.

The last two rules are the reduction rules for multi-stage constructs. In the second
last rule, the evaluation context E01 signifies that the hole in E01 is of level-1, which
means that there are brackets enclosing the hole. Hence the subexpression ∼<v1> ap-
pears in a code, and thus we are splicing the code v1 into the code. Then it is easy to
understand the reduction rule. The last rule defines the code execution. If the body of
the run expression is <v1>, then we extract the content v1 of the code expression, and
start evaluating v1. In the right-hand side of this rule, a level-1 value v1 is plugged in to
the level-0 hole in E00.
Reductions for Implicit Delimiter. One may notice that reduction rules Fig. 3 are too
weak. In fact, there are closed, non-value expressions that may not be reduced by any
reduction rules. For instance, {<λx.∼(Sk.e)>} gets stuck, since the obvious candidate
for reduction is E00[{F00[Sk.e0]}] · · · , but the definition of F00 does not allow level-1
abstraction λx.e. Our calculus rules out some of such kinds of expressions, but not all of

IX

Auxiliary definition for pure evaluation contexts:

F10 ::= F10[•e0] | F10[v0•] | F10[•+ e0] | F10[v0 +•] | F11[∼•]

F11 ::= • | F11[•e1] | F11[v1•] | F11[•+ e1] | F11[v1 +•] | F10[<•>]

Additional reduction for level-0 implicit resets:

G[F00[Sk.e0]] G[∼{e0[λx.{F00[x]}/k]}] where G ::= E00[plet x = • in e0]

G′[F00[Sk.e0]] G′[{e0[λx.{<{∼F00[x]}>}/k]}] where G′ ::= E00[run •]

Additional reduction for level-1 implicit resets:

H[F10[Sk.e0]] H[∼{e0[λx.{<F10[x]>}/k]}]

where H ::= E01[λx.•] | E01[Sk′.•] | E01[plet x = • in e1] | E01[plet x = e1 in •]

Fig. 4. Reduction rules for implicit resets

them. Some expressions in the above form typecheck in our type system, and thus, we
need additional reduction rules for those safe patterns, to take into account the implicit
delimiters.

Fig. 4 gives the reduction rules corresponding to implicit resets.
Although the reduction rules look complicated, they are in fact simply derived from

the informal reading for implicit resets, stated earlier.

5 Type System

In this section, we define a polymorphic type system for the calculus λ DC
let . We first

define types:

σ ,τ,α ,β ::= t | int | σ → τ/β | <σ/β>` monomorphic type
T ::= σ | ∀t.T | ∀`.T polymorphic type

where t is a type variable, and int is the type for integers. The type σ → τ/β is the func-
tion type with effects, which are determined by the answer type β . The type <σ/β>` is
the type for codes of level ` where σ is the type of the code, and β is a level-1 answer
type.

The polymorphic type T is a monomorphic type with universal quantification. Fol-
lowing Calcagno et al. [2], we have two kinds of quantification: ∀t.T represents uni-
versal quantification over types, and ∀`.T universal quantification over environment
classifiers. We sometimes write ∀t.∀`.σ for the type σ quantified over sequences of
type variables t1, · · · , tn and environment classifiers `1, · · · , `m.

For a type T , FC(T) and FTV(T), resp., are the set of free classifiers in T , and the
set of free type variables in T , resp. In the following, we sometimes write FV(Γ) and so
on, which has obvious meaning.

A general form of a judgment is Γ `L e : σ ;β0 ;β1 where the type context Γ is
a (possibly empty) finite sequence of the form (x : T)L where T is a polymorphic type

X

and L is a level. The level L in (x : T)L means that the variable x can be used in level
L. The above judgment means that, under the type context Γ , e is a level-L expression
of type σ with the level-0 answer type β0 and the level-1 answer type β1. When L = 0,
the level-1 answer type β1 is not significant (a level-0 expression cannot contain level-1
effects), and therefore we often write − for β1.

Typing rules of λ DC
let are defined as follows.

(i is an integer constant)

Γ `L i : int ;β0 ;β1
int

(τ ≤ T)

Γ ,(x : T)L `L x : τ ;β0 ;β1
var

Γ `L e1 : int ;β0 ;β1 Γ `L e2 : int ;β0 ;β1

Γ `L e1 + e2 : int ;β0 ;β1
plus

Γ ,(x : σ)0 `0 e : τ ;β0 ;−
Γ `0 λx.e : σ → τ/β0 ;α0 ;− λ 0

Γ ,(x : σ)` `` e : τ ;<τ/β1> ;β1

Γ `` λx.e : σ → τ/β1 ;α0 ;α1
λ 1

Γ `0 e1 : σ → τ/α0 ;α0 ;−
Γ `0 e2 : σ ;α0 ;−

Γ `0 e1e2 : τ ;α0 ;−
app0

Γ `` e1 : σ → τ/α1 ;α0 ;α1

Γ `` e2 : σ ;α0 ;α1

Γ `` e1e2 : τ ;α0 ;α1
app1

Γ `0 e1 : σ ;σ ;−
t ⊆ FTV(σ)−FTV(Γ), `⊆ FC(σ)−FC(Γ)

Γ ,(x : ∀t.∀`.σ)0 `0 e2 : τ ;β0 ;−
Γ `0 plet x = e1 in e2 : τ ;β0 ;− let0

Γ `` e1 : σ ;<σ/σ>` ;σ
t ⊆ FTV(σ)−FTV(Γ)

Γ ,(x : ∀t.σ)` `` e2 : τ ;<τ/β1>
` ;β1

Γ `` plet x = e1 in e2 : τ ;<τ/β1>
` ;β1

let1

Γ ,(k : ∀t.(σ → β0/t))0 `0 e : β0 ;β0 ;−
Γ `0 Sk.e : σ ;β0 ;− shift0

Γ `0 e : β0 ;β0 ;−
Γ `0 {e} : β0 ;α0 ;− reset0

Γ ,(k : ∀t.(σ → β1/t))` `` e : β1 ;<β1/β1>
` ;β1

Γ `` Sk.e : σ ;α0 ;β1
shift1

Γ `` e : β1 ;β0 ;β1

Γ `` {e} : β1 ;β0 ;α1
reset1

Γ `` e : σ ;β0 ;β1

Γ `0 <e> : <σ/β1>
` ;β0 ;− brackets0

Γ `0 e : <σ/β1>
` ;β0 ;−

Γ `` ∼e : σ ;β0 ;β1
escape1

Γ `0 e : <σ/σ>` ;<σ/σ>` ;− (` 6∈ FC(Γ ,σ))

Γ `0 run e : σ ;α0 ;− run0

XI

Let us explain the typing rules briefly.
The var rule is the standard one in polymorphic type systems where τ ≤ T means

that τ is an instance of polymorphic type T . More precisely, if T = ∀t.∀`.σ for a
monomorphic type σ , then τ = σ [α/t][`′/`] for some α1, · · · ,αn, `

′
1, · · · , `′k.

The λ 0 rule is also standard except that it retrieves the level-0 answer type β0 into
the function type σ → τ/β0. Since a function does not have computational effects,
its level-0 answer type can be an arbitrary type α0. The λ 1 rule is the key to avoid
scope extrusion as studied by Kameyama, Kiselyov and Shan [7]. As we explained in
Section 3, the level-1 expression λx.e has an implicit level-0 reset beneath this lambda,
namely, its intuitive meaning is λx.∼{<e>}. In order to type this expression, we need
to require the level-0 answer type for e be <τ/β1>

`. The app rules can be understood
easily.

The level-0 polymorphic let expression plet x = e1 in e2 should be understood
as let x = {e1} in e2, hence the answer type of e1 must be the same as the type
of e1 itself. (See also the reset rule below.) The level-1 polymorphic let expression
plet x= e1 in e2 is slightly more complex. First, due to the purity restriction for e1, it is
understood as let x= {∼{<e1>}} in e2. But since this level-1 let expression is a binder
for e2, it must not have level-0 effects, and therefore, let x = {∼{<e1>}} in ∼{<e2>}
is the final meaning of polymorphic let expression. The type rule reflects this reading.

The shift rules are adaptation from the standard typing rules for them in the litera-
ture of delimited continuations. For instance, level-0 shift captures a delimited context
whose answer type is β0. Thus the type of k must be a function type whose return type is
β0. Since the delimited continuation is a pure function (no control effects are involved),
it is polymorphic in the answer type, and thus we quantify t in σ → β0/t. The shift1 rule
is more complex, as it binds level-1 variables k, and again we have an implicit level-0
reset. (Note the level-0 answer type for e is <β1/β1>

`.)
The reset rules are also adaptation of the type rule in the literature. For a level-0

expression {e}, its type must be the same type as that of e and also the level-0 answer
type of e. Since {e} has no observable control effects, its level-0 answer type can be
arbitrary type α0. The level-1 reset rule can be understood similarly.

The rules for brackets and escapes are the same as those in λ α and λ i except that
we need to memoize the level-0 effect (β1) in the code type as <σ/β1>

`. Brackets turn
a level-1 expression to a level-0 expression, and escape does the converse.

Finally, the run rule is one of the most interesting ones. The run construct is to
execute the code (inside brackets) at the present stage, and thus it is important to ensure
it is a closed code. The calculi λ α and λ i ensure this closedness condition in terms of
the eigen-variable condition for the classifier `: it must not appear at any other place
in the judgment for e. If the condition is met, e does not depend on the stage `, so we
can run (and compile) it at the present stage. In addition to this condition, we need to
rule out, for instance, an expression like run <shift k -> ..>. In general we need
to ensure level-0 and level-1 purity of e in this rule. Thus we implicitly introduce resets
of both levels.

The following figure shows a type derivation for λx.∼(Sk.<x+10>) where Γ = (x :
int)`,(k : ∀t.<int/int>` → <int/int>`/t)0.

XII

Γ `` x+10 : int ;<int/int>` ;int

Γ `0 <x+10> : <int/int>` ;<int/int>` ;−
(x : int)` `0 Sk.<x+10> : <int/int>` ;<int/int>` ;−
(x : int)` `` ∼(Sk.<x+10>) : int ;<int/int>` ;int

`` λx.∼(Sk.<x+10>) : (int→ int/int) ;β1 ;β2

6 Type Soundness

In this section we prove type soundness of λ DC
let , which consists of the subject reduction

property (type preservation) and the progress property. Due to lack of space, we do not
give complete proofs, and, instead state important lemmas in this paper.

Lemma 1 (Values do not have effects). If Γ `0 v0 : σ ;β0 ;− is derivable, then
Γ `0 v0 : σ ;α ;− is derivable for any α . If Γ `` v1 : σ ;β0 ;β1 is derivable, then
Γ `` v1 : σ ;α ;β1 is derivable for any α .

This lemma can be proven immediately. We then state two lemmas about substitu-
tion, which are used in the proof of subject reduction.

Lemma 2 (Substitution for monomorphic variable). If Γ1 `0 v : σ ;α0 ;− and
Γ1,Γ2,(x : σ)0 `L e : τ ;β0 ;β1 are derivable, Γ1,Γ2 `L e[v/x] : τ ;β0 ;β1 is deriv-
able.

Lemma 3 (Substitution for polymorphic variable). If Γ1 `0 v : σ ; [] and Γ1,Γ2,(x :
∀t.∀`.σ)0 `L e : τ; ;β0 ;β1 are derivable, t1, · · · , tn ∈ FTV(σ)−FTV(Γ) and `1, · · · , `k ∈
FC(σ)−FC(Γ), then Γ1,Γ2 `L e[v/x] : τ; ;β0 ;β1 is derivable.

These lemmas can be proven by structural induction on the second derivation, resp.
The next lemma is necessary to prove subject reduction for the case of the run construct.
First, we introduce an auxiliary definition ⇓` for elements of typing contexts, defined
as:

(x : σ)0 ⇓`
def
= (x : σ)0

(x : υ)` ⇓`
def
= (x : υ)0

(x : υ)`
′ ⇓`

def
= (x : υ)`

′
if `′ 6= `

The definition extends to Γ ⇓` straightforwardly.

Lemma 4. Suppose Γ1,Γ2 `` v1 : σ ;β0 ;β1 is derivable such that ` 6∈ FC(Γ1,σ ,β0,β1),
and Γ2 consists of the form (xi : τi)

` such that ` 6∈ FC(τi). Then we can derive Γ1,Γ2 ⇓``0

v1 : σ ; ;β1 ;−.

This lemma is proven by induction on the derivation of Γ1,Γ2 `` v1 : σ ;β0 ;β1. As
its corollary, we obtain:

XIII

Corollary 1. Suppose Γ `` v1 : σ ;β0 ;β1 is derivable such that ` 6∈ FV(Γ ,σ ,β0,β1),
then we can derive Γ `0 v1 : σ ;β1 ;−.

Finally, we state the subject reduction property.

Theorem 1 (Subject Reduction). If Γ `0 e : τ ;β0 ;− is derivable and e ∗ e′, then
Γ `0 e′ : τ ;β0 ;− is derivable.

Proof. (very brief sketch) We prove the theorem by induction on the number of reduc-
tion steps, and case analysis of reductions.

For the reduction rules of shift (when shift captures a continuation up to the nearest
reset), we have the important observation: for any type derivation of a pure context F i j

(i, j = 0,1), there are no (explicit or implicit) level-0 resets and no level-0 binders which
enclose the hole. Moreover, there are no binders of the same level. Then by induction on
F i j, we can prove that the level-0 answer type does not change through this derivation.
By using this fact, we can prove the subject reduction property for this case.

The cases for β and let reductions are handled by Lemmas 2 and 3. Other cases are
proven straightforwardly.

The progress property states that a closed well-typed express does not get stuck.

Theorem 2 (Progress). If `0 e : τ ;τ ;− is derivable, there exists an expression e1
such that {e} e1.

Proof. (sketch) We first prove by induction that, for any typable expression e, it is a
value, a reducible expression, or a stuck expression E00[Sk.e′].

Then, we can prove that {e} is always a redex.

7 Principal Type and Type Inference

Type inference is an important feature for ML-like languages, and it is even more im-
portant for our calculus, since we need to keep track of the effects of an expression
as type annotation. In this section we briefly mention the type inference algorithm for
λ DC

let .
Calcagno, Moggi and Taha [2] proposed the calculus λ i and its polymorphic version

λ i
let , which is slightly less expressive than the earlier calculus λ α by Taha and Nielsen,

but has principal typing (or principal type for λ i
let). λ i is suitable as the foundation of

multi-stage programming languages, as demonstrated by the success of the MetaOCaml
language.

Our calculus λ DC
let also has the principal type property, and a sound and complete

type inference algorithm similar to the algorithm W.
Given an expression e, a type context Γ and a level L, we say (θ ,σ ,α,β) is a

solution for these data if and only if θ is a substitution for type variables and classifiers,
σ , α , β are types, and Γ `L e : σ ;α ;β is derivable.

Proposition 1 (Principal Type). Suppose there is a solution for an expression e, a type
context Γ , and a level L. Then there exists a principal solution (θ0,σ0,α0,β0) for them,
namely, for any solution (θ1,σ1,α1,β1) for the same input, there exists a substitution φ
such that θ1 = θ0φ , σ1 = σ0φ , α1 = α0φ and β1 = β0φ .

XIV

Here we slightly generalized the statement of the theorem than the standard form so
that the inductive proof goes through.

Proof. (sketch) We can construct a Hindley-Milner’s style type inference algorithm for
λ DC

let . This is due to the “implicit reset” approach, since we no longer have to infer the
(semantic) purity in the process of type inference.

The only difficulty in constructing the algorithm is the case for the run rule, which
has the negative side condition ` 6∈ FV(Γ ,σ). To see how our algorithm handle this case,
let us consider the expression run e under the context Γ and the level L. We first infer
the type of e under Γ and L. Suppose we get (θ0,σ0,α0,β0) as the answer. Then we
unify σ0 with <σ ′/σ ′>` for a fresh σ ′ and so on. We check if the classifier ` appears in
the results or not. The algorithm fails to infer a type if ` appears in a wrong place of the
results, and continues otherwise. In the latter case, the future process of type inference
does not unify ` to other classifiers, so the side condition ` 6∈ FV(Γ ,σ) will remain valid.

Hence we can build a W-like type inference algorithm. The proof of soundness and
completeness of the algorithm is as standard.

8 Conclusion

We have designed a polymorphic type system for multi-stage calculus with delimited-
control operators where polymorphism in types and that in classifiers are expressible.
The calculus in this paper extends Kameyama, Kiselyov and Shan’s calculus in that
(besides polymorphism) we have the run construct. The key idea of integrating these
conflicting concepts into one calculus is to relax the value restriction to the syntactic
purity restriction, and then introduce the notion of implicit resets. We have proven type
soundness and the existence of principal types, both of which are essential to make our
language usable.

The success of this combination strongly owes to the local nature of computational
effects by shift and reset: we can represent, in particular, mutable variables in terms of
shift and reset, but their scope is local to a certain block in a program. By placing a
sufficiently many resets (on the borders of polymorphism and run), we have obtained a
type-safe polymorphic calculus.

We mention other approaches to design type-safe multi-stage calculi with control
effects. Kim, Yi and Calcagno [8] proposed a polymorphic modal type system for Lisp-
like languages. Since their calculus has quite different flavors in nature (for instance,
α-equivalence is not admissible in their calculus, while it is built in our calculus), it is
left for future work to compare these two different lines of works.

Recently Westbrook et al. [16] designed a multi-stage programming language Mint
as an extension of Java. To ensure type safety, they introduced the notion of weak sepa-
rability. Despite the difference of underlying languages, it will be interesting to compare
their conditions with ours so that we can build an even more powerful, and type-safe
calculus.

XV

Acknowledgments

We would like to thank Kenichi Asai, Atsushi Igarashi, Oleg Kiselyov, Chung-chieh
Shan, and Kwangkeun Yi. We also thank anonymous reviewers for constructive com-
ments. The second author is supported in part by JSPS Grant-in-Aid for Scientific Re-
search (B) 21300005.

References

1. K. Asai and Y. Kameyama. Polymorphic Delimited Continuations. In Proc. Asian Program-
ming Languages and Systems, LNCS 4807, pages 239–254, Nov-Dec 2007.

2. Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Ml-like inference for classifiers. In
ESOP, pages 79–93, 2004.

3. Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Program-
ming, pages 151–160, 1990.

4. Rowan Davies. A temporal logic approach to binding-time analysis. In LICS, pages 184–195,
1996.

5. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, May 2001.

6. Andrzej Filinski. Representing Monads. In Proc. 21st Symposium on Principles of Program-
ming Languages, pages 446–457, 1994.

7. Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the stage: staging
with delimited control. In PEPM, pages 111–120, 2009.

8. Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic modal type system
for lisp-like multi-staged languages. In POPL, pages 257–268, 2006.

9. Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. Delimited dynamic binding. In John H.
Reppy and Julia L. Lawall, editors, ICFP, pages 26–37. ACM, 2006.

10. Keisuke Sugiura and Yukiyoshi Kameyama. Multi-stage language with control effect and
code execution (in Japanese). Computer Software (Journal of Japan Society of Software
Science and Technology), 28(1):217–229, 2011.

11. Walid Taha. A gentle introduction to multi-stage programming. In Domain-Specific Program
Generation, pages 30–50, 2003.

12. Walid Taha. A Gentle Introduction to Multi-stage Programming, Part II. In GTTSE, pages
260–290, 2007.

13. Walid Taha and Michael F. Nielsen. Environment classifiers. In POPL, pages 26–37, 2003.
14. Hayo Thielecke. From control effects to typed continuation passing. In POPL, pages 139–

149, New York, January 2003. ACM Press.
15. Takeshi Tsukada and Atsushi Igarashi. A logical foundation for environment classifiers.

Logical Methods in Computer Science, 6(4:9):1–43, 2010.
16. Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif, and Walid Taha.

Mint: Java multi-stage programming using weak separability. In PLDI, pages 400–411, 2010.
17. Yosihiro Yuse and Atsushi Igarashi. A modal type system for multi-level generating exten-

sions with persistent code. In PPDP, pages 201–212, 2006.

XVI

